JPH05347710A - Adaptive variable length coding method - Google Patents

Adaptive variable length coding method

Info

Publication number
JPH05347710A
JPH05347710A JP15546892A JP15546892A JPH05347710A JP H05347710 A JPH05347710 A JP H05347710A JP 15546892 A JP15546892 A JP 15546892A JP 15546892 A JP15546892 A JP 15546892A JP H05347710 A JPH05347710 A JP H05347710A
Authority
JP
Japan
Prior art keywords
variable length
variable
block
zero coefficient
coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15546892A
Other languages
Japanese (ja)
Other versions
JP3016456B2 (en
Inventor
Yoichi Takashima
洋一 高嶋
Yutaka Watanabe
裕 渡辺
Hiroshi Kodera
博 小寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP15546892A priority Critical patent/JP3016456B2/en
Publication of JPH05347710A publication Critical patent/JPH05347710A/en
Application granted granted Critical
Publication of JP3016456B2 publication Critical patent/JP3016456B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compression Or Coding Systems Of Tv Signals (AREA)
  • Compression Of Band Width Or Redundancy In Fax (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)
  • Image Processing (AREA)

Abstract

PURPOSE:To reduce the mismatching and to improve the coding efficiency by assigning adaptively a variable length code to the change of distribution of an orthogonal conversion efficiency. CONSTITUTION:A scan converter 21 applies a zigzag scan to the orthogonal conversion coefficient which is inputted to a variable length coding part 20 and quantized by an adaptive quantizing part 12. Thus a set Sj (j=1, 2,...N) of the continuous number of a zero coefficient and the non-zero coefficient value is obtained. At the same time, non-zero coefficient counter 22 obtains the unit number N of the non-zero coefficient out of a block. Then a coding control part 23 switches the changeover switches 25-27 in accordance with the unit number N. Meanwhile the set Sj outputted from the converter 21 is inputted to a O-run/non-zero coefficient coder 28i (i=1, 2,...m) corresponding to the unit number N via the changeover switch 25. The coder 28i contains a variable length code vlci and codes the set Si of the continuous number of the zero coefficien and the non-zero coefficient value.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、画像信号を直交変換
し、その直交変換係数を適応的に可変長符号化して情報
量の削減を図る適応的可変長符号化方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an adaptive variable length coding method for orthogonally transforming an image signal and adaptively variable length coding the orthogonal transform coefficient to reduce the amount of information.

【0002】[0002]

【従来の技術】動画像および静止画像の高能率符号化で
は、一定数の画素をブロックとして画面を区切り、この
ブロックごとに画像信号を直交変換し、その直交変換出
力をブロック対応の量子化ステップで量子化する。さら
に、ブロックごとに量子化された直交変換係数を例えば
図2に示すジグザクスキャンと呼ばれる所定の順序に並
べ、零係数の連続数と非零係数の係数値との組と、ブロ
ックの最後を示す符号(EOB)を可変長符号化する。
この可変長符号化では、画像信号の相関性が周波数領域
において低周波成分へ電力が集中するので、その低周波
成分に多くのビットを割り当て、代わりに低電力の高周
波成分にビット割り当てを少なくすることにより、全体
の符号化ビット数の低減を図る仕組みになっている。
2. Description of the Related Art In high-efficiency coding of moving images and still images, a screen is divided into blocks of a fixed number of pixels, an image signal is orthogonally transformed for each block, and the orthogonal transformation output is a quantization step corresponding to the block. Quantize with. Further, the orthogonal transform coefficients quantized for each block are arranged in a predetermined order called zigzag scan shown in FIG. 2, for example, to show a set of the number of consecutive zero coefficients and coefficient values of non-zero coefficients and the end of the block. The code (EOB) is variable length coded.
In this variable-length coding, since the correlation of the image signal concentrates the power on the low frequency component in the frequency domain, many bits are allocated to the low frequency component, and instead, the bit allocation is reduced to the low power high frequency component. As a result, the total number of encoded bits is reduced.

【0003】[0003]

【発明が解決しようとする課題】ところで、従来の可変
長符号化方法における可変長符号は標準化されており、
CCITT勧告H.261、MPEG,JPEGのいずれに
おいても同じものが用いられている。したがってその有
用性は高いと言えるが、かなり低いレートで最適化され
ているので、HDTVその他の高レートのものに対して
はミスマッチが多くなる。すなわち、直交変換係数は、
量子化方法、絵柄、解像度その他の要因によって様々な
分布をとるので、固定の可変長符号表ではミスマッチの
割合も高くなり、符号化効率が低下する。
By the way, the variable length code in the conventional variable length coding method is standardized,
The same is used in CCITT Recommendation H.261, MPEG, and JPEG. Therefore, it can be said that its usefulness is high, but since it is optimized at a considerably low rate, there are many mismatches with respect to HDTV and other high rate ones. That is, the orthogonal transform coefficient is
Since various distributions are taken depending on the quantization method, pattern, resolution, and other factors, the fixed variable-length codebook also causes a high mismatch rate, resulting in low coding efficiency.

【0004】ここで、零係数の連続数と非零係数の係数
値との組Sj の度数分布が画像によって変化する例を図
3に示す。図3(1),(2),(3) は、それぞれ静止している
画像、動いている画像、シーンが切り替わった画像の場
合の度数分布を示す。このような画像に対して、図4
(1) に示す特性を有する可変長符号器を用いて可変長符
号化を行うと、図4(2) 〜(4) に示す斜線部分がミスマ
ッチ領域となり、符号化効率はそのミスマッチ領域が大
きくなる程劣化する。なお、図4において、実線は可変
長符号器の特性を示し、破線は図3(1) 〜(3) に示す各
画像の度数分布を示す。
FIG. 3 shows an example in which the frequency distribution of the set S j of the number of consecutive zero coefficients and the coefficient value of non-zero coefficients changes depending on the image. FIGS. 3 (1), (2), and (3) show frequency distributions in the case of a still image, a moving image, and an image in which scenes are switched. For such an image, FIG.
When variable length coding is performed using the variable length encoder having the characteristics shown in (1), the shaded areas shown in Fig. 4 (2) to (4) become mismatch areas, and the coding efficiency is large in the mismatch areas. It deteriorates to some extent. In FIG. 4, the solid line shows the characteristics of the variable-length encoder, and the broken line shows the frequency distribution of each image shown in FIGS. 3 (1) to (3).

【0005】本発明は、レート,図柄および解像度の変
更に対して可変長符号表を適応的に切り替えてミスマッ
チを低減し、符号化効率を高めることができる適応的可
変長符号化方法を提供することを目的とする。
The present invention provides an adaptive variable length coding method capable of adaptively switching the variable length code table in response to changes in rate, symbol and resolution to reduce mismatch and improve coding efficiency. The purpose is to

【0006】[0006]

【課題を解決するための手段】本発明は、直交変換係数
からブロック中の非零係数の個数を計数し、その非零係
数の個数をブロックの最後を示す符号(EOB)に代え
て可変長符号化し、非零係数の個数に応じて零係数の連
続数と非零係数の係数値との組に割り当てる可変長符号
を切り替えて可変長符号化することを特徴とする。
According to the present invention, the number of non-zero coefficients in a block is counted from orthogonal transform coefficients, and the number of non-zero coefficients is replaced by a code (EOB) indicating the end of the block, and the variable length is changed. It is characterized in that variable-length coding is performed by switching the variable-length code assigned to the set of the number of consecutive zero coefficients and the coefficient value of the non-zero coefficient in accordance with the number of non-zero coefficients.

【0007】[0007]

【作用】レート,図柄および解像度の変更に応じてブロ
ックの非零係数の個数が変化する。たとえば、図3に示
す例では、(1) の静止している画像に対する非零係数の
個数が最も少なく、(3) のシーンが切り替わった画像に
対する非零係数の個数が最も多い。したがって、ブロッ
クごとの直交変換係数をそれぞれ可変長符号化する際
に、非零係数の個数に応じて割り当てる可変長符号を切
り替えることにより、レート,図柄および解像度の変更
があっても可変長符号のミスマッチを最小限に抑えるこ
とができる。
The number of non-zero coefficients in the block changes according to changes in the rate, pattern and resolution. For example, in the example shown in FIG. 3, the number of non-zero coefficients for the still image of (1) is the smallest, and the number of non-zero coefficients for the scene-switched image of (3) is the largest. Therefore, when variable-length coding each orthogonal transform coefficient for each block, by switching the variable-length code to be assigned according to the number of non-zero coefficients, the variable-length code of the variable-length code is changed even if the rate, symbol, and resolution are changed. Mismatch can be minimized.

【0008】また、このとき非零係数の個数を可変長符
号化することにより、ブロックの最後を示す符号(EO
B)に代えてブロックの最後が復号側で検出できるとと
もに、その非零係数の個数に応じてブロック対応に可変
長符号の復号処理を行うことができる。
At this time, the number of non-zero coefficients is variable-length coded to obtain a code (EO) indicating the end of the block.
Instead of B), the end of the block can be detected on the decoding side, and variable-length code decoding processing can be performed corresponding to the block according to the number of non-zero coefficients.

【0009】[0009]

【実施例】図1は、本発明の適応的可変長符号化方法を
実現する可変長符号器の実施例構成を示すブロック図で
ある。
1 is a block diagram showing the configuration of an embodiment of a variable length coder for realizing the adaptive variable length coding method of the present invention.

【0010】図において、画像信号入力端子10から入
力された画像信号は、直交変換器11によりブロックご
とに直交変換され、さらに適応量子化器12によりブロ
ック対応の量子化ステップで量子化され、ブロックごと
の直交変換係数となる。この直交変換器11および適応
量子化器12については、従来のものをそのまま用いる
ことができる。
In the figure, an image signal input from an image signal input terminal 10 is orthogonally transformed for each block by an orthogonal transformer 11 and further quantized by a quantization step corresponding to the block by an adaptive quantizer 12, It becomes the orthogonal transformation coefficient for each. As the orthogonal transformer 11 and the adaptive quantizer 12, conventional ones can be used as they are.

【0011】適応量子化器12で量子化された直交変換
係数は、本発明方法を実現する可変長符号化部20で可
変長符号化されてデータ出力端子13に出力される。こ
の可変長符号化部20に入力された直交変換係数は、ま
ずスキャン変換器21で図2に示すようなジグザグスキ
ャンされ、零係数の連続数と非零係数の係数値との組S
j (j=1,2,…,N)が求められ、同時に非零係数
計数器22でブロック中の非零係数の個数Nが求められ
る。なお、図2に示す例では、N≦63である。このブロ
ック中の非零係数の個数Nは、符号化制御部23および
非零係数量符号化器24に与えられる。符号化制御部2
3は、非零係数の個数Nに応じて切替スイッチ25,2
6,27を切り替える。非零係数量符号化器24は可変
長符号 vlc0を内蔵し、それに従ってブロック中の非零
係数の個数Nを符号化し、切替スイッチ27を介して最
初にデータ出力端子13に送出され、復号側に伝送され
る。
The orthogonal transform coefficient quantized by the adaptive quantizer 12 is variable-length coded by the variable-length coding unit 20 for realizing the method of the present invention and output to the data output terminal 13. The orthogonal transform coefficient input to the variable length coding unit 20 is first subjected to zigzag scanning as shown in FIG. 2 by the scan converter 21, and a set S of the number of consecutive zero coefficients and the coefficient value of non-zero coefficient S is obtained.
j (j = 1, 2, ..., N) is calculated, and at the same time, the non-zero coefficient counter 22 calculates the number N of non-zero coefficients in the block. In the example shown in FIG. 2, N ≦ 63. The number N of non-zero coefficients in this block is given to the encoding control unit 23 and the non-zero coefficient amount encoder 24. Encoding control unit 2
3 is a changeover switch 25, 2 according to the number N of non-zero coefficients.
Switch between 6 and 27. The non-zero coefficient amount encoder 24 has a variable-length code vlc0 built-in, and accordingly encodes the number N of non-zero coefficients in the block, which is first sent to the data output terminal 13 via the changeover switch 27, and the decoding side Be transmitted to.

【0012】一方、スキャン変換器21から出力される
零係数の連続数と非零係数の係数値との組Sj は、切替
スイッチ25を介して、ブロック中の非零係数の個数N
に対応する0ラン及び非零係数符号化器28i(i=1,
2,…,m)に入力される。ここで、0ラン及び非零係
数符号化器28i は可変長符号 vlciを内蔵し、零係数
の連続数と非零係数の係数値との組Sj を符号化する。
すなわち、可変長符号vlciを用いてSj を符号化する
ことをCi(Sj) と記述すると、 C0(N), Ck(S1), Ck(S2), Ck(S3), …, C
k(SN) を符号化出力とし、切替スイッチ26を介してデータ出
力端子13に送出する。
On the other hand, the set S j of the number of consecutive zero coefficients and the coefficient value of the non-zero coefficient output from the scan converter 21 is set to the number N of the non-zero coefficients in the block via the changeover switch 25.
0 run and non-zero coefficient encoder 28 i (i = 1,
2, ..., M). Here, the 0-run and non-zero coefficient encoder 28 i incorporates a variable-length code vlci and encodes a set S j of the number of consecutive zero coefficients and the coefficient value of the non-zero coefficient.
That is, coding S j using the variable-length code vlci is described as C i (S j ), and C 0 (N), C k (S 1 ), C k (S 2 ), C k ( S 3 ),…, C
k (S N ) is coded and is output to the data output terminal 13 via the changeover switch 26.

【0013】ただし、 k=f(N)=< log2(N+1)> である。この<x>はシーリングを表し、x以上の最小
整数を与える。
However, k = f (N) = <log 2 (N + 1)>. This <x> represents a ceiling and gives a minimum integer of x or more.

【0014】なお、符号化制御部23が切替スイッチ2
5,26を切り替える関数fは、装置化するに当たって
簡単に構成できる関数を選んでいるが、符号のミスマッ
チが少なくなるように切り替えるアルゴリズムであれば
上記のものに限定されるものではない。
It should be noted that the encoding control unit 23 uses the changeover switch 2
The function f for switching between 5 and 26 is selected as a function that can be easily configured for deviceization, but is not limited to the above as long as it is an algorithm for switching so as to reduce code mismatch.

【0015】ここで、m=3の場合の0ラン及び非零係
数符号化器281 〜283 の特性例を図5(1) 〜(3) に
示す。また、図3(1) 〜(3) に示す各画像に対応する非
零係数の個数Nに応じて、この0ラン及び非零係数符号
化器281 〜283 をそれぞれ対応させた場合の様子を
図5(4) 〜(6) に示す。なお、図5の実線は0ラン及び
非零係数符号化器281 〜283 の各特性を示し、破線
は図3(1) 〜(3) に示す各画像の度数分布を示す。図5
に示すように、実線と破線のずれた部分の領域がミスマ
ッチ領域となるが、図4に示す固定の可変長符号を用い
る場合に比べてミスマッチ領域は大幅に小さくなり、符
号化効率の向上が可能なことがわかる。
Here, characteristic examples of the 0-run and non-zero coefficient encoders 28 1 to 28 3 in the case of m = 3 are shown in FIGS. 5 (1) to 5 (3). Further, depending on the number N of non-zero coefficients corresponding to each image shown in FIGS. 3 (1) to (3), the 0-run and non-zero coefficient encoders 28 1 to 28 3 are respectively associated with each other. The situation is shown in Fig. 5 (4) to (6). The solid line in FIG. 5 shows the characteristics of the 0-run and non-zero coefficient encoders 28 1 to 28 3 , and the broken line shows the frequency distribution of each image shown in FIGS. 3 (1) to 3). Figure 5
As shown in Fig. 4, the region where the solid line and the broken line deviate is the mismatch region, but the mismatch region is significantly smaller than the case where the fixed variable-length code shown in Fig. 4 is used, and the coding efficiency is improved. I see that it is possible.

【0016】なお、0ラン及び非零係数符号化器28の
数m(可変長符号表の種類)を多くすることにより、さ
らに細かな変動にも柔軟に対処することができ、符号化
効率の一層の向上を図ることができる。
By increasing the number m of 0-run and non-zero coefficient encoders 28 (variable length code table types), it is possible to flexibly deal with even finer fluctuations and to improve the coding efficiency. Further improvement can be achieved.

【0017】ところで、ブロック中の非零係数の個数N
を最初に送ることにより、復号側では零係数の連続数と
非零係数の係数値との組Sj の個数Nを知ることができ
るとともに、どの可変長符号 vlciを用いているかを知
ることができる。これは、可変長符号を適応的に切り替
えることによる符号化効率の向上を生むだけでない。そ
れに加えて、通常は最も多い事象であるブロックの最後
を示す符号(EOB)を可変長符号に含める必要がなく
なるので、さらに符号化効率の向上を見込める符号割り
当てを行うことができる。
By the way, the number N of non-zero coefficients in a block is N.
By first sending, the decoding side can know the number N of sets S j of the number of consecutive zero coefficients and the coefficient value of non-zero coefficients, and also know which variable length code vlci is used. it can. This not only results in improved coding efficiency by adaptively switching variable length codes. In addition to this, since it is not necessary to include the code (EOB) indicating the end of the block, which is usually the most frequent event, in the variable length code, it is possible to perform code allocation that can further improve the coding efficiency.

【0018】[0018]

【発明の効果】以上説明したように本発明は、直交変
換係数の分布の変化に適応的に可変長符号を割り当てる
により、ミスマッチを削減して符号化効率の向上を図る
ことができる。各可変長符号にブロックの最後を示す
符号(EOB)が不要となるので、その分各シンボルに
対して効率よく符号語を割り当てることができ、一層の
符号化効率の向上を図ることができる。
As described above, according to the present invention, variable length codes are adaptively assigned to changes in the distribution of orthogonal transform coefficients, so that mismatches can be reduced and coding efficiency can be improved. Since a code (EOB) indicating the end of the block is not required for each variable length code, a code word can be efficiently allocated to each symbol, and the coding efficiency can be further improved.

【0019】また、本発明方法では、直交変換および量
子化を行う情報源符号化の部分には何も制約を要求しな
いので、既存の構成の可変長符号化部を入れ替えるだけ
で、従来構成に比べて大幅な符号化効率の向上を実現す
ることができる。
Further, since the method of the present invention does not require any restriction on the part of the information source coding for performing the orthogonal transformation and the quantization, the conventional structure can be obtained simply by replacing the variable length coding part of the existing structure. In comparison, it is possible to realize a significant improvement in coding efficiency.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の適応的可変長符号化方法を実現する可
変長符号器の実施例構成を示すブロック図。
FIG. 1 is a block diagram showing a configuration of an embodiment of a variable length encoder that realizes an adaptive variable length encoding method of the present invention.

【図2】可変長符号化で用いるジグザクスキャンを示す
図。
FIG. 2 is a diagram showing zigzag scanning used in variable-length coding.

【図3】画像と、零係数の連続数と非零係数の係数値と
の組Sj の度数分布との関係を示す図。
FIG. 3 is a diagram showing a relationship between an image and a frequency distribution of a set S j of the number of consecutive zero coefficients and the coefficient value of a nonzero coefficient.

【図4】可変長符号器の特性と画像の度数分布との関係
を示す図。
FIG. 4 is a diagram showing a relationship between a characteristic of a variable-length encoder and a frequency distribution of an image.

【図5】0ラン及び非零係数符号化器281 〜283
特性と画像の度数分布との関係を示す図。
FIG. 5 is a diagram showing the relationship between the characteristics of 0-run and non-zero coefficient encoders 28 1 to 28 3 and the image frequency distribution.

【符号の説明】[Explanation of symbols]

10 画像信号入力端子 11 直交変換器 12 適応量子化器 13 データ出力端子 20 可変長符号化部 21 スキャン変換器 22 非零係数計数器 23 符号化制御部 24 非零係数量符号化器 25,26,27 切替スイッチ 28 0ラン及び非零係数符号化器 10 Image Signal Input Terminal 11 Orthogonal Transformer 12 Adaptive Quantizer 13 Data Output Terminal 20 Variable Length Coding Section 21 Scan Converter 22 Nonzero Coefficient Counter 23 Coding Control Section 24 Nonzero Coefficient Encoder 25, 26 , 27 selector switch 28 0 run and non-zero coefficient encoder

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 画像信号をブロックごとに直交変換し、
さらにブロック対応の量子化ステップで量子化した直交
変換係数をそれぞれ可変長符号化する可変長符号化方法
において、 前記直交変換係数からブロック中の非零係数の個数を計
数し、その非零係数の個数をブロックの最後を示す符号
(EOB)に代えて可変長符号化し、 前記非零係数の個数に応じて、零係数の連続数と非零係
数の係数値との組に割り当てる可変長符号を切り替えて
可変長符号化することを特徴とする適応的可変長符号化
方法。
1. An image signal is orthogonally transformed for each block,
Furthermore, in the variable length coding method for variable length coding each of the orthogonal transform coefficients quantized in the quantization step corresponding to the block, the number of nonzero coefficients in the block is counted from the orthogonal transform coefficients, and the nonzero coefficient A variable length code is assigned instead of the code (EOB) indicating the end of the block, and a variable length code is assigned to a set of the number of consecutive zero coefficients and the coefficient value of the nonzero coefficient according to the number of nonzero coefficients. An adaptive variable-length coding method characterized by switching and variable-length coding.
JP15546892A 1992-06-15 1992-06-15 Adaptive variable length coding method Expired - Fee Related JP3016456B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15546892A JP3016456B2 (en) 1992-06-15 1992-06-15 Adaptive variable length coding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15546892A JP3016456B2 (en) 1992-06-15 1992-06-15 Adaptive variable length coding method

Publications (2)

Publication Number Publication Date
JPH05347710A true JPH05347710A (en) 1993-12-27
JP3016456B2 JP3016456B2 (en) 2000-03-06

Family

ID=15606714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15546892A Expired - Fee Related JP3016456B2 (en) 1992-06-15 1992-06-15 Adaptive variable length coding method

Country Status (1)

Country Link
JP (1) JP3016456B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003088675A1 (en) * 2002-04-15 2003-10-23 Matsushita Electric Industrial Co., Ltd. Image encoding method and image decoding method
EP1470646A1 (en) * 2002-01-22 2004-10-27 Nokia Corporation Adaptive variable length coding
JP2005504471A (en) * 2001-09-14 2005-02-10 ノキア コーポレイション Context-based adaptive binary arithmetic coding method and system
JP2005516497A (en) * 2002-01-22 2005-06-02 ノキア コーポレイション Coding of transform coefficients in an image / video encoder and / or decoder
CN100399833C (en) * 2004-04-06 2008-07-02 C&S技术有限公司 High-speed image compression apparatus using last non-zero detection circuit
JP2010161787A (en) * 2002-04-19 2010-07-22 Panasonic Corp Variable length coding method and apparatus, and program
US8005146B2 (en) 2002-04-26 2011-08-23 Panasonic Corporation Variable length coding method and variable length decoding method
JP2015504256A (en) * 2012-01-19 2015-02-05 シャープ株式会社 High throughput coding of CABAC in HEVC
US9020041B2 (en) 2002-04-19 2015-04-28 Panasonic Intellectual Property Corporation Of America Variable length coding method and variable length decoding method
US9654139B2 (en) 2012-01-19 2017-05-16 Huawei Technologies Co., Ltd. High throughput binarization (HTB) method for CABAC in HEVC
US9860527B2 (en) 2012-01-19 2018-01-02 Huawei Technologies Co., Ltd. High throughput residual coding for a transform skipped block for CABAC in HEVC
US9992497B2 (en) 2012-01-19 2018-06-05 Huawei Technologies Co., Ltd. High throughput significance map processing for CABAC in HEVC
US10616581B2 (en) 2012-01-19 2020-04-07 Huawei Technologies Co., Ltd. Modified coding for a transform skipped block for CABAC in HEVC
CN112040230A (en) * 2019-10-21 2020-12-04 谷歌有限责任公司 Sparse matrix representation using non-zero coefficient boundaries

Cited By (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005504471A (en) * 2001-09-14 2005-02-10 ノキア コーポレイション Context-based adaptive binary arithmetic coding method and system
JP2008067395A (en) * 2002-01-22 2008-03-21 Nokia Corp Adaptive variable length coding
EP1470646A1 (en) * 2002-01-22 2004-10-27 Nokia Corporation Adaptive variable length coding
JP2005516497A (en) * 2002-01-22 2005-06-02 ノキア コーポレイション Coding of transform coefficients in an image / video encoder and / or decoder
JP2016026426A (en) * 2002-01-22 2016-02-12 ノキア コーポレイション Adaptive variable length coding
JP2011176878A (en) * 2002-01-22 2011-09-08 Nokia Corp Adaptive variable length coding
KR101227720B1 (en) * 2002-04-15 2013-01-29 파나소닉 주식회사 Image coding apparatus and image decoding apparatus
KR101038154B1 (en) * 2002-04-15 2011-05-31 파나소닉 주식회사 image decoding method
US7308149B2 (en) 2002-04-15 2007-12-11 Matsushita Electric Industrial Co., Ltd. Picture coding method and picture decoding method
US7308143B2 (en) 2002-04-15 2007-12-11 Matsushita Electric Industrial Co., Ltd. Picture coding method and picture decoding method
US7308144B2 (en) 2002-04-15 2007-12-11 Matsushita Electric Industrial Co., Ltd. Picture coding method and picture decoding method
US7184598B2 (en) 2002-04-15 2007-02-27 Matsushita Electric Industrial Co., Ltd. Picture coding method and picture decoding method
US8526748B2 (en) 2002-04-15 2013-09-03 Panasonic Corporation Picture coding method and picture decoding method
US7693340B2 (en) 2002-04-15 2010-04-06 Panasonic Corporation Picture coding method and picture decoding method
US7697770B2 (en) 2002-04-15 2010-04-13 Panasonic Corporation Picture coding method and picture decoding method
KR100956920B1 (en) * 2002-04-15 2010-05-11 파나소닉 주식회사 Image encoding method
KR100956927B1 (en) * 2002-04-15 2010-05-11 파나소닉 주식회사 Image decoding method
KR100956926B1 (en) * 2002-04-15 2010-05-11 파나소닉 주식회사 Image encoding method
US8867855B2 (en) 2002-04-15 2014-10-21 Panasonic Intellectual Property Corporation Of America Picture coding method and picture decoding method
US7769238B2 (en) 2002-04-15 2010-08-03 Panasonic Corporation Picture coding method and picture decoding method
US7305134B2 (en) 2002-04-15 2007-12-04 Matsushita Electric Industrial Co., Ltd. Picture coding method and picture decoding method
KR100980987B1 (en) * 2002-04-15 2010-09-07 파나소닉 주식회사 image decoding method
KR100987541B1 (en) * 2002-04-15 2010-10-12 파나소닉 주식회사 Image decoding method
KR100987548B1 (en) * 2002-04-15 2010-10-12 파나소닉 주식회사 Image encoding method
KR100990314B1 (en) * 2002-04-15 2010-10-26 파나소닉 주식회사 Image decoding method
US7095896B2 (en) 2002-04-15 2006-08-22 Matsushita Electric Industrial Co., Ltd. Image encoding method and image decoding method
US8290286B2 (en) 2002-04-15 2012-10-16 Panasonic Corporation Picture coding method and picture decoding method
CN1293762C (en) * 2002-04-15 2007-01-03 松下电器产业株式会社 Image encoding method and image decoding method
WO2003088675A1 (en) * 2002-04-15 2003-10-23 Matsushita Electric Industrial Co., Ltd. Image encoding method and image decoding method
US8139878B2 (en) 2002-04-15 2012-03-20 Panasonic Corporation Picture coding method and picture decoding method
US8265403B2 (en) 2002-04-15 2012-09-11 Panasonic Corporation Picture coding method and picture decoding method
KR101257212B1 (en) * 2002-04-15 2013-04-23 파나소닉 주식회사 Image coding apparatus and image decoding apparatus
US10027990B2 (en) 2002-04-19 2018-07-17 Godo Kaisha Ip Bridge 1 Variable length coding method and variable length decoding method
US10063890B2 (en) 2002-04-19 2018-08-28 Godo Kaisha Ip Bridge 1 Variable length coding method and variable length decoding method
US10623781B2 (en) 2002-04-19 2020-04-14 Godo Kaisha Ip Bridge 1 Variable length coding method and variable length decoding method
US10034025B2 (en) 2002-04-19 2018-07-24 Godo Kaisha Ip Bridge 1 Variable length coding method and variable length decoding method
JP2010183582A (en) * 2002-04-19 2010-08-19 Panasonic Corp Variable length decoding method, variable length decoding apparatus, and program
JP2010161787A (en) * 2002-04-19 2010-07-22 Panasonic Corp Variable length coding method and apparatus, and program
US10057602B2 (en) 2002-04-19 2018-08-21 Godo Kaisha Ip Bridge 1 Variable length coding method and variable length decoding method
US9020041B2 (en) 2002-04-19 2015-04-28 Panasonic Intellectual Property Corporation Of America Variable length coding method and variable length decoding method
US9020040B2 (en) 2002-04-19 2015-04-28 Panasonic Intellectual Property Corporation Of America Variable length coding method and variable length decoding method
US9025671B2 (en) 2002-04-19 2015-05-05 Panasonic Intellectual Property Corporation Of America Variable length coding method and variable length decoding method
US9031133B2 (en) 2002-04-19 2015-05-12 Panasonic Intellectual Property Corporation Of America Variable length coding method and variable length decoding method
US9054734B2 (en) 2002-04-19 2015-06-09 Panasonic Intellectual Property Corporation Of America Variable length coding method and variable length decoding method
US9661353B2 (en) 2002-04-19 2017-05-23 Godo Kaisha Ip Bridge 1 Variable length coding method and variable length decoding method
US8284841B2 (en) 2002-04-26 2012-10-09 Panasonic Corporation Variable length coding method and variable length decoding method
US8804838B2 (en) 2002-04-26 2014-08-12 Panasonic Intellectual Property Corporation Of America Variable length coding method and variable length decoding method
US9521415B2 (en) 2002-04-26 2016-12-13 Godo Kaisha Ip Bridge 1 Variable length coding method and variable length decoding method
US8005146B2 (en) 2002-04-26 2011-08-23 Panasonic Corporation Variable length coding method and variable length decoding method
US9191666B2 (en) 2002-04-26 2015-11-17 Godo Kaisha Ip Bridge 1 Variable length coding method and variable length decoding method
US9497467B2 (en) 2002-04-26 2016-11-15 Godo Kaisha Ip Bridge 1 Variable length coding method and variable length decoding method
US9794567B2 (en) 2002-04-26 2017-10-17 Godo Kaisha Ip Bridge 1 Variable length coding method and variable length decoding method
US10356412B2 (en) 2002-04-26 2019-07-16 Godo Kaisha Ip Bridge 1 Variable length coding method and variable length decoding method
US10349054B2 (en) 2002-04-26 2019-07-09 Godo Kaisha Ip Bridge 1 Variable length coding method and variable length decoding method
US8098736B2 (en) 2002-04-26 2012-01-17 Panasonic Corporation Variable length coding method and variable length decoding method
CN100399833C (en) * 2004-04-06 2008-07-02 C&S技术有限公司 High-speed image compression apparatus using last non-zero detection circuit
US9743116B2 (en) 2012-01-19 2017-08-22 Huawei Technologies Co., Ltd. High throughput coding for CABAC in HEVC
JP2015504256A (en) * 2012-01-19 2015-02-05 シャープ株式会社 High throughput coding of CABAC in HEVC
US9992497B2 (en) 2012-01-19 2018-06-05 Huawei Technologies Co., Ltd. High throughput significance map processing for CABAC in HEVC
US9860527B2 (en) 2012-01-19 2018-01-02 Huawei Technologies Co., Ltd. High throughput residual coding for a transform skipped block for CABAC in HEVC
US10616581B2 (en) 2012-01-19 2020-04-07 Huawei Technologies Co., Ltd. Modified coding for a transform skipped block for CABAC in HEVC
US9654139B2 (en) 2012-01-19 2017-05-16 Huawei Technologies Co., Ltd. High throughput binarization (HTB) method for CABAC in HEVC
US10701362B2 (en) 2012-01-19 2020-06-30 Huawei Technologies Co., Ltd. High throughput significance map processing for CABAC in HEVC
US10785483B2 (en) 2012-01-19 2020-09-22 Huawei Technologies Co., Ltd. Modified coding for a transform skipped block for CABAC in HEVC
CN112040230A (en) * 2019-10-21 2020-12-04 谷歌有限责任公司 Sparse matrix representation using non-zero coefficient boundaries

Also Published As

Publication number Publication date
JP3016456B2 (en) 2000-03-06

Similar Documents

Publication Publication Date Title
US10045034B2 (en) System and method for using pattern vectors for video and image coding and decoding
KR0129558B1 (en) Adaptive variable length coding method and apparatus
US10027962B2 (en) System, method and computer-readable medium for encoding a signal into macroblocks
KR20070006445A (en) Method and apparatus for hybrid entropy encoding and decoding
KR20030060172A (en) Optimal scanning method for transform coefficients in image and video coding/decoding
EP1033036A1 (en) Adaptive entropy coding in adaptive quantization framework for video signal coding systems and processes
JP3016456B2 (en) Adaptive variable length coding method
US6205254B1 (en) Image coding apparatus and method, and image decoding apparatus and method
US8116373B2 (en) Context-sensitive encoding and decoding of a video data stream
WO1998036574A1 (en) Video coder having scaler dependent variable length coder
JPH06237448A (en) Variable length coder and decoder
In et al. On RD optimized progressive image coding using JPEG
EP1691560A2 (en) Video coder providing implicit coefficient prediction and scan adaption for image coding and intra coding of video
JP3114796B2 (en) Variable length coding apparatus and method
KR100323692B1 (en) Image encode method for rearrangement of huffman table and image encoder and decoder
JPH07162859A (en) Image encoder and image decoder
KR0148152B1 (en) Adaptive variable length coding/decoding method and apparatus of image data
KR0148148B1 (en) Variable length coding method of image signal using variable length coding table
JP2762712B2 (en) Encoding device and decoding device
JPH0697834A (en) Variable multilevel arithmetic coding method
KR0128862B1 (en) Variable length encoding apparatus in motion picture encoding apparatus
KR100327364B1 (en) Image compression device using multiple huffman table
KR0134358B1 (en) Coding and decoding system of variable scan method
JPH0759091A (en) Code converter
EP1887804A2 (en) Video coder providing implicit coefficient predication and scan adaption for image coding and intra coding of video

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071224

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081224

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees