JPH0539268Y2 - - Google Patents

Info

Publication number
JPH0539268Y2
JPH0539268Y2 JP6692988U JP6692988U JPH0539268Y2 JP H0539268 Y2 JPH0539268 Y2 JP H0539268Y2 JP 6692988 U JP6692988 U JP 6692988U JP 6692988 U JP6692988 U JP 6692988U JP H0539268 Y2 JPH0539268 Y2 JP H0539268Y2
Authority
JP
Japan
Prior art keywords
vertical
evaporator
tube
evaporation
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6692988U
Other languages
Japanese (ja)
Other versions
JPH01169700U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP6692988U priority Critical patent/JPH0539268Y2/ja
Publication of JPH01169700U publication Critical patent/JPH01169700U/ja
Application granted granted Critical
Publication of JPH0539268Y2 publication Critical patent/JPH0539268Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Description

【考案の詳細な説明】 産業上の利用分野 この考案は、例えば液化酸素、液化窒素等の低
温液化ガスの蒸発器に使用せられる多管式蒸発器
に関するものである。
[Detailed Description of the Invention] Industrial Application Field This invention relates to a multi-tube evaporator used as an evaporator for low-temperature liquefied gases such as liquefied oxygen and liquefied nitrogen.

従来の技術 一般に、この種の多管式蒸発器は、例えば第5
図に示すように、所要数の垂直蒸発管Aが並列状
に配置され、各垂直蒸発管Aはアルミニウム押出
型材製で長さ方向に伸びる放射状フイン11を有
しており、これらのフイン11付き蒸発管Aが隣
り合うものどうし相互に継ぎ板15を介して連結
されていた。
BACKGROUND TECHNOLOGY In general, this type of multi-tube evaporator is
As shown in the figure, a required number of vertical evaporation tubes A are arranged in parallel, and each vertical evaporation tube A has radial fins 11 made of extruded aluminum and extending in the length direction. Adjacent evaporation tubes A were connected to each other via joint plates 15.

そして従来は、すべての垂直蒸発管Aは配列の
順にすなわち同図において左から右の順に、液化
ガスが入口側の垂直蒸発管A1から出口側の垂直
蒸発管A8までをシリーズ(一続き)に流れるよ
うに連結管2を介して連結されており、液化ガス
がこれらの垂直蒸発管A内を順次流れる間に、外
部の自然対流による空気流によつて加温されて蒸
発せしめられるようになされていた。
Conventionally, all the vertical evaporation tubes A were arranged in the order of arrangement, that is, from left to right in the figure, and the liquefied gas was arranged in a series (one continuous) from the vertical evaporation tube A1 on the inlet side to the vertical evaporation tube A8 on the outlet side. They are connected through connecting pipes 2 so that the liquefied gas flows through these vertical evaporation pipes A, and while the liquefied gas sequentially flows through these vertical evaporation pipes A, it is heated and evaporated by the air flow due to external natural convection. was.

考案が解決しようとする課題 しかしながら、上記の従来の多管式蒸発器を運
転すると、液化酸素などの液化ガスは例えば−
180℃前後の超低温であるため、液化ガス導入管
13が接続された入口側の垂直蒸発管A1の管表
面とフイン11表面に氷霜が生成され、その部分
の熱交換効率の低下により、入口側の垂直蒸発管
A1から次の垂直蒸発管A2へと氷霜生成現象が
進み、とりわけ従来の多管式蒸発器は、並列状の
垂直蒸発管Aが配列の順に連結管12を介して連
結されていたゝめ、蒸発器を連続運転するほどに
氷霜生成現象が、入口側の最初の垂直蒸発管A1
から出口側の垂直蒸発管A8までへと次第に進ん
でしまい、液化酸素等の蒸発効率が非常に劣ると
いう問題があつた。
Problems to be Solved by the Invention However, when the above-mentioned conventional multi-tube evaporator is operated, liquefied gas such as liquefied oxygen, for example -
Due to the extremely low temperature of around 180°C, ice and frost are formed on the pipe surface of the vertical evaporation pipe A1 on the inlet side to which the liquefied gas introduction pipe 13 is connected, and on the surface of the fin 11, and the heat exchange efficiency of that part decreases. The ice formation phenomenon progresses from one side vertical evaporator tube A1 to the next vertical evaporator tube A2, and in particular, in a conventional multi-tube evaporator, parallel vertical evaporator tubes A are connected via a connecting tube 12 in the order of arrangement. Therefore, the more the evaporator was operated continuously, the more ice and frost formation occurred in the first vertical evaporator pipe A1 on the inlet side.
There was a problem in that the evaporation efficiency of liquefied oxygen and the like was extremely poor because the evaporation efficiency gradually progressed from the evaporation pipe A8 to the vertical evaporation pipe A8 on the exit side.

そこで、従来は、氷霜生成現象による蒸発効率
の低下を見込んで、過大能力の蒸発器を使用する
か、あるいはまた散水もしくは蒸気吹き付けなど
の融氷霜装置を取り付けていた。しかし、前者の
過大能力を有する蒸発器を使用するのは経済的で
なく、また後者の融氷霜装置は、通常蒸発器の上
もしくは下に水または蒸気の供給管を取り付け、
そのスプレー・ノズルから蒸発器に水または蒸気
を吹き付けて、氷霜を溶かすものであるが、この
ような装置は非常に大掛かりであるため、これを
蒸発器に取り付けた場合、コンパクトでなく、設
備費が高くつくとともに、融氷霜対象部分以外に
も水や蒸気がかゝるため、蒸発器が早期に腐食す
るおそれがあり、また水および蒸気の消費量が多
いため、運転コストが非常に高くつくという問題
があつた。しかも、蒸発器の接地場所によつて
は、水や蒸気の供給が困難な場合もあるという問
題があつた。
Therefore, conventionally, in anticipation of a decrease in evaporation efficiency due to the ice-frost formation phenomenon, an evaporator with excessive capacity was used, or an ice-melting and frosting device such as water sprinkling or steam spraying was installed. However, it is not economical to use the former type of evaporator with excessive capacity, and the latter type of ice-melting and frosting equipment usually has a water or steam supply pipe installed above or below the evaporator.
Water or steam is sprayed onto the evaporator from the spray nozzle to melt the ice and frost, but such equipment is very large-scale, so if it is attached to the evaporator, it will not be compact and will require a large amount of equipment. In addition to being expensive, there is a risk of early corrosion of the evaporator as water and steam are exposed to areas other than those targeted for deicing and frosting, and operating costs are extremely high due to the high consumption of water and steam. The problem was that it was expensive. Moreover, depending on the grounding location of the evaporator, it may be difficult to supply water or steam.

この考案の目的は、上記の従来技術の問題を解
決し、他の熱源の融氷霜装置を使用することな
く、氷霜の生成を充分に抑えることができて、蒸
発効率が非常にすぐれており、従つて長期間連続
運転をすることが可能で、経済性が非常に高い多
管式蒸発器を提供しようとするにある。
The purpose of this invention is to solve the above-mentioned problems of the conventional technology, to sufficiently suppress the formation of ice and frost without using an ice-melting/frost device using other heat sources, and to achieve extremely high evaporation efficiency. Therefore, the object of the present invention is to provide a multi-tube evaporator that can be operated continuously for a long period of time and is highly economical.

課題を解決するための手段 この考案は、上記の目的を達成するために、少
なくとも3本の垂直蒸発管が並列状に配置され、
これらの垂直蒸発管は、液化ガスが入口側の垂直
蒸発管から出口側の垂直蒸発管までをシリーズに
流れるように連結管を介して連結されている多管
式蒸発器において、液化ガス導入管が接続された
入口側の垂直蒸発管と、これより液化ガスが送ら
れる次の垂直蒸発管との間に、1または2本以上
の垂直蒸発管が存在せしめられていることを特徴
としている。
Means for Solving the Problems In order to achieve the above object, this invention has at least three vertical evaporation tubes arranged in parallel,
These vertical evaporation tubes are used in multi-tube evaporators that are connected via connecting tubes so that the liquefied gas flows in series from the vertical evaporation tube on the inlet side to the vertical evaporation tube on the outlet side. It is characterized in that one or more vertical evaporation tubes are provided between the vertical evaporation tube on the inlet side connected to the vertical evaporation tube and the next vertical evaporation tube from which the liquefied gas is sent.

またこの考案による多管式蒸発器は、並列状に
配置された少なくとも3本の垂直蒸発管によつて
構成された蒸発管群を少なくとも2つ備えてお
り、各蒸発管群の垂直蒸発管は、液化ガスが入口
側の垂直蒸発管から出口側の垂直蒸発管までをシ
リーズに流れるように連結管を介して連結され、
かつ液化ガス導入管が接続された入口側の垂直蒸
発管と、これより液化ガスが送られる次の垂直蒸
発管との間に、1または2本以上の垂直蒸発管が
存在せしめられているとともに、相互に隣り合う
蒸発管群の入口側の垂直蒸発管同志の間に、1ま
たは2本以上の垂直蒸発管が存在せしめられてい
ることを特徴としている。
Furthermore, the multi-tube evaporator according to this invention is equipped with at least two groups of evaporator tubes each consisting of at least three vertical evaporator tubes arranged in parallel. , are connected via connecting pipes so that the liquefied gas flows in series from the vertical evaporation pipe on the inlet side to the vertical evaporation pipe on the outlet side,
and one or more vertical evaporation pipes are made to exist between the vertical evaporation pipe on the inlet side to which the liquefied gas introduction pipe is connected and the next vertical evaporation pipe from which the liquefied gas is sent. The present invention is characterized in that one or more vertical evaporation tubes are present between the vertical evaporation tubes on the inlet side of the evaporation tube groups that are adjacent to each other.

実施例 つぎに、この考案の実施例を図面に基づいて説
明する。
Embodiment Next, an embodiment of this invention will be described based on the drawings.

この明細書において、前後左右は、第2図を基
準とし、前とは第2図下側、後とは同上側をい
い、また左とは同図左側、右とは同右側をいうも
のとする。
In this specification, front, rear, right, and left are based on FIG. 2, and the front refers to the lower side of the figure, the rear refers to the upper side of the figure, the left refers to the left side of the same figure, and the right refers to the right side of the same figure. do.

第1図と第2図は液化ガスの蒸発処理能力の大
きいこの考案の第1実施例の多管式蒸発器を示す
ものである。
FIGS. 1 and 2 show a multi-tube evaporator according to a first embodiment of this invention, which has a large liquefied gas evaporation processing capacity.

同図において、この考案による多管式蒸発器
は、並列状に配置された4本のアルミニウム押出
型材製の垂直蒸発管Aにより構成された2つの蒸
発管群P,Pよりなる左右に伸びる蒸発管列R
が、前後に3つ平行状に並べられたものである。
各垂直蒸発管Aには長さ方向に伸びる8つの放射
状フイン1が設けられている。これらの放射状フ
イン1のうち4つのフイン1に蒸発管A相互の間
隔を狭める熱収縮力によつて曲がり得る水平断面
略U形の屈曲部が形成され、相互に隣り合う蒸発
管A,Aが、これらの上下両側において屈曲部を
有するフイン1,1同志の間に真直な継ぎ板5を
介して溶接により連結せられている。
In the same figure, the multi-tube evaporator according to this invention consists of two evaporator tube groups P and P, which are made up of four vertical evaporator tubes A made of extruded aluminum and arranged in parallel, and extend from left to right. Tube row R
are arranged in parallel in front and back.
Each vertical evaporator tube A is provided with eight radial fins 1 extending in the length direction. Four of these radial fins 1 are formed with bent portions having a substantially U-shaped horizontal section that can be bent by the thermal contraction force that narrows the distance between the evaporation tubes A, so that the evaporation tubes A and A that are adjacent to each other are The fins 1, 1 having bent portions on both upper and lower sides are connected by welding via a straight joint plate 5.

そして、各蒸発管列Rにおいて、各蒸発管群P
の入口側の垂直蒸発管A1の下端部に液化ガス導
入管3が接続され、かつ出口側の垂直蒸発管A4
の下端部に液化ガス排出管4が接続されるととも
に、入口側の垂直蒸発管A1の上端部が、1本の
垂直蒸発管A3を隔てた垂直蒸発管A2の上端部
に相対的に長い連結管2を介して連結され、この
垂直蒸発管A2の下端部が相対的に短い連結管2
を介して隣りの垂直蒸発管A3下端部に連結さ
れ、さらにこの3番目の垂直蒸発管A3の上端部
が1本の垂直蒸発管A1を隔てた出口側の垂直蒸
発管A4の上端部に長い連結管2を介して連結さ
れることにより、液化ガスが入口側の垂直蒸発管
A1から出口側の垂直蒸発管A4までをシリーズ
に流れるようになされるとともに、入口側の垂直
蒸発管A1と、これより液化ガスが送られる次の
垂直蒸発管A2との間に、1本の垂直蒸発管A3
が存在せしめられ、また相互に隣り合う蒸発管群
P,Pの入口側の垂直蒸発管A1,A1同志の間
には、2本の垂直蒸発管A4,A4が存在せしめ
られ、結局、各蒸発管群Pの入口側の垂直蒸発管
A1が3番目と4番目の垂直蒸発管A3,A4
に、いわばサンドイツチ状に挾まれているもので
ある。
In each evaporator tube row R, each evaporator tube group P
The liquefied gas introduction pipe 3 is connected to the lower end of the vertical evaporation pipe A1 on the inlet side, and the vertical evaporation pipe A4 on the exit side
A liquefied gas discharge pipe 4 is connected to the lower end, and the upper end of the vertical evaporation pipe A1 on the inlet side is connected to the upper end of the vertical evaporation pipe A2 separated by one vertical evaporation pipe A3. The lower end of this vertical evaporation pipe A2 is connected via a pipe 2, and the lower end of the vertical evaporation pipe A2 is a relatively short connecting pipe 2.
The third vertical evaporation pipe A3 is connected to the lower end of the adjacent vertical evaporation pipe A3 via the vertical evaporation pipe A1, and the upper end of this third vertical evaporation pipe A3 is connected to the upper end of the vertical evaporation pipe A4 on the outlet side across one vertical evaporation pipe A1. By connecting via the connecting pipe 2, the liquefied gas is made to flow in series from the vertical evaporation pipe A1 on the inlet side to the vertical evaporation pipe A4 on the outlet side, and the vertical evaporation pipe A1 on the inlet side; There is one vertical evaporation tube A3 between this and the next vertical evaporation tube A2 to which liquefied gas is sent.
Moreover, two vertical evaporator tubes A4, A4 are made to exist between the vertical evaporator tubes A1, A1 on the inlet side of the evaporator tube groups P, P, which are adjacent to each other. Vertical evaporator tube A1 on the inlet side of tube group P is the third and fourth vertical evaporator tube A3, A4
They are sandwiched together like a sandwich.

各蒸発管列Rにおける2本の液化ガス導入管3
の他端部は、液化ガス導入ヘツダ6にそれぞれ接
続され、このヘツダ6には外部より液化ガスを供
給するための1本の液化ガス供給管7が接続され
ている。一方、各蒸発管列Rにおける2本の液化
ガス排出管4の他端部は、液化ガス排出ヘツダ8
にそれぞれ接続され、このヘツダ8には外部に液
化ガスを排出するための1本の液化ガス流送管9
が接続されている。
Two liquefied gas introduction tubes 3 in each evaporator tube row R
The other ends are each connected to a liquefied gas introduction header 6, and a liquefied gas supply pipe 7 for supplying liquefied gas from the outside is connected to this header 6. On the other hand, the other ends of the two liquefied gas exhaust pipes 4 in each evaporator tube row R are connected to liquefied gas exhaust headers 8.
This header 8 has one liquefied gas flow pipe 9 for discharging the liquefied gas to the outside.
is connected.

上記多管式蒸発器において、通常−180℃前後
の低温の液化酸素などの液化ガスを液化ガス供給
管7から導入ヘツダ6および導入管3を経て、各
蒸発管列Rの入口側の垂直蒸発管A1に導入する
と、液化ガスは、入口側の垂直蒸発管A1から次
の垂直蒸発管A2、さらに3番目の垂直蒸発管A
3より出口側の垂直蒸発管A4までを順に流れて
いき、液化ガスはこれらの垂直蒸発管A内を流れ
る間に、外部の自然対流による空気流によつて加
温されて蒸発せしめられる。
In the above-mentioned multi-tube evaporator, liquefied gas such as liquefied oxygen at a low temperature of usually around -180°C is introduced from the liquefied gas supply pipe 7, passes through the header 6 and the introduction pipe 3, and is vertically evaporated on the inlet side of each evaporator tube row R. When introduced into the pipe A1, the liquefied gas flows from the vertical evaporator pipe A1 on the inlet side to the next vertical evaporator pipe A2, and then to the third vertical evaporator pipe A.
The liquefied gas sequentially flows from 3 to the vertical evaporation pipe A4 on the outlet side, and while flowing in these vertical evaporation pipes A, it is heated and evaporated by the air flow due to external natural convection.

ここで、液化ガスが例えば酸素、窒素、アルゴ
ンである場合、蒸発器内の液化ガスの蒸発部は、
通常全体の1/3〜1/4であり、残りは加温部となさ
れている。蒸発部に相当する垂直蒸発管A1とこ
れのフイン1の表面温度は、−120〜−160℃程度
である。
Here, if the liquefied gas is, for example, oxygen, nitrogen, or argon, the evaporation section of the liquefied gas in the evaporator is
Usually, it is 1/3 to 1/4 of the total, and the rest is used as a heating section. The surface temperature of the vertical evaporation tube A1 corresponding to the evaporation section and its fins 1 is about -120 to -160°C.

従つて蒸発器の運転により、蒸発部となされた
入口側の垂直蒸発管A1の管表面とフイン1表面
に氷霜が生成されるが、3番目と4番目の垂直蒸
発管A3,A4は加温部となされていて、そのフ
イン1の表面温度は−10〜−20℃程度であり、入
口側の垂直蒸発管A1はこれら3番目と4番目の
垂直蒸発管A3,A4にサンドイツチ状に挾まれ
ているため、入口側の垂直蒸発管A1の表面で生
じた氷霜生成現象が、次の垂直蒸発管A2へと進
むようなことがなく、氷霜の生成を充分に抑える
ことができ、上記のように液化ガスの蒸発処理能
力の大きい多管式蒸発器についても、蒸発効率が
非常にすぐれていて、蒸発器は長期間連続運転を
することが可能である。
Therefore, when the evaporator is operated, ice and frost are generated on the surface of the vertical evaporator tube A1 on the inlet side, which is the evaporator section, and on the surface of the fin 1, but the third and fourth vertical evaporator tubes A3 and A4 are not heated. The surface temperature of the fin 1 is about -10 to -20℃, and the vertical evaporation tube A1 on the inlet side is sandwiched between the third and fourth vertical evaporation tubes A3 and A4 in a sandwich-like manner. Therefore, the ice and frost formation phenomenon that occurs on the surface of the vertical evaporation tube A1 on the inlet side does not proceed to the next vertical evaporation tube A2, and the formation of ice and frost can be sufficiently suppressed. As mentioned above, the multi-tubular evaporator which has a large liquefied gas evaporation processing capacity also has very high evaporation efficiency, and the evaporator can be operated continuously for a long period of time.

第3図と第4図は、この考案の第2実施例を示
すものである。ここで、上記第1実施例の場合と
異なる点は、並列状に配置された3本のアルミニ
ウム押出型材製の垂直蒸発管Aにより構成された
左右に伸びる蒸発管列Rが、前後に3つ平行状に
並べられ、各蒸発管列Rにおいて、液化ガス導入
管3が接続された入口側の垂直蒸発管A1の上端
部が、1本の垂直蒸発管A3を隔てた垂直蒸発管
A2の上端部に相対的に長い連結管2を介して連
結され、この次の垂直蒸発管A2の下端部が、相
対的に短い連結管2を介して隣りの垂直蒸発管A
3の下端部に連結されることにより、液化ガスが
入口側の垂直蒸発管A1から出口側の垂直蒸発管
A3までをシリーズに流れるようになされるとと
もに、入口側の垂直蒸発管A1と、これより次の
垂直蒸発管A2との間に、これらとは別の3番目
の垂直蒸発管A3が存在せしめられている点にあ
る。
3 and 4 show a second embodiment of this invention. Here, the difference from the case of the first embodiment is that the evaporator tube row R extending from side to side is composed of three vertical evaporator tubes A made of extruded aluminum and arranged in parallel; In each evaporator tube row R arranged in parallel, the upper end of the vertical evaporator tube A1 on the inlet side to which the liquefied gas introduction tube 3 is connected is the upper end of the vertical evaporator tube A2 separated by one vertical evaporator tube A3. The lower end of the next vertical evaporation pipe A2 is connected to the adjacent vertical evaporation pipe A2 through a relatively short connection pipe 2.
3, the liquefied gas is made to flow in series from the vertical evaporation pipe A1 on the inlet side to the vertical evaporation pipe A3 on the outlet side, and the vertical evaporation pipe A1 on the inlet side and this A third vertical evaporation tube A3, which is different from these, is provided between the next vertical evaporation tube A2.

この第2実施例によれば、各蒸発管列Rにおい
て、入口側の垂直蒸発管A1と、次の垂直蒸発管
A2との間に、これらより温度の高い加温部とし
ての3番目の垂直蒸発管A3が存在せしめられて
いるので、蒸発器の運転により入口側の垂直蒸発
管A1の管表面とフイン1表面に氷霜が生成され
ても、この氷霜生成現象が、入口側の垂直蒸発管
A1から次の垂直蒸発管A2へと進むようなこと
がなく、氷霜の生成を充分に抑えることができ、
従つて蒸発効率が非常にすぐれており、蒸発器
は、上記第1実施例の場合と同様に長期間連続運
転をすることが可能である。
According to this second embodiment, in each evaporator tube row R, a third vertical evaporator tube serving as a heating section having a higher temperature than these vertical evaporator tubes is located between the vertical evaporator tube A1 on the inlet side and the next vertical evaporator tube A2. Since the evaporator tube A3 is made to exist, even if ice frost is generated on the tube surface of the vertical evaporator tube A1 on the inlet side and the surface of the fin 1 due to the operation of the evaporator, this ice frost formation phenomenon will not occur on the vertical evaporator tube A1 on the inlet side. There is no possibility that the evaporator tube A1 will proceed to the next vertical evaporator tube A2, and the formation of ice and frost can be sufficiently suppressed.
Therefore, the evaporation efficiency is very high, and the evaporator can be operated continuously for a long period of time as in the first embodiment.

この第2実施例のその他の点は、上記第1実施
例の場合と同様であるので、図面において同一の
ものには同一の符号を付した。
The other points of this second embodiment are the same as those of the first embodiment, so the same parts are given the same reference numerals in the drawings.

なお、上記第1実施例において、蒸発器は、左
右に伸びる蒸発管列Rが、2つの蒸発管群Pによ
り構成されているが、蒸発管列Rは、3つ以上の
蒸発管群Pにより構成されていてもよい。また各
蒸発管群Pは、4本の垂直蒸発管Aにより構成さ
れているが、これは少なくとも3本の垂直蒸発管
Aにより構成されておればよい。
In the first embodiment, the evaporator is configured such that the evaporator tube row R extending left and right is composed of two evaporator tube groups P, but the evaporator tube row R is composed of three or more evaporator tube groups P. may be configured. Each evaporator tube group P is composed of four vertical evaporator tubes A, but it is sufficient that it is composed of at least three vertical evaporator tubes A.

また、上記第2実施例において、蒸発器は、左
右に伸びる蒸発管列Rが、3本の垂直蒸発管Aに
より構成されているが、これは4本以上の垂直蒸
発管Aにより構成されていてもよい。
Furthermore, in the second embodiment, in the evaporator, the evaporator tube row R extending left and right is composed of three vertical evaporation tubes A, but this is not composed of four or more vertical evaporation tubes A. You can.

また、上記第1および第2実施例において、蒸
発器は、左右に伸びる蒸発管列Rが、前後に3つ
平行状に並べられたものであるが、これに限ら
ず、この考案による多管式蒸発器は、少なくとも
1つの蒸発管列Rによつて構成されておればよ
い。
Further, in the first and second embodiments, the evaporator has three evaporator tube rows R extending left and right arranged in parallel in the front and back, but the invention is not limited to this. The type evaporator only needs to be constituted by at least one evaporator tube row R.

さらに、この考案による多管式蒸発器において
は、上記第1および第2実施例の場合に限らず、
液化ガス導入管3が接続された入口側の垂直蒸発
管A1と、これより液化ガスが送られる次の垂直
蒸発管A2との間には、1または2本以上の垂直
蒸発管Aが存在せしめられ、かつ相互に隣り合う
蒸発管群P,Pの入口側の垂直蒸発管A1,A1
同志の間には、1または2本以上の垂直蒸発管A
が存在せしめられておればよいものである。
Furthermore, the multi-tube evaporator according to this invention is not limited to the first and second embodiments described above.
One or more vertical evaporation pipes A are present between the vertical evaporation pipe A1 on the inlet side to which the liquefied gas introduction pipe 3 is connected and the next vertical evaporation pipe A2 from which the liquefied gas is sent. Vertical evaporator tubes A1, A1 on the inlet side of the evaporator tube groups P, P that are adjacent to each other
Between one or more vertical evaporation tubes A
It would be good if it were made to exist.

考案の効果 この考案は、上述のように、少なくとも3本の
垂直蒸発管Aが並列状に配置され、これらの垂直
蒸発管Aは、液化ガスが入口側の垂直蒸発管A1
から出口側の垂直蒸発管Aまでをシリーズに流れ
るように連結管2を介して連結されている多管式
蒸発器において、液化ガス導入管3が接続された
入口側の垂直蒸発管A1と、これより液化ガスが
送られる次の垂直蒸発管A2との間に、これらよ
り温度の高い加温部としての1または2本以上の
垂直蒸発管A3が存在せしめられているので、蒸
発器の運転により入口側の蒸発部としての垂直蒸
発管A1の管表面とフイン1表面に氷霜が生成さ
れても、この氷霜生成現象が、入口側の垂直蒸発
管A1から次の垂直蒸発管A2へと進むようなこ
とがなく、従つて従来のような他の熱源の融氷霜
装置を使用することなく、氷霜の生成を充分に抑
えることができて、液化酸素等の蒸発効率が非常
にすぐれており、長期間連続運転をすることが可
能で、経済性が非常に高いという効果を奏する。
Effects of the invention In this invention, as mentioned above, at least three vertical evaporation tubes A are arranged in parallel, and these vertical evaporation tubes A are connected to the vertical evaporation tube A1 on the inlet side of the liquefied gas.
In a multi-tube evaporator connected via a connecting pipe 2 so as to flow in series from to a vertical evaporation pipe A on the exit side, a vertical evaporation pipe A1 on the inlet side to which the liquefied gas introduction pipe 3 is connected; Since one or more vertical evaporation pipes A3 as a heating section with a higher temperature than these exist between the next vertical evaporation pipe A2 to which liquefied gas is sent, the operation of the evaporator is Even if frost is generated on the tube surface of the vertical evaporation tube A1 and the surface of the fin 1 as the evaporation part on the inlet side, this ice frost formation phenomenon is transferred from the vertical evaporation tube A1 on the inlet side to the next vertical evaporation tube A2. Therefore, the formation of ice and frost can be sufficiently suppressed without using a conventional ice melting and frosting device that uses other heat sources, and the evaporation efficiency of liquefied oxygen etc. is extremely high. It has the advantage of being able to operate continuously for a long period of time and being extremely economical.

またこの考案による多管式蒸発器は、上述のよ
うに、並列状に配置された少なくとも3本の垂直
蒸発管Aによつて構成された蒸発管群Pを少なく
とも2つ備えており、各蒸発管群Pの垂直蒸発管
Aは、液化ガスが入口側の垂直蒸発管A1から出
口側の垂直蒸発管Aまでをシリーズに流れるよう
に連結管2を介して連結され、かつ液化ガス導入
管3が接続された入口側の垂直蒸発管A1と、こ
れより液化ガスが送られる次の垂直蒸発管A2と
の間に、1または2本以上の垂直蒸発管Aが存在
せしめられているとともに、相互に隣り合う蒸発
管群P,Pの入口側の垂直蒸発管A1,A1同志
の間に、1または2本以上の垂直蒸発管A3が存
在せしめられていて、各蒸発管群Pの入口側の垂
直蒸発管A1がこれより温度の高い加温部として
の垂直蒸発管A,Aに、いわばサンドイツチ状に
挾まれているから、各蒸発管群Pにおいて、入口
側の垂直蒸発管A1の表面で生じた氷霜生成現象
が、この垂直蒸発管A1から次の垂直蒸発管A2
へと進むようなことがなく、従つてこのような液
化ガスの蒸発処理能力の大きい多管式蒸発器につ
いても、同様に従来のような他の熱源の融氷霜装
置を使用することなく、氷霜の生成を充分に抑え
ることができて、液化酸素等の蒸発効率が非常に
すぐれており、従つて長期間連続運転をすること
が可能で、経済性が非常に高いという効果を奏す
る。
Furthermore, as described above, the multi-tube evaporator according to this invention is equipped with at least two evaporator tube groups P each composed of at least three vertical evaporator tubes A arranged in parallel. The vertical evaporation pipes A of the tube group P are connected via a connecting pipe 2 so that the liquefied gas flows in series from the vertical evaporation pipe A1 on the inlet side to the vertical evaporation pipe A on the exit side, and the liquefied gas introduction pipe 3 One or more vertical evaporation pipes A are present between the vertical evaporation pipe A1 on the inlet side connected to the vertical evaporation pipe A1 and the next vertical evaporation pipe A2 to which liquefied gas is sent, and the vertical evaporation pipes A are mutually connected. One or more vertical evaporator tubes A3 are made to exist between the vertical evaporator tubes A1, A1 on the inlet side of the evaporator tube groups P, which are adjacent to each other. Since the vertical evaporator tube A1 is sandwiched between the vertical evaporator tubes A and A, which serve as heating parts having a higher temperature, in a so-called sandwich-like manner, in each evaporator tube group P, the surface of the vertical evaporator tube A1 on the inlet side The resulting ice and frost formation phenomenon is transferred from this vertical evaporation tube A1 to the next vertical evaporation tube A2.
Therefore, the multi-tubular evaporator, which has a large liquefied gas evaporation processing capacity, can also be used without using a conventional ice-melting and frosting device using another heat source. It is possible to sufficiently suppress the formation of ice and frost, and the evaporation efficiency of liquefied oxygen and the like is very good. Therefore, it is possible to operate continuously for a long period of time, and it has the effect of being very economical.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この考案の第1実施例を示す多管式
蒸発器の概略側面図、第2図は同水平断面図、第
3図はこの考案の第2実施例の多管式蒸発器の概
略側面図、第4図は同水平断面図、第5図は従来
の多管式蒸発器の概略側面図である。 A,A1〜A4……垂直蒸発管、P……蒸発管
群、R……蒸発管列、2……連結管、3……液化
ガス導入管、4……液化ガス排出管。
Fig. 1 is a schematic side view of a multi-tube evaporator according to a first embodiment of this invention, Fig. 2 is a horizontal sectional view of the same, and Fig. 3 is a multi-tube evaporator according to a second embodiment of this invention. FIG. 4 is a horizontal sectional view of the same, and FIG. 5 is a schematic side view of a conventional multi-tube evaporator. A, A1 to A4... Vertical evaporation tube, P... Evaporation tube group, R... Evaporation tube row, 2... Connecting pipe, 3... Liquefied gas introduction pipe, 4... Liquefied gas discharge pipe.

Claims (1)

【実用新案登録請求の範囲】 (1) 少なくとも3本の垂直蒸発管Aが並列状に配
置され、これらの垂直蒸発管Aは、液化ガスが
入口側の垂直蒸発管A1から出口側の垂直蒸発
管Aまでをシリーズに流れるように連結管2を
介して連結されている多管式蒸発器において、
液化ガス導入管3が接続された入口側の垂直蒸
発管A1と、これより液化ガスが送られる次の
垂直蒸発管A2との間に、1または2本以上の
垂直蒸発管Aが存在せしめられている、多管式
蒸発器。 (2) 並列状に配置された少なくとも3本の垂直蒸
発管Aによつて構成された蒸発管群Pを少なく
とも2つ備えており、各蒸発管群Pの垂直蒸発
管Aは、液化ガスが入口側の垂直蒸発管A1か
ら出口側の垂直蒸発管Aまでをシリーズに流れ
るように連結管2を介して連結され、かつ液化
ガス導入管3が接続された入口側の垂直蒸発管
A1と、これより液化ガスが送られる次の垂直
蒸発管A2との間に、1または2本以上の垂直
蒸発管Aが存在せしめられているとともに、相
互に隣り合う蒸発管群P,Pの入口側の垂直蒸
発管A1,A1同志の間に、1または2本以上
の垂直蒸発管Aが存在せしめられている、多管
式蒸発器。
[Claims for Utility Model Registration] (1) At least three vertical evaporation tubes A are arranged in parallel, and the liquefied gas flows from the vertical evaporation tube A1 on the inlet side to the vertical evaporation tube A1 on the outlet side. In a multi-tube evaporator connected via a connecting pipe 2 so as to flow in series up to pipe A,
One or more vertical evaporation pipes A are provided between the vertical evaporation pipe A1 on the inlet side to which the liquefied gas introduction pipe 3 is connected and the next vertical evaporation pipe A2 from which the liquefied gas is sent. Multi-tube evaporator. (2) It is equipped with at least two evaporator tube groups P each composed of at least three vertical evaporator tubes A arranged in parallel, and the vertical evaporator tubes A of each evaporator tube group P are capable of discharging liquefied gas. A vertical evaporation pipe A1 on the inlet side that is connected via a connecting pipe 2 so as to flow in series from the vertical evaporation pipe A1 on the inlet side to the vertical evaporation pipe A1 on the outlet side, and to which the liquefied gas introduction pipe 3 is connected; One or more vertical evaporation tubes A are made to exist between this and the next vertical evaporation tube A2 to which liquefied gas is sent, and one or more vertical evaporation tubes A are provided on the inlet side of the mutually adjacent evaporation tube groups P and P. A multi-tube evaporator in which one or more vertical evaporation tubes A are provided between vertical evaporation tubes A1 and A1.
JP6692988U 1988-05-20 1988-05-20 Expired - Lifetime JPH0539268Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6692988U JPH0539268Y2 (en) 1988-05-20 1988-05-20

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6692988U JPH0539268Y2 (en) 1988-05-20 1988-05-20

Publications (2)

Publication Number Publication Date
JPH01169700U JPH01169700U (en) 1989-11-30
JPH0539268Y2 true JPH0539268Y2 (en) 1993-10-05

Family

ID=31292318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6692988U Expired - Lifetime JPH0539268Y2 (en) 1988-05-20 1988-05-20

Country Status (1)

Country Link
JP (1) JPH0539268Y2 (en)

Also Published As

Publication number Publication date
JPH01169700U (en) 1989-11-30

Similar Documents

Publication Publication Date Title
JP2733593B2 (en) Evaporator
CN206861838U (en) Heat exchanger and air-conditioning system
JPH0539268Y2 (en)
CN109224727A (en) A kind of board-like cloud cooperation-removal flue gas condenser
GB1136018A (en) Improvements in or relating to cryogenic vaporizers
CN110173712A (en) Air-water heat exchanger with perpendicular fins
CN109489130A (en) A kind of heat exchanger, outdoor unit and air-conditioning
CN205843431U (en) A kind of heat exchanger
JPH03125100A (en) Shell and tube evaporator
JPH0616231Y2 (en) Multi-tube evaporator
CN209622751U (en) A kind of combustion and steam occurrence of equipment
JPH0486491A (en) Heat exchanger
JPH0614782U (en) Heat exchanger
CN204737977U (en) Evaporative cooler and converter coal gas dry process dust pelletizing system
CN217330808U (en) Gas-liquid heat exchanger
JPS5924317B2 (en) liquefied natural gas vaporizer
CN216694618U (en) PVC dividing wall type cross flow heat exchanger
JPH051864A (en) Multipath evaporator
JP2005016567A (en) Air-heating type vaporizer for liquefied gas
CN210266702U (en) Large-scale LNG and air direct heat exchange gasification system
CN211084506U (en) Inclined plate type spray type evaporative cooling heat exchanger and air conditioning unit
SU1413380A1 (en) Air heater
JP2000241045A (en) Heat exchanger for air conditioning
JP2006057940A (en) Heat exchanger for radiation panel
JPS608320Y2 (en) Shell-and-tube heat exchanger