JPH0539406Y2 - - Google Patents

Info

Publication number
JPH0539406Y2
JPH0539406Y2 JP1985098132U JP9813285U JPH0539406Y2 JP H0539406 Y2 JPH0539406 Y2 JP H0539406Y2 JP 1985098132 U JP1985098132 U JP 1985098132U JP 9813285 U JP9813285 U JP 9813285U JP H0539406 Y2 JPH0539406 Y2 JP H0539406Y2
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
liquid
liquid receiver
outflow pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1985098132U
Other languages
Japanese (ja)
Other versions
JPS626670U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1985098132U priority Critical patent/JPH0539406Y2/ja
Publication of JPS626670U publication Critical patent/JPS626670U/ja
Application granted granted Critical
Publication of JPH0539406Y2 publication Critical patent/JPH0539406Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【考案の詳細な説明】[Detailed explanation of the idea] 【産業上の利用分野】[Industrial application field]

この考案は、受液器により冷却運転時と加温運
転時の必要冷媒量の調整を行うヒートポンプ装置
に関するものである。
This invention relates to a heat pump device that uses a liquid receiver to adjust the amount of refrigerant required during cooling operation and heating operation.

【従来の技術】[Conventional technology]

第3図は従来のヒートポンプ装置の冷媒回路
図、第4図は第3図の冷媒回路に接続された従来
の受液器の縦断面図である。 図において、1は冷媒ガスを吸入し圧縮吐出す
る冷媒圧縮機、2は加温運転或いは冷却運転に応
じて上記冷媒圧縮機1より吐出された冷媒ガスの
流れの向きを変える切換弁である四方弁(以下切
換弁という)、3は加温運転時には凝縮器として、
冷却運転時には蒸発器としての流体を加温或いは
冷却する第1の熱交換器、4は加温運転時に上記
第1の熱交換器で凝縮された液冷媒を受容する受
液器、5は加温運転時に冷媒が通過し冷媒圧力を
減圧する絞り装置(以下加温用キヤピラリチユー
ブという)、6は冷却運転時に冷媒が通過し冷媒
圧力を減圧する減圧装置(以下冷却用キヤピラリ
チユーブという)、7及び8は上記加温用キヤピ
ラリチユーブ5或いは上記冷却用キヤピラリチユ
ーブ6を選択するための逆止弁、9は加温運転時
には蒸発器として、冷却運転時には凝縮器として
非利用側流体の流体から熱を吸収したり或いは放
熱する第2の熱交換器、10は液冷媒を貯留しガ
ス冷媒を上記冷媒圧縮機1に吸入させるサクシヨ
ンアキユムレータ、11は、上記冷媒圧縮機1、
切換弁2、第1の熱交換器3、受液器4、逆止弁
7,8、キヤピラリチユーブ5,6、第2の熱交
換器9及びサクシヨンアキユムレータ10等を順
次接続して冷凍サイクルを形成する冷媒配管であ
る。41は鋼製等の胴、42,43は鋼材等で形
成された下部鏡板及び上部鏡板であり、胴41に
溶接することにより密閉容器4123を構成して
いる。44は開口端部441が上記下部鏡板42
の底部に位置するよう取付けられ加温運転時に冷
媒が流入する流入管(但し冷却運転時には流出部
となる)、45は開口端部451が上部鏡板43
の内壁上部に位置するよう取付けられ加温運転時
に冷媒が流出する流出管(但し冷却運転時は流入
部となる)である。 従来のヒートポンプ装置は以上のように構成さ
れており、加温運転時には、冷媒は第3図に示す
ように実線矢印の向きに流れ、上記冷媒圧縮機1
より吐出された高温高圧のガス冷媒は、上記切換
弁2を介して第1の熱交換器3に供給され、空気
或いは水等の利用側の流体に放熱して加温を行う
と同時に液化する。液化された冷媒は上記受液器
4及び逆止弁7を経由して加温用キヤピラリチユ
ーブ5に至り、ここで高温液冷媒は減圧され低温
低圧の気液混合冷媒となり、第2の熱交換器9に
流入し、熱源空気或いは水等の非利用側の流体よ
り吸熱し冷媒は気化し、切換弁2を介してサクシ
ヨンアキユムレータ10に流入し第2の熱交換器
9において気化しきれずに残つた液冷媒を分離
し、低温のガス冷媒のみが圧縮機1に戻る。ま
た、冷却運転時には、冷媒は破線矢印の向きに流
れ、圧縮機1より吐出された高温高圧のガス冷媒
は、切換弁2を介して第2の熱交換器9に供給さ
れ、空気或いは水等の非利用側の流体により冷却
されて凝縮液化する。この液冷媒は逆止弁8を経
由して冷却用キヤピラリチユーブ6に至り減圧さ
れ低温低圧の気液混合冷媒となり、受液器4を経
由し第1の熱交換器3に流入する。第1の熱交換
器3において空気或いは水等の利用側の流体より
吸熱し冷却作用を行うと同時に、冷媒は気化し切
換弁2及びサクシヨンアキユムレータ10を介し
て低圧ガス冷媒が圧縮機1に戻る。 上記のように必要に応じて加温運転或いは冷却
運転を行うヒートポンプ装置において、必要とす
る冷媒量は、加温運転時と冷却運転時とでは異な
り、通常は冷却運転時の場合の方が冷媒量を多く
必要とする。従つて加温運転時には冷媒回路内の
余剰冷媒は適正に貯えることが必要であり、この
目的を達するため上記受液器4が使用される。こ
の目的達成のため、余剰冷媒の回収をサクシヨン
アキユムレータ10で行う方法もあるが、サクシ
ヨンアキユムレータ10内の冷媒は低圧の気液混
合冷媒であるため、所定の冷媒回収能力を発揮す
るためにはかなりの容積を必要としたり、また、
運転条件によつては凝縮器として作用する熱交換
器内に過剰冷媒が滞り充分な冷却能力または加温
能力が発揮できなくなるという可能性があるの
で、近年は一般に受液器4が使用されている。こ
の受液器4の構成は第4図に示すように、流入管
44を下部に、流出管45の開口部を上部鏡板4
3の内壁面上部に位置するように取付けられてい
るので、加温運転時は常に受液器4内には確実に
高圧の液冷媒が満杯の状態で貯えられており余剰
冷媒を効率よく回収している。従来のヒートポン
プ装置の受液器4は、以上のように加温運転時と
冷却運転時における必要冷媒量の違いを回収する
という機能は充分に果たしているが、流出管45
の開口部が上部鏡板43の内壁面上部に位置する
よう取付けられているため、次のような問題点が
あつた。即ち、冷媒圧縮機1が停止している状態
では、受液器4内の冷媒は少量の液冷媒と大半の
ガス冷媒との混合状態で比重の大きい液冷媒は受
液器4の下部に位置している。このような状態よ
り圧縮機1を加温運転を開始した直後には、加温
用キヤピラリチユーブ5に供給される冷媒はガス
状態にあり、その結果として上記加温用キヤピラ
リチユーブ5内の冷媒循環量は他端に少なくな
り、冷凍サイクル全体としては極端に低圧圧力が
低い状態で運転することになる。このような運転
状態は運転開始直後から、第1の熱交換器3即ち
利用側熱交換器内で凝縮された液冷媒が受液器4
内を満し、加温用キヤピラリチユーブ5内に所定
の過冷却度(5〜6deg℃程度)を有した液冷媒
が供給されるまで続く。従つて運転状態によつて
は5〜6分間程度の長時間に亘り、低圧圧力の極
端に低い状態で運転され、この間の加温能力は殆
ど期待できず、従つて省エネルギー性を極めて悪
くするという欠点をもつていた。 一方、冷凍サイクル的には、運転開始直後に
は、冷媒循環量が極端に少なくなるため、冷媒圧
縮機1のモータ巻線の過熱や、冷媒圧縮機1から
冷媒ガスと一緒に吐出された潤滑油が上記冷媒圧
縮機1に戻ることができなくなり、摺動部への給
油不足を来し、潤滑不良現象が起こり、最悪の場
合には冷媒圧縮機1の故障に至るという欠点をも
つていた。 このような、加温運転開始時の一時的な低圧圧
力の極端な低下を解消する方法として、受液器4
内の冷媒の流れの向きを変更する方法、つまり、
高圧液冷媒を受液器4の上部より取入れ、下部よ
り取出す方法が考えられる。しかし、このように
構成した場合でも、加温運転開始時には第1の熱
交換器第3図即ち利用側の熱交換器より供給され
る液冷媒は受液器4内のガス冷媒と混合して、一
部ガス冷媒を含んだ状態で加温用キヤピラリチユ
ーブ5に供給されるため、低圧圧力の低下を防止
する手段としてはあまり効果的とはいえない。ま
た、この場合の冷却運転時を考えると、冷却用キ
ヤピラリチユーブ6を出た気液混合冷媒は受液器
4の下部より流入し、上部より流出して第1の熱
交換器3即ち利用側の熱交換器に供給されること
になる。従つて受液器4内には、相当量の液冷媒
が滞り、その結果として冷却運転時の必要冷媒量
ガス増加することになる。これに伴つて加温運転
時の余剰冷媒量増加し、受液器4の容積を大きく
する必要が生じ、コスト高になるという欠点をも
つている。 また例えば実公昭46−33814号公報に記載され
ているように、円筒形状の容器で構成されその端
部に入口管及び出口管を設けられた受液器を有
し、暖房時或は冷房時の循環回路抵抗を減少せし
めるためのバイパス路を形成した冷暖房機があ
る。
FIG. 3 is a refrigerant circuit diagram of a conventional heat pump device, and FIG. 4 is a longitudinal sectional view of a conventional liquid receiver connected to the refrigerant circuit of FIG. 3. In the figure, 1 is a refrigerant compressor that takes in, compresses and discharges refrigerant gas, and 2 is a four-way switching valve that changes the flow direction of the refrigerant gas discharged from the refrigerant compressor 1 according to heating or cooling operation. Valve (hereinafter referred to as switching valve) 3 functions as a condenser during heating operation.
A first heat exchanger that heats or cools the fluid as an evaporator during cooling operation, 4 a liquid receiver that receives liquid refrigerant condensed in the first heat exchanger during heating operation, and 5 a liquid receiver for heating or cooling. Reference numeral 6 denotes a throttling device through which the refrigerant passes and reduces the refrigerant pressure during warm operation (hereinafter referred to as the heating capillary tube), and 6 a pressure reducing device through which the refrigerant passes during cooling operation to reduce the refrigerant pressure (hereinafter referred to as the cooling capillary tube). , 7 and 8 are check valves for selecting the heating capillary tube 5 or the cooling capillary tube 6, and 9 is used as an evaporator during heating operation and as a condenser during cooling operation for the unused side fluid. 10 is a suction accumulator that stores liquid refrigerant and causes the gas refrigerant to be sucked into the refrigerant compressor 1; 11 is the refrigerant compressor 1;
The switching valve 2, the first heat exchanger 3, the liquid receiver 4, the check valves 7, 8, the capillary tubes 5, 6, the second heat exchanger 9, the suction accumulator 10, etc. are connected in sequence. This is refrigerant piping that forms a refrigeration cycle. 41 is a shell made of steel or the like, and 42 and 43 are a lower end plate and an upper end plate made of steel or the like, and are welded to the shell 41 to form an airtight container 4123. 44, the opening end 441 is connected to the lower end plate 42.
The inlet pipe 45 is installed so as to be located at the bottom of the refrigerant and into which the refrigerant flows in during the heating operation (however, it becomes the outflow part during the cooling operation).
This is an outflow pipe installed at the upper part of the inner wall of the refrigerant, through which the refrigerant flows out during heating operation (however, it becomes an inflow section during cooling operation). The conventional heat pump device is configured as described above, and during heating operation, the refrigerant flows in the direction of the solid arrow as shown in FIG. 3, and the refrigerant compressor 1
The high-temperature, high-pressure gas refrigerant discharged from the refrigerant is supplied to the first heat exchanger 3 via the switching valve 2, and radiates heat to the user fluid such as air or water to heat it and liquefy at the same time. . The liquefied refrigerant reaches the heating capillary tube 5 via the liquid receiver 4 and the check valve 7, where the high temperature liquid refrigerant is depressurized and becomes a low temperature, low pressure gas-liquid mixed refrigerant, which generates a second heat source. The refrigerant flows into the exchanger 9, absorbs heat from the heat source air or a non-use fluid such as water, and is vaporized.The refrigerant flows into the suction accumulator 10 via the switching valve 2 and vaporizes in the second heat exchanger 9. The remaining liquid refrigerant is separated, and only the low-temperature gas refrigerant is returned to the compressor 1. Furthermore, during cooling operation, the refrigerant flows in the direction of the dashed arrow, and the high-temperature, high-pressure gas refrigerant discharged from the compressor 1 is supplied to the second heat exchanger 9 via the switching valve 2, and is replaced with air, water, etc. It is cooled by the fluid on the unused side and condenses into liquid. This liquid refrigerant passes through the check valve 8 to the cooling capillary tube 6, is depressurized, becomes a low-temperature, low-pressure gas-liquid mixed refrigerant, and flows into the first heat exchanger 3 via the liquid receiver 4. At the same time, the first heat exchanger 3 absorbs heat from the fluid on the user side such as air or water and performs a cooling action, and at the same time, the refrigerant is vaporized and the low-pressure gas refrigerant is supplied to the compressor 1 via the switching valve 2 and the suction accumulator 10. Return to As mentioned above, in a heat pump device that performs heating operation or cooling operation as needed, the amount of refrigerant required differs between heating operation and cooling operation, and usually the amount of refrigerant required during cooling operation is higher. Requires large quantities. Therefore, during the heating operation, it is necessary to properly store the surplus refrigerant in the refrigerant circuit, and the liquid receiver 4 is used to achieve this purpose. To achieve this purpose, there is a method of recovering surplus refrigerant using the suction accumulator 10, but since the refrigerant in the suction accumulator 10 is a low-pressure gas-liquid mixed refrigerant, it exhibits a predetermined refrigerant recovery ability. This requires a considerable amount of volume, and
Depending on the operating conditions, there is a possibility that excess refrigerant may accumulate in the heat exchanger that acts as a condenser, making it impossible to achieve sufficient cooling or heating ability, so in recent years, a liquid receiver 4 has generally been used. There is. As shown in FIG. 4, the structure of this liquid receiver 4 is such that the inflow pipe 44 is located at the bottom, and the opening of the outflow pipe 45 is located at the upper end plate 4.
Since it is installed at the upper part of the inner wall surface of the container 4, it is ensured that the liquid receiver 4 is always full of high-pressure liquid refrigerant during heating operation, and excess refrigerant is efficiently recovered. are doing. The liquid receiver 4 of the conventional heat pump device sufficiently fulfills the function of recovering the difference in the amount of refrigerant required during heating operation and cooling operation as described above, but the outflow pipe 45
Since the opening of the upper mirror plate 43 is located at the upper part of the inner wall surface of the upper mirror plate 43, the following problems occur. That is, when the refrigerant compressor 1 is stopped, the refrigerant in the liquid receiver 4 is in a mixed state with a small amount of liquid refrigerant and most of the gas refrigerant, and the liquid refrigerant with a high specific gravity is located at the lower part of the liquid receiver 4. are doing. Immediately after starting the heating operation of the compressor 1 in such a state, the refrigerant supplied to the heating capillary tube 5 is in a gas state, and as a result, the refrigerant in the heating capillary tube 5 is in a gas state. The amount of refrigerant circulated at the other end decreases, and the entire refrigeration cycle operates at extremely low pressure. In such an operating state, immediately after the start of operation, the liquid refrigerant condensed in the first heat exchanger 3, that is, the user-side heat exchanger, is transferred to the liquid receiver 4.
This continues until a liquid refrigerant having a predetermined degree of supercooling (approximately 5 to 6 degrees Celsius) is supplied into the heating capillary tube 5. Therefore, depending on the operating conditions, it is operated at an extremely low pressure for a long period of time, about 5 to 6 minutes, and the heating capacity during this period is hardly expected, resulting in extremely poor energy saving performance. It had its drawbacks. On the other hand, in terms of the refrigeration cycle, immediately after the start of operation, the amount of refrigerant circulating becomes extremely small, resulting in overheating of the motor windings of the refrigerant compressor 1 and lubricant discharged together with the refrigerant gas from the refrigerant compressor 1. This has the disadvantage that oil cannot return to the refrigerant compressor 1, resulting in insufficient oil supply to the sliding parts, resulting in poor lubrication, and in the worst case, failure of the refrigerant compressor 1. . As a method to eliminate such a temporary extreme drop in low pressure at the start of heating operation, the liquid receiver 4
How to change the direction of the flow of refrigerant in the
One possible method is to take in the high-pressure liquid refrigerant from the upper part of the liquid receiver 4 and take it out from the lower part. However, even with this configuration, at the start of heating operation, the liquid refrigerant supplied from the first heat exchanger (FIG. 3), that is, the heat exchanger on the user side, is mixed with the gas refrigerant in the liquid receiver 4. Since the gas refrigerant is supplied to the heating capillary tube 5 in a state containing a part of the gas refrigerant, it cannot be said to be very effective as a means for preventing a drop in the low pressure pressure. Also, considering the cooling operation in this case, the gas-liquid mixed refrigerant that has exited the cooling capillary tube 6 flows into the lower part of the liquid receiver 4, flows out from the upper part, and is transferred to the first heat exchanger 3, that is, to be used. It will be supplied to the side heat exchanger. Therefore, a considerable amount of liquid refrigerant remains in the liquid receiver 4, and as a result, the amount of refrigerant gas required during cooling operation increases. Along with this, the amount of surplus refrigerant increases during the heating operation, making it necessary to increase the volume of the liquid receiver 4, which has the disadvantage of increasing costs. For example, as described in Japanese Utility Model Publication No. 46-33814, it has a liquid receiver that is composed of a cylindrical container and has an inlet pipe and an outlet pipe at its end, and is used during heating or cooling. There is an air conditioner/heater that has a bypass path to reduce the resistance of the circulation circuit.

【考案が解決しようとする問題点】[Problem that the invention attempts to solve]

以上のように、従来のヒートポンプ装置では、
受液器4での余剰冷媒回収効率を高めるため、加
温運転時の受液器4への流入管44を下部に、流
出管45を上部に位置しているため、圧縮機1の
加温運転開始後の無効運転時間(実質上、能力発
揮できない時間)が長期化するとか、低圧圧力の
低下による冷却循環量不足に伴う圧縮機1のモー
タ巻線の過熱、潤滑不足現象を誘発するなどの問
題点があつた。 また上記実公昭46−33814号公報のものでは、
冷却運転時にキヤピラリ通過後の冷媒は受液器を
通り第1熱交換器へ流れるから、減圧された気液
混合冷媒が上記受液器において気液分離されてそ
の受液器の底部及び管壁に液がたまり、受液器を
通過する冷媒は圧力変動を起こし、熱交換器の動
作が不安定となる。 この考案は、かかる問題点を解消するためにな
されたもので、加温運転開始時における低圧圧力
の極端な低下を極力抑えて、実質的に加温効果の
でない初期無効運転開始時間を短縮したヒートポ
ンプ装置を得ることを目的とする。
As mentioned above, in conventional heat pump equipment,
In order to increase the efficiency of surplus refrigerant recovery in the liquid receiver 4, the inflow pipe 44 to the liquid receiver 4 during heating operation is located at the bottom, and the outflow pipe 45 is located at the top. The ineffective operation time after the start of operation (effectively the time when the performance cannot be achieved) becomes long, and the motor windings of the compressor 1 overheat due to insufficient cooling circulation due to a drop in low pressure, leading to insufficient lubrication, etc. There was a problem. In addition, in the above-mentioned Utility Model Publication No. 46-33814,
During cooling operation, the refrigerant after passing through the capillary flows through the liquid receiver to the first heat exchanger, so the reduced pressure gas-liquid mixed refrigerant is separated into gas and liquid in the liquid receiver and is distributed to the bottom and pipe walls of the liquid receiver. When liquid accumulates in the refrigerant, the pressure of the refrigerant passing through the receiver will fluctuate, causing unstable operation of the heat exchanger. This invention was made to solve this problem, and it minimized the extreme drop in low pressure at the start of heating operation, thereby shortening the initial ineffective operation start time, which has no substantial heating effect. The purpose is to obtain a heat pump device.

【問題点を解決するための手段】[Means to solve the problem]

この考案に係るヒートポンプ装置では、冷却運
転時と加温運転時との必要冷媒量の差を回収する
ための受液器の加温運転時の流出管を内径の比較
的小さい毛細管にて構成すると共に、受液器及び
流出管に対して並列関係となる直通するバイパス
管を流入管と流出管の間に接続したものである。
In the heat pump device according to this invention, the outflow pipe during the heating operation of the receiver is configured with a capillary tube with a relatively small inner diameter in order to recover the difference in the amount of refrigerant required between the cooling operation and the heating operation. At the same time, a bypass pipe is connected between the inflow pipe and the outflow pipe, and the bypass pipe is in a parallel relationship with the liquid receiver and the outflow pipe.

【作用】[Effect]

この考案においては、受液器下部に設けられた
流入管に対して直通するバイパス管を接続したの
で、加温開始直後においても、スムーズに凝縮液
冷媒を加温用キヤピラリーに供給できるため、極
端な低圧圧力の低下を抑制し、初期無効運転時間
を短縮することができる。
In this design, a bypass pipe is connected directly to the inflow pipe provided at the bottom of the liquid receiver, so even immediately after heating starts, condensed liquid refrigerant can be smoothly supplied to the heating capillary, making it possible to It is possible to suppress the drop in low pressure pressure and shorten the initial ineffective operation time.

【実施例】【Example】

以下この考案の一実施例を図について説明す
る。 第1図はこの考案の一実施例を示すヒートポン
プ装置の冷媒回路図、第2図は第1図の冷媒回路
に接続された受液器及び周辺部を含む縦断面図で
ある。 図において、1〜11及び41〜44等の同一
符号は第3図、第4図に示す従来の装置と同一ま
たは相当部分を示す。47は受液器4及び後述の
流出管48と並列関係に接続された直通するバイ
パス管、48は上部鏡板43に開口部481を有
する流出管であり、内径の比較的小さい、例え
ば、1.2〜1.5m/m程度の毛細管により構成され
る。46,49は流入管44及び流出管48とバ
イパス管47を配管接続するための接手である。 以上、第2図に示す受液器を備えたヒートポン
プ装置において、加温開始運転時には、第1の熱
交換器3にて凝縮された液冷媒は冷媒配管11を
介して接手46部まで到達するので、バイパス管
47、接手49及び逆止弁7を介して、加温用キ
ヤピラリチユーブ5に供給されるので、ガス冷媒
が供給された場合に発生する低圧圧力の極端な低
下を抑制できる。一方、加温用キヤピラリチユー
ブ5は所定の流量制限機能を有して高圧冷媒を減
圧するので、バイパス管47を介して低圧側に供
給されない液冷媒は徐々に流入管44を介して受
液器4内に蓄えられる。また、流出管48は毛細
管で構成し、受液器4内にガス冷媒が存在する間
は、接手49部圧力と受液器4内の圧力が均圧し
ないよう選定しているので、運転開始後の所定時
間は(受液器4内圧力>接手49部圧力)の関係
が成立するため、流出管48を介して受液器4内
のガス冷媒は受液器4より放出され、最終的に液
冷媒で満杯となり、余剰冷媒の回収という機能も
充分に発揮する。なお、流出管48を介して放出
されるガス冷媒量はバイパス管47を介して流出
する液冷媒量に比して極めて微量であるため、加
温用キヤピラリチユーブ5での冷媒通過量に対し
悪影響を及ぼすものではない。従つて、従来装置
に見られた加温運転開始時の極端な低圧圧力の低
下を抑えるできるので、比較的スムーズに加温効
果を発揮する。
An embodiment of this invention will be described below with reference to the drawings. FIG. 1 is a refrigerant circuit diagram of a heat pump device showing an embodiment of this invention, and FIG. 2 is a longitudinal sectional view including a liquid receiver connected to the refrigerant circuit of FIG. 1 and the surrounding area. In the figures, the same reference numerals such as 1 to 11 and 41 to 44 indicate the same or equivalent parts as in the conventional apparatus shown in FIGS. 3 and 4. 47 is a direct bypass pipe connected in parallel to the liquid receiver 4 and an outflow pipe 48 to be described later; 48 is an outflow pipe having an opening 481 in the upper end plate 43; It is composed of capillary tubes of about 1.5m/m. Numerals 46 and 49 are joints for connecting the inflow pipe 44 and the outflow pipe 48 to the bypass pipe 47. As described above, in the heat pump device equipped with the liquid receiver shown in FIG. 2, during the heating start operation, the liquid refrigerant condensed in the first heat exchanger 3 reaches the joint 46 via the refrigerant pipe 11. Therefore, since the refrigerant is supplied to the heating capillary tube 5 via the bypass pipe 47, the joint 49, and the check valve 7, an extreme drop in the low pressure that occurs when gas refrigerant is supplied can be suppressed. On the other hand, since the heating capillary tube 5 has a predetermined flow rate restriction function and reduces the pressure of the high-pressure refrigerant, the liquid refrigerant that is not supplied to the low-pressure side via the bypass pipe 47 gradually receives the liquid via the inflow pipe 44. It is stored in the container 4. In addition, the outflow pipe 48 is composed of a capillary tube, and is selected so that the pressure at the joint 49 and the pressure inside the liquid receiver 4 are not equalized while gas refrigerant is present in the liquid receiver 4, so that operation can be started. During the subsequent predetermined time period, the relationship (pressure inside the liquid receiver 4 > pressure at the joint 49) holds true, so the gas refrigerant in the liquid receiver 4 is discharged from the liquid receiver 4 via the outflow pipe 48, and the final The tank is filled with liquid refrigerant, and the function of recovering excess refrigerant is fully demonstrated. Note that the amount of gas refrigerant released through the outflow pipe 48 is extremely small compared to the amount of liquid refrigerant that flows out through the bypass pipe 47, so it is It has no negative impact. Therefore, it is possible to suppress the extremely low pressure drop at the start of heating operation, which was observed in conventional devices, so that the heating effect can be exerted relatively smoothly.

【考案の効果】[Effect of the idea]

以上説明したとおり、本願考案では冷却運転時
においても、冷媒が直通するバイパス管47を介
して第1熱交換器3に流れるため、圧力変動がな
く、安定した動作が期待できる。 従来は減圧された気液混合冷媒が受液器4で気
液分離して、その受液器4の底部及び管壁に液が
たまり、そこを通過する冷媒は圧力変動を起こし
第1熱交換器3の動作が不安定となるおそれがあ
つたが、本願考案では冷媒が直通するバイパス管
47を通つて流れることで安定するという効果を
有する。
As explained above, in the present invention, even during the cooling operation, the refrigerant flows to the first heat exchanger 3 through the bypass pipe 47, so that there is no pressure fluctuation and stable operation can be expected. Conventionally, the reduced pressure gas-liquid mixed refrigerant is separated into gas and liquid in the liquid receiver 4, and the liquid accumulates at the bottom and pipe walls of the liquid receiver 4, and the refrigerant passing there causes pressure fluctuations and undergoes first heat exchange. Although there was a risk that the operation of the refrigerant 3 would become unstable, the present invention has the effect of stabilizing the operation by flowing through the bypass pipe 47 through which the refrigerant passes directly.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの考案の一実施例を示すヒートポン
プ装置の冷媒回路図、第2図は上記冷媒回路に使
用される受液器及び周辺部の縦断面図、第3図及
び第4図はそれぞれ従来のヒートポンプ装置の冷
媒回路図及び受液器の縦断面図である。 1……冷媒圧縮機、2……切換弁としての四方
弁、3……第1の熱交換器、4……受液器、9…
…第2の熱交換器、4123……密閉容器、44
……加温運転時によつて冷媒が流入する流入管、
48……加温運転時に冷媒が流出する毛細管によ
り構成された流出管、47……バイパス管。な
お、図中同一符号は同一又は相当部分を示す。
Fig. 1 is a refrigerant circuit diagram of a heat pump device showing an embodiment of this invention, Fig. 2 is a vertical cross-sectional view of a liquid receiver and surrounding parts used in the refrigerant circuit, and Figs. 3 and 4 are respectively FIG. 2 is a refrigerant circuit diagram and a vertical cross-sectional view of a liquid receiver of a conventional heat pump device. DESCRIPTION OF SYMBOLS 1... Refrigerant compressor, 2... Four-way valve as a switching valve, 3... First heat exchanger, 4... Liquid receiver, 9...
...Second heat exchanger, 4123...Airtight container, 44
...Inflow pipe into which refrigerant flows during heating operation,
48...Outflow pipe constituted by a capillary tube through which refrigerant flows out during heating operation, 47...Bypass pipe. Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 冷媒ガスを吸入し圧縮吐出する冷媒圧縮機、切
換弁を介して上記冷媒圧縮機から供給された冷媒
と利用側流体とを熱交換させる第1の熱交換器、
切換弁を介して上記冷媒圧縮機から供給された冷
媒と非利用側流体とを熱交換させる第2の熱交換
器、及び上記第1の熱交換器と上記第2の熱交換
器との間に流入管部と流出管部とを介して接続さ
れ、加温運転時に冷媒が上記流入管部を介して流
入するとともに上記流出管部を介して流出する密
閉容器を有し、上記流入管部の開口部が上記密閉
容器の底部に位置し、上記流出管部の開口部を上
記密閉容器の上部に位置し、上記流出管部を毛細
管にて構成して、上記密閉容器及び上記流出管部
と並列関係にあるバイパス管を備え、上記流入管
部と上記流出管部を上記バイパス管にて接続して
冷却運転時に対する加温運転時の余剰冷媒を回収
する受液器を備えたヒートポンプ装置。
a refrigerant compressor that sucks in refrigerant gas and compresses and discharges it; a first heat exchanger that exchanges heat between the refrigerant supplied from the refrigerant compressor and the user fluid via a switching valve;
A second heat exchanger that exchanges heat between the refrigerant supplied from the refrigerant compressor and the unused fluid via the switching valve, and between the first heat exchanger and the second heat exchanger. The airtight container is connected to the inflow pipe section and the outflow pipe section, and the refrigerant flows into the inflow pipe section during heating operation and flows out through the outflow pipe section. an opening of the airtight container is located at the bottom of the airtight container, an opening of the outflow pipe is located at the top of the airtight container, and the outflow pipe is constituted by a capillary tube. A heat pump device comprising a bypass pipe in parallel relationship with the inflow pipe and the outflow pipe, and a liquid receiver that connects the inflow pipe section and the outflow pipe section with the bypass pipe to recover surplus refrigerant during a heating operation with respect to a cooling operation. .
JP1985098132U 1985-06-25 1985-06-25 Expired - Lifetime JPH0539406Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1985098132U JPH0539406Y2 (en) 1985-06-25 1985-06-25

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1985098132U JPH0539406Y2 (en) 1985-06-25 1985-06-25

Publications (2)

Publication Number Publication Date
JPS626670U JPS626670U (en) 1987-01-16
JPH0539406Y2 true JPH0539406Y2 (en) 1993-10-06

Family

ID=30965786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1985098132U Expired - Lifetime JPH0539406Y2 (en) 1985-06-25 1985-06-25

Country Status (1)

Country Link
JP (1) JPH0539406Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0627941Y2 (en) * 1989-02-02 1994-07-27 ニチコン株式会社 Capacitor with security device

Also Published As

Publication number Publication date
JPS626670U (en) 1987-01-16

Similar Documents

Publication Publication Date Title
US4854130A (en) Refrigerating apparatus
JP4377634B2 (en) Operation method of cooling system
RU2224189C2 (en) Cooling absorption plant
US6631624B1 (en) Phase-change heat transfer coupling for aqua-ammonia absorption systems
JP2002213835A (en) Refrigerant storage apparatus
US5018367A (en) Cooling energy generator with cooling energy accumulator
JPH0539406Y2 (en)
WO2002025179A1 (en) Refrigeration cycle
JP5543093B2 (en) Compressive refrigerator and operation method thereof
JPH0452618Y2 (en)
CN107178823A (en) Air-conditioning and water-heating system
RU2614133C1 (en) Throttle-free heat pump unit
JP2772868B2 (en) Absorption refrigerator
KR200250602Y1 (en) Heat pump type device for generating hot water
JP6643753B2 (en) Heat transport system and heat transport method
JP2828700B2 (en) Absorption refrigerator
JPS63156979A (en) Heat pump type air conditioner
JPH11159906A (en) Absorption heat pump system
JPS6230690Y2 (en)
JPS6118365Y2 (en)
JPS5928285Y2 (en) Refrigeration equipment
JP3147767B2 (en) Absorption heat pump
KR100339361B1 (en) Absorption heating and cooling system
JPS6354561A (en) Heat pump device
JP2865305B2 (en) Absorption refrigerator