JPH0534655B2 - - Google Patents

Info

Publication number
JPH0534655B2
JPH0534655B2 JP58147047A JP14704783A JPH0534655B2 JP H0534655 B2 JPH0534655 B2 JP H0534655B2 JP 58147047 A JP58147047 A JP 58147047A JP 14704783 A JP14704783 A JP 14704783A JP H0534655 B2 JPH0534655 B2 JP H0534655B2
Authority
JP
Japan
Prior art keywords
selection period
potential
liquid crystal
clc
crystal display
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58147047A
Other languages
Japanese (ja)
Other versions
JPS6037525A (en
Inventor
Seigo Togashi
Hiroshi Tanabe
Katsumi Aota
Kanetaka Sekiguchi
Etsuo Yamamoto
Kazuaki Tanmachi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Watch Co Ltd
Original Assignee
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Watch Co Ltd filed Critical Citizen Watch Co Ltd
Priority to JP14704783A priority Critical patent/JPS6037525A/en
Publication of JPS6037525A publication Critical patent/JPS6037525A/en
Publication of JPH0534655B2 publication Critical patent/JPH0534655B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明はスイツチング素子として2端子型非線
形スイツチング素子を用いたアクテイブマトリク
ス方式の表示パネルの駆動方法に関し、詳しくは
スイツチング素子の静電容量が大きい場合でも高
い表示品質を保持できる駆動方法に関する。 [従来の技術] 液晶表示パネルは既に広く用いられ、その高密
度表示法として、各表示要素毎にスイツチング素
子を設けた所謂アクテイブマトリクス方式が用い
られることが多い。スイツチング素子としては2
端子型非線形スイツチング素子を用いる方法があ
り、例えば参照文献1「B.J.Lechner et al.,
Proc.IEEE Vol.59,p.1566〜1579」に示されて
いる。 第1図aは上記文献等に示されている2端子型
非線形スイツチング素子を用いたアクテイブマト
リクス方式の液晶表示パネルの単位表示要素の構
成図であり、2端子型非線形スイツチング素子
NLと液晶表示素子Cが接点1で接続されてい
る。第1図bはその等価回路である。ここで
CNL,RNLは2端子型非線形スイツチング素子
の、CLC,RLCは液晶表示素子のそれぞれ容量、
抵抗成分を表す。 第2図は第1図の表示要素から成るマトリクス
回路図であり、2端子型非線形スイツチング素子
NL(i,j)と液晶表示素子C(i,j)からな
る単位表示要素M(i,j)が、走査信号により
選択的に駆動される複数の行電極S(S1,S2,
S3,……)とデータ信号により駆動される複数
の列電極D(D1,D2,D3,……)によりマ
トリクス的に接続されている。 第3図は2端子型非線形スイツチング素子の特
性の概念図であり、閾値電圧Vthの前後で抵抗が
RoffからRonと大きく減少しているところが2端
子型非線形スイツチング素子の特徴である。 代表的な2端子型非線形スイツチング素子とし
てはバリスタ「参照文献2.D.E.Cast;eberry,
IEEE ED−26,p.1123〜1128」やMIM「参照文
献3.D.R.Baraff et al.,IEEE ED−28,p.736〜
739」等が公知である。また、本発明者らの出願
(特願昭57−167944,167945号公報)ではアモー
フアスシリコンダイオードリングを2端子型非線
形スイツチング素子として用いたパネルがあり、
低電圧駆動可、高開口率、簡易な製造プロセス、
高いコントラスト、高分割性等の優れた特性を有
する。 実際の2端子型非線形スイツチング素子の非線
形抵抗は第3図のオン/オフ2値ではなく、例え
ば第9図の非晶質Siダイオードリングの電流/電
圧特性のように連続的に変化する。電圧閾値Vth
も流れる電流によつて実効的に決定される。例え
ば選択期間で重要な電流値I2は選択期間の長さ
ts、負荷容量Cs、負荷印加電圧Vsに対しI2≒
CsVs/tsで表される。ここで負荷容量Csは液晶
表示素子容量CLCと必要に応じて設けられる付
加容量Caの和である。この電流値I2と第9図
の特性91により選択期間に於ける実効的電圧閾
値Vth2がおおよそ求まる。一方非選択期間で問
題となる電流値I1は非選択期間の長さThに対
しI1≒CsVs/Thで表され、この電流値I1と
第9図の特性91によつて非選択期間での実効的
閾値電圧Vth1がおおよそ求まる。 このような2端子型非線形スイツチング素子の
特性を考慮した駆動方法として本願発明者らに出
願がある(特願昭57−167943)。これは、選択期
間と非選択期間を有し非選択期間ではその前の選
択期間の極性によつて異なる保持電位を持たせる
方法である。 第4図により、この保持電位を用いた駆動法に
ついて説明する。フイールドT1,T2はそれぞ
れの走査信号φ*n,φ*n+1,……毎に選択期
間tn,t′n及びtn+1、t′n+1と、非選択期間tn,
a、tn,b、t′n,a、t′n,b及びtn+1,a、
tn+1,b、t′n+1,a、t′n+1,bを有する。
データ信号ψ*mはデータ電位±Vcを映像に応じ
て選択している。液晶表示素子を列電極を基準と
して行電極側を正の電圧に充電する選択期間を正
極性の選択期間、負の電圧に充電する選択期間を
負極性の選択期間とすると、正極性の選択期間に
対しては−Vcが点灯電位、+Vcが非点灯電位、
負極性の選択期間に対しては+Vcが点灯電位、−
Vcが非点灯電位となる。電圧の基準としては、
それぞれの選択期間でのデータ信号の点灯電位と
非点灯電位の中間電位を基準電位と呼ぶ。本図は
2階調のデジタル映像の例であるがアナログ映像
の場合はデータ電位±Vcの2値ではなく±Vcの
間の任意の値又は期間を取る。 この駆動法の特徴は走査信号波形にある。即
ち、基準電位を基準とした非選択期間の走査信号
電位は、正極性の選択期間tn、tn+1の後の非選
択期間tn,b、tn+1,bでは該選択期間の前の
非選択期間tn,a、tn+1,aの保持電位−Vb
より高い保持電位+Vbを持ち、負極性の選択期
間t′n、t′n+1の後の非選択期間t′n,b、t′n+
1,bでは該選択期間の前の非選択期間t′n,a、
t′n+1,aの保持電位+Vbより低い保持電位−
Vbを持つ事を特徴としている。以上の如き信号
を両電極に与えた場合、両電極間に接続された表
示要素M(n+1、m)、M(n、m)にはそれぞ
れ第4図φ*n+1−ψ*m,φ*n−ψ*mの差信号
が印加される。2端子型非線形スイツチング素子
NL((n+1、m)、NL(n、m)の非線形性に
よつて他の走査電極の選択期間に於けるデータ信
号の変化は吸収され、液晶表示素子C(n+1、
m)、C(n、m)には斜線部の電圧が印加され
る。φ*n+1−ψ*mの斜線部は点灯電圧、φ*
−ψ*mの斜線部は非点灯電圧に対応している。 以上の保持電位付駆動法の利点はまず第1にア
モーフアスシリコンダイオードリングの如き閾値
電圧Vthの低い2端子型非線形スイツチング素子
でも使用可能となる点である。第2は閾値電圧の
ばらつき、変動に対し強い点にあり、本駆動法に
よつてバリスタ、MIM等に見られる素子自身の
負均一性、不安定性が吸収され階調表示が可能と
なつた。第3の効果としては従来では閾値電圧
Vth以上の電圧を液晶表示素子に与える事が出来
なかつたが本駆動法によれば閾値Vth以上の電圧
を液晶表示素子に加える事が出来る。この他駆動
電圧低減、誘起ドメインの低減や、ムラの低減等
の効果もある。 しかし、この様な保持電位付き駆動法に於いて
もスイツチング素子の静電容量CNLが液晶表示
素子の静電容量CLCに対して十分小さい必要が
あり、大きい場合にはコントラストが低下し問題
となる。そこで、次にスイツチング素子の静電容
量CNLが表示のコントラストに及ぼす影響につ
いて説明する。 まず容量比CNL/CLCが十分小さく無視出来
る場合の従来例を第5図の表示要素各部での電位
波形で説明する。a,bはそれぞれ点灯画素と非
点灯画素に対応している。破線51は走査信号で
あり選択期間56では選択電位±Vaを、非選択
期間57では保持電位±Vbをとる。一点鎖線5
2,53はデータ信号であり点灯電位/非点灯電
位である±Vdの間の電位をとる。実線54,5
5は表示電極電位であり、第1図の電極2を走査
電極、電極3をデータ電極としてそれぞれ走査信
号51、データ信号52,53を印加した場合の
接点1である表示電極の電位波形である。表示要
素Cには表示電極電位54,55とデータ信号5
2,53の差である斜線部の電圧が印加される事
となる。選択期間56に於いて表示電極電位5
4,55は走査信号51の選択電位Vaからこの
閾値電圧Vth2だけ異なる電位に落ち着く。今後
の説明の為に非選択期間のデータ電位が選択期間
でのデータ電位と等しい状態を「状態A」、等し
くない状態を「状態B」と呼ぶ。非選択期間の
「状態B」でのスイツチング素子印加電圧510
及び511は2Vc−(Va−Vb−Vth2)及び2Vc
+(Va−Vb−Vth2)となる。Va−Vb=Vth2
と設定すれば両者の絶対値は2Vcで最小となり、
2Vc<Vth1ならばリークは無視できる。容量比
が無視できる本従来例では液晶表示素子に印加さ
れる電圧は「状態A」「状態B」によらず一定値
をとり、非点灯画素及び点灯画素で、矢印58及
び矢印59の|Va−Vc−Vth2|及び|Va+
Vc−Vth2|となる。以上より、点灯画素と非
点灯画素に加わる電圧の差は2Vc(<Vth1)と、
スイツチング素子の閾値電圧Vth1程度のダイナ
ミツクレンジとなり十分なコントラストが得られ
る。 次に、容量比CNL/CLCが約1と無視できな
い場合の従来例を第6図の波形図で説明する。こ
の場合は、選択期間56から非選択期間57に移
る時に容量間の電圧再分配により63,64の如
く(Va−Vb)×CNL/(CNL+CLC)の電圧降
下が生じ、液晶表示素子に印加される電圧61,
62は大幅に低下し、且つ走査信号電位±Vbか
ら離れリークを生じ易い。更に非選択期間での表
示要素印加電圧(斜線部)も容量間の電圧再分配
に起因して、「状態A」で矢印65,67、「状態
B」で矢印66,68とデータ信号に依存して変
動する。発明者らによる出願(特願昭57−
222925)で詳述したデータ信号の基準電位に対す
る極性をフレーム周期より短い周期で反転させる
方法を用いれば「状態A」と「状態B」の発生確
率を均等化しデータ依存性のクロストークは低減
されるがコントラストの低下迄は改善されない。
このように第6図の従来例では工程負荷や解像度
は犠牲にならないが、液晶表示素子に加わる電圧
が低下しスイツチング素子のリークが増大する。
またコントラストも低下し問題となる。 このように、スイツチング素子の静電容量は
種々の問題を発生させるが、これを改善する試み
が従来いくつか成されている。 一つは、走査信号電位を上げる方法である。第
7図は第6図の従来例の電圧低下をこの方法で改
善した時の電位波形図である。選択電位VaをVa
+(Va−Vb)×CNL/(CNL+CLC)と電圧降
下分だけ補償する事により「状態A」での表示電
極電位71,72を±Vbと一致させる事が出来
る。その結果スイツチング素子のリークや電圧低
下は低減できる。しかしコントラストの低下は依
然問題となる。液晶表示素子の点灯実効電圧
VON及び非点灯実効電圧VOFFとした時にコン
トラストは駆動マージンαと呼ばれる両者の比
VON/VOFFで評価出来る。第10図破線10
1は第7図の従来例に於ける駆動マージンαと容
量因子a=CNL/(CNL+CLC)或いは容量比
CNL/CLCの関係を示している。容量因子aが
減少、即ち容量比CNL/CLCが増加すると駆動
マージンαが急激に低下し、コントラストが低下
している。 この破線101の特性は第7図の電圧関係から
導出された次式で説明される。 VON={(b+1/2)2+(b+1/2−a)20.
×Vth1/√2 VOFF={(b−1/2)2+(b−1/2+a)2
0.5×Vth1/√2 ここでb=Vb/Vth1であり、データ電位Vc
は第5図の説明のようにVth1/2と設定して有
る。それぞれの式の第1項は「状態A」の矢印7
3,75、第2項は「状態B」の矢印74,76
に対応する。容量効果のない、即ちa=Oの理想
状態のVON,VOFFは下式となる。 VON=(b+1/2)×Vth1=Vb+Vth1/
2 VOFF=(b−1/2)×Vth1=Vb−Vth1/
2 以上より「状態A」では理想状態と差がない
が、「状態B」では容量比が増大し容量因子aが
大きくなるとVONが低下、VOFFが上昇する事
がわかる。その結果駆動マージンαが低下しコン
トラストが低下している。 また、他の解決手段として、付加容量の作り込
みや画素/素子の面積比を大きくとる事により容
量比を抑圧する試みもなされている。 [発明が解決しようとする課題] 以上のように第7図の従来例では、第6図の従
来例のように液晶表示素子に加わる電圧が低下し
たりスイツチング素子のリークが増大する事はな
いがコントラストの低下は問題となる。 また、付加容量は製造工程が複雑となり、面積
比を取る事は高密度表示ができなく、十分な解像
度が得られないという問題が生じてくる。 本発明は保持電位付き駆動法を最適化する事に
よつて、2端子型非線形スイツチング素子の容量
CNLが液晶表示素子の容量CLCと比べ無視でき
ないような条件であつても、コントラストが低下
しない駆動方法を提供する事を目的とする。それ
によつて、付加容量も不要となり、高密度表示も
可能となる。 [課題を解決するための手段] 本発明は上記目的を達成するために、2端子型
非線形スイツチング素子を用いたアクテイブマト
リクス方式の液晶表示パネルに於いて、液晶表示
素子を列電極を基準として行電極側を正の電圧に
充電する選択期間を正極性の選択期間、負の電圧
に充電する選択期間を負極性の選択期間とし、そ
れぞれの選択期間でのデータ信号の点灯電位と非
点灯電位の中間電位を基準電位とした時に、該基
準電位を基準とした非選択期間の走査信号電位は
前記正極性の選択期間の後では該選択期間の前の
非選択期間より高く、前記負極性の選択期間の後
では該選択期間の前の非選択期間より低くすると
ともに、前記データ信号の点灯電位と非点灯電位
の差の絶対値は2端子型非線形スイツチング素子
の容量CNL、2端子型非線形スイツチング素子
の閾値電圧Vth、液晶表示素子の容量CLCに対
し、(CNL/CLC+1)×Vthより小さい値とし
た事を特徴としている。 [作用] 以上の条件を設定した根拠を以下に説明する。
第7図の従来例では「状態B」で液晶表示素子に
印加される電圧、矢印74,76、がコントラス
トを低下する方向にずれてしまう事が問題であつ
た。本発明はデータ信号電位によつて「状態B」
を改善している。その場合の2端子型非線形スイ
ツチング素子のリークを回避する為にスイツチン
グ素子に印加される電圧は次のように見積もるこ
とができる。 まず、第1図bの等価回路に於いて接点2を列
電極、接点3を行電極とする。また正極性の選択
期間とその後の非選択期間を考える。負極性の選
択期間とその後の非選択期間の場合は符号を逆に
すれば同様に考えられる。また、従来例と同様に
Va−VbをおおよそVth2と設定して「状態A」
での接点1の電位が非選択期間での走査信号電位
Vbと一致させている。以上の条件では、非点灯
画素Ma、点灯画素Mbに対し、「状態A」で液晶
表示素子にかかつている電圧73,75はVb−
Vc,Vb+Vcとなり、接点1にはCLC×(Vb−
Vc),CLC×(Vb+Vc)の電荷がそれぞれ蓄積
されている。ここでデータ電位の変化により「状
態A」から「状態B」に変わると、画素Ma,
Mbでの接点1の電位Vxは電荷保存則によりそれ
ぞれ次の式を満足して変化する。 CLC×(Vb−Vc)=CLC×(Vx+Vc)−CNL×
(Vb−Vx) CLC×(Vb+Vc)=CLC×(Vx−Vc)−CNL×
(Vb−Vx) 上式をそれぞれ書き直して以下の式が得られ
る。 Vx=Vb−2Vc×CLC/(CLC+CNL) Vx=Vb+2Vc×CLC/(CLC+CNL) 以上より、「状態B」でスイツチング素子に印
加される電圧は Vb−Vx=2Vc×CLC/(CLC+CNL) Vb−Vx=−2Vc×CLC/(CLC+CNL) となり、容量比CNL/CLCが無視できる理想状
態での値2Vcよりは小さい。よつて該電圧の絶対
値が閾値電圧Vth1を越えない範囲で、データ振
幅を大きくする事が可能である。この条件範囲は
上式を変形して次の式で与えられる。 2Vc<(CNL/CLC+1)×Vth1 一方、2端子型非線形スイツチング素子を用い
たアクテイブマトリクス方式の液晶表示パネルの
場合は列電極と行電極を入れ換えても動作は全く
同等である。確認の為に第1図bの等価回路に於
いて接点2を行電極、接点3を列電極とした場合
を考える。この場合にもVa−VbをおおよそVth
2とする事により状態Bでの接点1の電位を選択
期間のデータ信号電位±Vcと一致させる事が出
来る。この状態は電圧の極性を入れ換えれば、実
は先に記述した接点2が列電極、接点3が行電極
の場合と全く等価である。非点灯画素Ma、点灯
画素Mbに対し、「状態A」で液晶表示素子にか
かつている電圧はVc−Vd,−Vc−Vbとなり、接
点1にはCLC×(Vc−Vb),−CLC×(Vb+Vc)
の電荷がそれぞれ蓄積されている。ここでデータ
電位の変化により「状態A」から「状態B」に変
わると、画素Ma,Mbでの接点1の電位Vxはで
電荷保存則によりそれぞれ次の式を満足して変化
する。 CLC×(Vc−Vb)=CLC×(Vx−Vb)+CNL×
(Vc+Vx) −CLC×(Vc+Vb)=CLC×(Vx−Vb)−CNL
×(Vc−Vx) 上式をそれぞれ書き直して以下の式が得られ
る。 Vx=Vc×(CLC−CNL)/(CLC+CNL) Vx=−Vc×(CLC−CNL)/(CLC+CNL) 以上より、「状態B」でスイツチング素子に印
加される電圧は −Vc−Vx=−2Vc×CLC/(CLC+CNL) Vc−Vx=2Vc×CLC/(CLC+CNL) となり、電極配置を入れ換えても次式の如く前と
同様の条件が得られる。 2Vc<(CNL/CLC+1)×Vth1 以上のように、行電極、列電極がどちらの場合
でも、上記の条件を満足する事により、スイツチ
ング素子に加わる電圧を閾値電圧以内としながら
のデータ振幅を大きくする事が可能である。 [実施例] 第8図は本発明の一実施例の駆動波形である。
第5図〜第7図と同様に第1図bの接点2側を行
電極として走査信号を供給している。勿論前述の
如く逆にしても全く同様の説明が成り立つ。まず
選択電位VaをVb+Vth2×(CLC+2CNL)/
(CLC+CNL)とする事により非選択期間の「状
態A」での接点1の電位を保持電位Vbに設定す
る。本発明の特徴はデータ電位振幅を前述の方法
で閾値電圧より大きくする事にある。具体的には
前述の式(CNL/CLC+1)×Vth1を越えない
範囲で設定する。このように大きな電圧をデータ
信号として加えても前述の解析の如く「状態B」
で2端子型非線形スイツチング素子に印加される
電圧はaの矢印86,bの矢印87のようにその
閾値電圧Vth1を越えないのでリーク問題が生じ
ない。 上記条件の限界条件であるVc=(CNL/CLC
+1)×Vth1=Vth1/2(1−a)の場合の液
晶表示素子に加わる実効電圧VONとVOFFを求
める。ここでは前述の定義、容量因子a=
CNL/(CNL+CLC)と、b=Vb/Vth1を用
いる。第8図の「状態A」を第1項、「状態B」
を第2項とすればVON,VOFFは以下の式で表
される。 VON={(Vb+Vc)2+(Vb+Vth1−Vc)20.5
√2 ={(b+1/2(1−a))2+(b+1−1/2
(1−a))20.5×Vth1/√2 ={(b+1/2)2+a2/4(1−a)20.5×Vth
1 VOFF={(Vb−Vc)2+(Vb−Vth1+Vc)20.5
√2 ={(b−1/2(1−a))2+(b−1+1/2
(1−a))20.5×Vth1/√2 ={(b−1/2)2+a2/4(1−a)20.5×Vth
1 以上の関係を用いて駆動マージンα=VON/
VOFFと容量比CNL/CLCの関係を求めた。本
実施例では2端子型非線形スイツチング素子とし
て非晶質Siダイオードリング1段を用いたので非
選択期間での実効的閾値電圧Vth1を約0.5Vとし
た。また保持電位Vbは液晶の平均駆動電圧にほ
ぼ一致して設定され、この本実施例では標準的な
約2Vの平均駆動電圧を有する液晶材料を用いた。
以上よりb=Vb/Vth1=4を用いて、上式よ
り求めた関係を第10図の実線102で示す。 本発明によればCNL/CLC≒2以下では殆ど
VON/VOFFの値が低下せず、CNL/CLC≒8
の条件でも1.13程度の値が得られる事がわかる。
この値は64時分割の単純マトリクスの駆動マージ
ンと一致し十分実用に耐える高コントラストの表
示品質が得られる。64行の表示パネルの場合には
スイツチング素子を用いる意味がなくなるが、本
発明では原理的に500行、1000行の表示パネルが
可能であり、CNL/CLC≒8程度の大きな容量
を持つスイツチング素子でも十分使用する事が可
能となる。 なお実施例ではデータ信号は±Vcの非階調信
号であつたが、階調信号であつても本発明は有効
である。 [発明の効果] 以上の説明で明らかな如く、本発明によれば、
保持電位を有する駆動法を用いた2端子型非線形
スイツチング素子によるアクテイブマトリクス方
式の液晶表示パネルに於いて、従来のようにデー
タ信号の振幅2Vcを2端子型非線形スイツチング
素子の閾値電圧Vth以内に制限せず、2端子型非
線形スイツチング素子の容量に対応して
(CNL/CLC+1)×Vthを越えない範囲で大き
くする事により、従来ではコントラストが低下し
て用いる事の出来なかつた大きな容量を持つスイ
ツチング素子でも使用可能となる。この事は容量
低減の為に素子寸法を小さくする必要がなく製造
も極めて容易となる。また、付加容量を設ける必
要もなくなり、低コスト、高歩留の製造も可能と
なる。
[Industrial Application Field] The present invention relates to a method for driving an active matrix display panel using a two-terminal nonlinear switching element as a switching element, and more specifically, a method for maintaining high display quality even when the electrostatic capacitance of the switching element is large. Regarding possible driving methods. [Prior Art] Liquid crystal display panels are already widely used, and as a high-density display method, a so-called active matrix method in which a switching element is provided for each display element is often used. As a switching element, 2
There is a method using a terminal type nonlinear switching element, for example, reference document 1 "BJLechner et al.
Proc. IEEE Vol. 59, p. 1566-1579. FIG. 1a is a configuration diagram of a unit display element of an active matrix type liquid crystal display panel using a two-terminal nonlinear switching element as shown in the above-mentioned literature.
NL and liquid crystal display element C are connected at contact 1. FIG. 1b shows its equivalent circuit. here
CNL and RNL are the capacitances of two-terminal nonlinear switching elements, CLC and RLC are the capacitances of liquid crystal display elements, respectively.
Represents the resistance component. Fig. 2 is a matrix circuit diagram consisting of the display elements shown in Fig. 1, and is a two-terminal type nonlinear switching element.
A unit display element M(i,j) consisting of a liquid crystal display element C(i,j) and a liquid crystal display element C(i,j) is connected to a plurality of row electrodes S(S1, S2,
S3, . . .) and a plurality of column electrodes D (D1, D2, D3, . . .) driven by data signals. Figure 3 is a conceptual diagram of the characteristics of a two-terminal nonlinear switching element, where the resistance increases before and after the threshold voltage Vth.
A characteristic of a two-terminal nonlinear switching element is that it greatly decreases from Roff to Ron. A typical two-terminal type nonlinear switching element is a varistor.
IEEE ED−26, p. 1123–1128” and MIM “Reference 3. DRBaraff et al., IEEE ED−28, p. 736–
739'' etc. are publicly known. Furthermore, in the application filed by the present inventors (Japanese Patent Application Nos. 167944 and 167945), there is a panel using an amorphous silicon diode ring as a two-terminal nonlinear switching element.
Low voltage drive possible, high aperture ratio, simple manufacturing process,
It has excellent properties such as high contrast and high resolution. The nonlinear resistance of an actual two-terminal nonlinear switching element does not have the binary on/off value shown in FIG. 3, but changes continuously, for example, like the current/voltage characteristics of an amorphous Si diode ring shown in FIG. 9. Voltage threshold Vth
is also effectively determined by the current flowing. For example, the current value I2, which is important in the selection period, is the length of the selection period.
I2≒ for ts, load capacitance Cs, and load applied voltage Vs
It is expressed as CsVs/ts. Here, the load capacitance Cs is the sum of the liquid crystal display element capacitance CLC and the additional capacitance Ca provided as necessary. From this current value I2 and the characteristic 91 in FIG. 9, the effective voltage threshold value Vth2 in the selection period can approximately be determined. On the other hand, the current value I1 that is a problem in the non-selection period is expressed as I1≈CsVs/Th for the length Th of the non-selection period, and the effective current value in the non-selection period is determined by this current value I1 and the characteristic 91 in FIG. The target threshold voltage Vth1 can be approximately determined. The inventors of the present invention have filed an application for a driving method that takes into account the characteristics of such a two-terminal nonlinear switching element (Japanese Patent Application No. 167943/1982). This is a method that has a selection period and a non-selection period, and holds a different holding potential in the non-selection period depending on the polarity of the previous selection period. A driving method using this holding potential will be explained with reference to FIG. Fields T1 and T2 have a selection period tn, t'n and tn+1, t'n+1 for each scanning signal φ * n, φ * n+1, . . . and a non-selection period tn,
a, tn, b, t'n, a, t'n, b and tn+1, a,
It has tn+1,b, t'n+1,a, and t'n+1,b.
For the data signal ψ * m, the data potential ±Vc is selected depending on the image. If the selection period in which the liquid crystal display element is charged to a positive voltage on the row electrode side with the column electrode as a reference is the positive polarity selection period, and the selection period in which the liquid crystal display element is charged to a negative voltage is the negative polarity selection period, then the positive polarity selection period is -Vc is the lighting potential, +Vc is the non-lighting potential,
For the selection period of negative polarity, +Vc is the lighting potential, -
Vc becomes the non-lighting potential. As a voltage standard,
The intermediate potential between the lighting potential and the non-lighting potential of the data signal in each selection period is called a reference potential. Although this figure shows an example of a two-gradation digital image, in the case of an analog image, the data potential does not have two values of ±Vc, but takes an arbitrary value or period between ±Vc. A feature of this driving method is the scanning signal waveform. That is, the scanning signal potential in the non-selection period with reference to the reference potential is the non-selection period tn,b after the positive selection period tn, tn+1, and the non-selection period tn, tn+1,b before the selection period with positive polarity. a, tn+1, holding potential of a -Vb
A non-selection period t′n, b, t′n+ after a negative selection period t′n, t′n+1 with a higher holding potential +Vb
1, b, the non-selection period t′n,a, before the selection period;
t'n+1, holding potential of a + holding potential lower than Vb -
It is characterized by having Vb. When the above signals are applied to both electrodes, the display elements M(n+1, m) and M ( n, m) connected between both electrodes have the following signals as shown in FIG . A difference signal of n-ψ * m is applied. 2-terminal nonlinear switching element
Due to the nonlinearity of NL((n+1, m), NL(n, m), changes in the data signal during the selection period of other scanning electrodes are absorbed, and the liquid crystal display element C(n+1,
The voltages shown in the shaded areas are applied to C(n, m). The shaded part of φ * n+1−ψ * m is the lighting voltage, φ * n
The shaded area of −ψ * m corresponds to the non-lighting voltage. The advantage of the above driving method with holding potential is that it can be used even with a two-terminal nonlinear switching element having a low threshold voltage Vth, such as an amorphous silicon diode ring. The second point is that it is resistant to variations and fluctuations in threshold voltage, and this driving method absorbs the negative uniformity and instability of the elements themselves found in varistors, MIMs, etc., making it possible to display gradations. The third effect is that the threshold voltage
Although it was not possible to apply a voltage higher than Vth to the liquid crystal display element, according to this driving method, a voltage higher than the threshold value Vth can be applied to the liquid crystal display element. In addition, there are effects such as reduction in driving voltage, reduction in induced domains, and reduction in unevenness. However, even in such a driving method with a holding potential, the capacitance CNL of the switching element needs to be sufficiently smaller than the capacitance CLC of the liquid crystal display element, and if it is large, the contrast will deteriorate and become a problem. . Next, the influence of the capacitance CNL of the switching element on the display contrast will be explained. First, a conventional example in which the capacitance ratio CNL/CLC is sufficiently small and can be ignored will be explained using potential waveforms at various parts of the display element in FIG. a and b correspond to a lit pixel and a non-lit pixel, respectively. A broken line 51 is a scanning signal, which takes a selection potential ±Va during a selection period 56 and a holding potential ±Vb during a non-selection period 57. Dot-dashed line 5
Reference numerals 2 and 53 are data signals, which take a potential between ±Vd, which is a lighting potential/non-lighting potential. Solid line 54,5
5 is the display electrode potential, which is the potential waveform of the display electrode, which is the contact point 1, when the scanning signal 51 and the data signals 52 and 53 are applied, respectively, with electrode 2 in FIG. 1 as a scanning electrode and electrode 3 as a data electrode. . The display element C has display electrode potentials 54 and 55 and a data signal 5.
The voltage in the shaded area, which is the difference between 2 and 53, will be applied. During the selection period 56, the display electrode potential 5
4 and 55 settle at a potential different from the selection potential Va of the scanning signal 51 by this threshold voltage Vth2. For future explanation, a state in which the data potential in the non-selected period is equal to the data potential in the selected period will be referred to as "state A", and a state in which they are not equal will be referred to as "state B". Switching element applied voltage 510 in “state B” during non-selection period
and 511 are 2Vc-(Va-Vb-Vth2) and 2Vc
+(Va-Vb-Vth2). Va−Vb=Vth2
If set, the absolute value of both will be the minimum at 2Vc,
If 2Vc<Vth1, leakage can be ignored. In this conventional example where the capacitance ratio can be ignored, the voltage applied to the liquid crystal display element takes a constant value regardless of "state A" or "state B", and the voltage applied to the liquid crystal display element takes a constant value regardless of "state A" or "state B". −Vc−Vth2 | and |Va+
Vc−Vth2| From the above, the difference in voltage applied to the lit pixel and non-lit pixel is 2Vc (<Vth1),
The dynamic range is about the threshold voltage Vth1 of the switching element, and sufficient contrast can be obtained. Next, a conventional example in which the capacitance ratio CNL/CLC is about 1 and cannot be ignored will be explained with reference to the waveform diagram of FIG. In this case, when transitioning from the selection period 56 to the non-selection period 57, a voltage drop of (Va-Vb)×CNL/(CNL+CLC) as shown in 63, 64 occurs due to voltage redistribution between the capacitors, which is applied to the liquid crystal display element. voltage 61,
62 is significantly lowered and separated from the scanning signal potential ±Vb, which tends to cause leakage. Furthermore, the voltage applied to the display element during the non-selection period (shaded area) also depends on the data signal, as indicated by arrows 65 and 67 in "state A" and arrows 66 and 68 in "state B" due to voltage redistribution between capacitors. and fluctuate. Application filed by the inventors (Patent application 1982-
222925), in which the polarity of the data signal with respect to the reference potential is reversed at a cycle shorter than the frame cycle, equalizes the probability of occurrence of "state A" and "state B" and reduces data-dependent crosstalk. However, the reduction in contrast is not improved.
As described above, in the conventional example shown in FIG. 6, the process load and resolution are not sacrificed, but the voltage applied to the liquid crystal display element is reduced and the leakage of the switching element is increased.
Furthermore, the contrast also decreases, which poses a problem. As described above, the capacitance of switching elements causes various problems, and several attempts have been made to improve these problems. One method is to increase the scanning signal potential. FIG. 7 is a potential waveform diagram when the voltage drop in the conventional example shown in FIG. 6 is improved by this method. Select potential Va
By compensating for the voltage drop +(Va-Vb)×CNL/(CNL+CLC), the display electrode potentials 71 and 72 in "state A" can be made to match ±Vb. As a result, leakage and voltage drop in the switching element can be reduced. However, the reduction in contrast remains a problem. Effective lighting voltage of liquid crystal display element
When VON and non-lighting effective voltage VOFF are taken, the contrast is the ratio of both called drive margin α.
It can be evaluated by VON/VOFF. Figure 10 Broken line 10
1 is the drive margin α and capacitance factor a=CNL/(CNL+CLC) or capacitance ratio in the conventional example shown in Figure 7.
It shows the relationship between CNL/CLC. When the capacitance factor a decreases, that is, the capacitance ratio CNL/CLC increases, the drive margin α sharply decreases, and the contrast decreases. The characteristic of this broken line 101 is explained by the following equation derived from the voltage relationship shown in FIG. VON={(b+1/2) 2 +(b+1/2-a) 2 } 0.
5 ×Vth1/√2 VOFF={(b-1/2) 2 +(b-1/2+a) 2 }
0.5 ×Vth1/√2 Here, b=Vb/Vth1, and data potential Vc
is set to Vth1/2 as explained in FIG. The first term of each equation is “state A” arrow 7
3, 75, the second term is "state B" arrow 74, 76
corresponds to VON and VOFF in an ideal state with no capacitive effect, that is, a=O, are expressed by the following formulas. VON=(b+1/2)×Vth1=Vb+Vth1/
2 VOFF=(b-1/2)×Vth1=Vb-Vth1/
2 From the above, it can be seen that in "state A" there is no difference from the ideal state, but in "state B", as the capacitance ratio increases and the capacitance factor a increases, VON decreases and VOFF increases. As a result, the drive margin α is reduced and the contrast is reduced. As another solution, attempts have been made to suppress the capacitance ratio by building in an additional capacitor or increasing the pixel/element area ratio. [Problems to be Solved by the Invention] As described above, in the conventional example shown in FIG. 7, unlike the conventional example shown in FIG. 6, the voltage applied to the liquid crystal display element does not decrease and the leakage of the switching element does not increase. However, the reduction in contrast becomes a problem. Further, the additional capacitance complicates the manufacturing process, and the area ratio does not allow high-density display, resulting in the problem that sufficient resolution cannot be obtained. The present invention improves the capacitance of a two-terminal nonlinear switching element by optimizing the driving method with holding potential.
The purpose of the present invention is to provide a driving method in which the contrast does not deteriorate even under conditions where CNL cannot be ignored compared to the capacitance CLC of a liquid crystal display element. This eliminates the need for additional capacitance and enables high-density display. [Means for Solving the Problems] In order to achieve the above object, the present invention provides an active matrix type liquid crystal display panel using two-terminal type nonlinear switching elements, in which liquid crystal display elements are aligned with column electrodes as a reference. The selection period in which the electrode side is charged to a positive voltage is the selection period of positive polarity, and the selection period in which the electrode side is charged to a negative voltage is the selection period of negative polarity.The lighting potential and non-lighting potential of the data signal in each selection period are When the intermediate potential is taken as a reference potential, the scanning signal potential during the non-selection period with reference to the reference potential is higher after the positive selection period than the non-selection period before the selection period, and the negative polarity selection After the period, it is lower than the non-selection period before the selection period, and the absolute value of the difference between the lighting potential and non-lighting potential of the data signal is equal to the capacitance CNL of the two-terminal nonlinear switching element, and the capacitance CNL of the two-terminal nonlinear switching element. The threshold voltage Vth is set to a value smaller than (CNL/CLC+1)×Vth with respect to the capacitance CLC of the liquid crystal display element. [Operation] The basis for setting the above conditions will be explained below.
The conventional example shown in FIG. 7 has a problem in that the voltages applied to the liquid crystal display element in "state B", indicated by arrows 74 and 76, deviate in a direction that reduces the contrast. The present invention provides "state B" depending on the data signal potential.
are improving. In that case, the voltage applied to the switching element in order to avoid leakage of the two-terminal type nonlinear switching element can be estimated as follows. First, in the equivalent circuit of FIG. 1b, contact 2 is assumed to be a column electrode and contact 3 is assumed to be a row electrode. Also consider the positive polarity selection period and the subsequent non-selection period. A selection period of negative polarity and a subsequent non-selection period can be considered in the same way if the signs are reversed. Also, like the conventional example,
Set Va−Vb approximately to Vth2 and enter “state A”
The potential of contact 1 at is the scanning signal potential during the non-selection period.
Matched with Vb. Under the above conditions, the voltages 73 and 75 applied to the liquid crystal display element in "state A" for the non-lit pixel Ma and the lit pixel Mb are Vb-
Vc, Vb+Vc, and contact 1 has CLC×(Vb−
Vc) and CLC×(Vb+Vc) charges are accumulated. Here, when the state changes from "state A" to "state B" due to a change in the data potential, the pixel Ma,
The potential V x of contact 1 at Mb changes according to the law of conservation of charge, satisfying the following equations. CLC x (Vb - Vc) = CLC x (V x + Vc) - CNL x
(Vb−V x ) CLC×(Vb+Vc)=CLC×(V x −Vc)−CNL×
(Vb−V x ) The following equations are obtained by rewriting each of the above equations. V x = Vb - 2Vc x CLC / (CLC + CNL) V x = Vb + 2Vc x CLC / (CLC + CNL) From the above, the voltage applied to the switching element in "state B" is Vb - V x = 2Vc x CLC / (CLC + CNL) Vb - V x = -2Vc x CLC/(CLC + CNL), which is smaller than the value 2Vc in an ideal state where the capacitance ratio CNL/CLC can be ignored. Therefore, it is possible to increase the data amplitude within a range in which the absolute value of the voltage does not exceed the threshold voltage Vth1. This conditional range is given by the following equation by transforming the above equation. 2Vc<(CNL/CLC+1)×Vth1 On the other hand, in the case of an active matrix type liquid crystal display panel using a two-terminal type nonlinear switching element, the operation is exactly the same even if the column electrodes and row electrodes are interchanged. For confirmation, consider the case where the contact 2 is used as a row electrode and the contact 3 is used as a column electrode in the equivalent circuit shown in FIG. 1b. In this case as well, Va−Vb is approximately Vth
2, the potential of contact 1 in state B can be made to match the data signal potential ±Vc of the selection period. This state is actually completely equivalent to the previously described case where the contact 2 is the column electrode and the contact 3 is the row electrode, if the polarity of the voltage is switched. For the non-lit pixel Ma and the lit pixel Mb, the voltages applied to the liquid crystal display element in "state A" are Vc - Vd, -Vc - Vb, and the voltages applied to contact 1 are CLC × (Vc - Vb), -CLC × (Vb+Vc)
charges are accumulated respectively. Here, when "state A" changes to "state B" due to a change in data potential, the potential V x of contact point 1 in pixels Ma and Mb changes so as to satisfy the following equations according to the law of conservation of charge. CLC×(Vc−Vb)=CLC×(V x −Vb)+CNL×
(Vc+V x ) −CLC×(Vc+Vb)=CLC×(V x −Vb)−CNL
×(Vc−V x ) The following equations are obtained by rewriting each of the above equations. V x = Vc x (CLC - CNL) / (CLC + CNL) V x = -Vc x (CLC - CNL) / (CLC + CNL) From the above, the voltage applied to the switching element in "state B" is -Vc - V x =-2Vc×CLC/(CLC+CNL) Vc−V x =2Vc×CLC/(CLC+CNL) Even if the electrode arrangement is changed, the same conditions as before can be obtained as shown in the following equation. 2Vc<(CNL/CLC+1)×Vth1 As shown above, regardless of whether the row electrode or column electrode is used, by satisfying the above conditions, the data amplitude can be increased while keeping the voltage applied to the switching element within the threshold voltage. It is possible to do so. [Embodiment] FIG. 8 shows drive waveforms of an embodiment of the present invention.
Similarly to FIGS. 5 to 7, the contact 2 side in FIG. 1b is used as a row electrode to supply scanning signals. Of course, the same explanation holds true even if it is reversed as described above. First, set the selection potential Va to Vb+Vth2×(CLC+2CNL)/
By setting (CLC+CNL), the potential of contact 1 in "state A" during the non-selection period is set to the holding potential Vb. A feature of the present invention is that the data potential amplitude is made larger than the threshold voltage by the method described above. Specifically, it is set within a range that does not exceed the above-mentioned formula (CNL/CLC+1)×Vth1. Even if such a large voltage is applied as a data signal, "state B" will occur as shown in the above analysis.
Since the voltage applied to the two-terminal nonlinear switching element does not exceed its threshold voltage Vth1 as shown by the arrow 86 in a and the arrow 87 in b, no leakage problem occurs. The limit condition of the above conditions is Vc = (CNL/CLC
+1)×Vth1=Vth1/2(1-a), find the effective voltages VON and VOFF applied to the liquid crystal display element. Here, the above definition, capacity factor a=
CNL/(CNL+CLC) and b=Vb/Vth1 are used. "State A" in Figure 8 is the first term, "state B"
If is the second term, VON and VOFF are expressed by the following formulas. VON={(Vb+Vc) 2 +(Vb+Vth1-Vc) 2 } 0.5 /
√2 = {(b+1/2(1-a)) 2 +(b+1-1/2
(1-a)) 2 } 0.5 ×Vth1/√2 = {(b+1/2) 2 +a 2 /4(1-a) 2 } 0.5 ×Vth
1 VOFF={(Vb−Vc) 2 +(Vb−Vth1+Vc) 2 } 0.5 /
√2 = {(b-1/2(1-a)) 2 +(b-1+1/2
(1-a)) 2 } 0.5 ×Vth1/√2 = {(b-1/2) 2 +a 2 /4 (1-a) 2 } 0.5 ×Vth
1 Using the above relationship, drive margin α=VON/
The relationship between VOFF and the capacitance ratio CNL/CLC was determined. In this embodiment, one stage of amorphous Si diode ring was used as the two-terminal nonlinear switching element, so the effective threshold voltage Vth1 in the non-selection period was set to about 0.5V. Further, the holding potential Vb is set to approximately match the average driving voltage of the liquid crystal, and in this embodiment, a liquid crystal material having a standard average driving voltage of about 2V was used.
From the above, using b=Vb/Vth1=4, the relationship obtained from the above equation is shown by the solid line 102 in FIG. According to the present invention, when CNL/CLC≒2 or less, almost no
VON/VOFF values do not decrease and CNL/CLC≒8
It can be seen that a value of about 1.13 can be obtained even under the condition of .
This value matches the drive margin of a simple matrix with 64 time divisions, and provides high contrast display quality that is sufficient for practical use. In the case of a display panel with 64 lines, there is no point in using a switching element, but with the present invention, a display panel with 500 lines or 1000 lines is possible in principle, and a switching element with a large capacity of about CNL/CLC≒8 is used. However, it is still possible to use it. In the embodiment, the data signal is a non-grayscale signal of ±Vc, but the present invention is also effective even if it is a grayscale signal. [Effects of the Invention] As is clear from the above explanation, according to the present invention,
In an active matrix liquid crystal display panel using a two-terminal nonlinear switching element using a drive method with a holding potential, the amplitude of the data signal, 2Vc, is limited to within the threshold voltage Vth of the two-terminal nonlinear switching element, as in the past. By increasing the capacitance of the two-terminal nonlinear switching element without exceeding (CNL/CLC + 1) x Vth, it is possible to create a switching device with a large capacitance that could not be used conventionally due to decreased contrast. It can also be used as a device. This eliminates the need to reduce the element size in order to reduce the capacitance, making manufacturing extremely easy. Further, there is no need to provide additional capacitance, and low-cost, high-yield manufacturing becomes possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図aは従来の2端子型非線形スイツチング
素子を用いた単位表示要素の構成図、bはその等
価回路図、第2図は従来の2端子型非線形スイツ
チング素子を用いた表示パネルのマトリクス回路
図、第3図は2端子型非線形スイツチング素子の
特性図、第4図は非選択期間に保持電位を有する
従来の駆動方法の駆動波形図、第5図は2端子型
非線形スイツチング素子の容量が十分に小さい場
合の従来の駆動法の電位関係を示す波形図、第6
図、第7図は2端子型非線形スイツチング素子の
容量が無視できない場合の従来の駆動法の電位関
係を示す波形図、第8図は2端子型非線形スイツ
チング素子の容量が無視できない場合の本発明の
実施例の駆動法に於ける電位関係を示す波形図、
第9図は本発明の実施例に用いた2端子型非線形
スイツチング素子の特性図、第10図は本発明の
実施例と従来例に於ける駆動マージンと容量比の
関係を示すグラフである。 NL,NL(i,j)……2端子型非線形スイツ
チング素子、C,C(i,j)……液晶表示素子、
M,M(i,j)……表示要素、S,S1,S2,
……行電極、D,D1,D2,……列電極、φ*
n,φ*n+1……走査信号、ψ*m,ψ*m+1…
…データ信号、tn,tn+1……正極性の選択期
間、t′n,t′n+1……負極性の選択期間、tn,b、
tn+1,b……正極性の選択期間の後の非選択期
間、tn,a、tn+1,a……正極性の選択期間の
前の非選択期間、t′n,b、t′n+1,b……負極
性の選択期間の後の非選択期間、t′n,a、t′n+
1,a……負極性の選択期間の前の非選択期間、
±Va……選択期間の選択電位、±Vb……非選択
期間の保持電位、±Vc……データ信号の点灯電位
ないし非点灯電位、CNL……2端子型非線形スイ
ツチング素子の容量、CLC……液晶表示素子の容
量、Vth,Vth1,Vth2……閾値電圧。
Figure 1a is a block diagram of a unit display element using a conventional two-terminal nonlinear switching element, b is its equivalent circuit diagram, and Figure 2 is a matrix circuit of a display panel using a conventional two-terminal nonlinear switching element. Figure 3 is a characteristic diagram of a two-terminal type nonlinear switching element, Figure 4 is a drive waveform diagram of a conventional drive method that has a holding potential during the non-selection period, and Figure 5 is a characteristic diagram of a two-terminal type nonlinear switching element. Waveform diagram showing the potential relationship of the conventional driving method when the voltage is sufficiently small, No. 6
7 is a waveform diagram showing the potential relationship of the conventional driving method when the capacitance of the two-terminal nonlinear switching element cannot be ignored, and FIG. A waveform diagram showing the potential relationship in the driving method of the embodiment,
FIG. 9 is a characteristic diagram of the two-terminal nonlinear switching element used in the embodiment of the present invention, and FIG. 10 is a graph showing the relationship between the drive margin and the capacitance ratio in the embodiment of the present invention and the conventional example. NL, NL(i, j)...2-terminal nonlinear switching element, C, C(i, j)...liquid crystal display element,
M, M(i, j)...display element, S, S1, S2,
... Row electrode, D, D1, D2, ... Column electrode, φ *
n, φ * n+1...scanning signal, ψ * m, ψ * m+1...
...data signal, tn, tn+1...positive polarity selection period, t'n, t'n+1...negative polarity selection period, tn, b,
tn+1, b... Non-selection period after the selection period of positive polarity, tn, a, tn+1, a... Non-selection period before the selection period of positive polarity, t'n, b, t'n+1, b... ...Non-selection period after selection period with negative polarity, t′n, a, t′n+
1, a...Non-selection period before selection period of negative polarity,
±Va...Selection potential during selection period, ±Vb...Holding potential during non-selection period, ±Vc...Lighting potential or non-lighting potential of data signal, C NL ...Capacity of two-terminal nonlinear switching element, C LC ... Capacity of liquid crystal display element, V th , V th 1, V th 2 ... Threshold voltage.

Claims (1)

【特許請求の範囲】[Claims] 1 液晶表示素子と2端子型非線形スイツチング
素子より成る表示要素が、該表示要素を選択的に
駆動する行電極と列電極に接続されて成る表示パ
ネルの、前記行電極にフイールド周期で選択期間
と非選択期間とを有する走査信号を印加し、前記
列電極に行電極の選択期間に応じて表示内容に対
応した点灯電位と非点灯電位或は両者の間の電位
をとるデータ信号を印加し、前記液晶表示素子を
正または負の方向に充電することにより、表示デ
ータを書き込む表示パネルの駆動方法に於いて、
前記液晶表示素子を前記列電極を基準として前記
行電極側を正の電圧に充電する選択期間を正極性
の選択期間、負の電圧に充電する選択期間を負極
性の選択期間とし、それぞれの選択期間でのデー
タ信号の点灯電位と非点灯電位の中間電位を基準
電位とした時に、該基準電位を基準とした非選択
期間の走査信号電位は前記正極性の選択期間の後
では該選択期間の前の非選択期間より高く、前記
負極性の選択期間の後では該選択期間の前の非選
択期間より低く、前記データ信号の点灯電位と非
点灯電位の差の絶対値は2端子型非線形スイツチ
ング素子の容量CNL、2端子型非線形スイツチン
グ素子の閾値電圧Vth、液晶表示素子の容量CLC
対し、(CNL/CLC+1)×Vthより小さい事を特徴
とする表示パネルの駆動方法。
1. A display panel in which a display element consisting of a liquid crystal display element and a two-terminal nonlinear switching element is connected to a row electrode and a column electrode that selectively drive the display element, the row electrode is connected to a selection period at a field period. applying a scanning signal having a non-selection period, and applying a data signal having a lighting potential and a non-lighting potential corresponding to the display content, or a potential between the two, depending on the selection period of the row electrode, to the column electrode; In a display panel driving method in which display data is written by charging the liquid crystal display element in a positive or negative direction,
A selection period in which the liquid crystal display element is charged to a positive voltage on the row electrode side with respect to the column electrode as a reference is a selection period of positive polarity, a selection period in which the liquid crystal display element is charged to a negative voltage is a selection period of negative polarity, and each selection is made as follows. When the intermediate potential between the lighting potential and the non-lighting potential of the data signal in the period is set as a reference potential, the scanning signal potential in the non-selection period based on the reference potential is equal to that of the selection period after the positive selection period. higher than the previous non-selection period, and lower after the negative selection period than the non-selection period before the selection period, and the absolute value of the difference between the lighting potential and non-lighting potential of the data signal is two-terminal nonlinear switching. Driving a display panel characterized in that the capacitance C NL of the element, the threshold voltage V th of the two-terminal nonlinear switching element, and the capacitance C LC of the liquid crystal display element are smaller than (C NL /C LC +1)×V th Method.
JP14704783A 1983-08-11 1983-08-11 Driving method of display panel Granted JPS6037525A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14704783A JPS6037525A (en) 1983-08-11 1983-08-11 Driving method of display panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14704783A JPS6037525A (en) 1983-08-11 1983-08-11 Driving method of display panel

Publications (2)

Publication Number Publication Date
JPS6037525A JPS6037525A (en) 1985-02-26
JPH0534655B2 true JPH0534655B2 (en) 1993-05-24

Family

ID=15421300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14704783A Granted JPS6037525A (en) 1983-08-11 1983-08-11 Driving method of display panel

Country Status (1)

Country Link
JP (1) JPS6037525A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5986649A (en) * 1995-01-11 1999-11-16 Seiko Epson Corporation Power circuit, liquid crystal display device, and electronic equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57154280A (en) * 1981-03-18 1982-09-24 Matsushita Electric Ind Co Ltd Liquid crystal picture display unit
JPS59107328A (en) * 1982-12-13 1984-06-21 Seiko Epson Corp Driving system of liquid crystal display type image receiving device
JPH05714A (en) * 1991-06-25 1993-01-08 Daifuku Co Ltd Roller conveyor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57154280A (en) * 1981-03-18 1982-09-24 Matsushita Electric Ind Co Ltd Liquid crystal picture display unit
JPS59107328A (en) * 1982-12-13 1984-06-21 Seiko Epson Corp Driving system of liquid crystal display type image receiving device
JPH05714A (en) * 1991-06-25 1993-01-08 Daifuku Co Ltd Roller conveyor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5986649A (en) * 1995-01-11 1999-11-16 Seiko Epson Corporation Power circuit, liquid crystal display device, and electronic equipment
US6317122B1 (en) 1995-01-11 2001-11-13 Seiko Epson Corporation Power circuit, liquid crystal display device, and electronic equipment

Also Published As

Publication number Publication date
JPS6037525A (en) 1985-02-26

Similar Documents

Publication Publication Date Title
JP2626451B2 (en) Driving method of liquid crystal display device
US4591848A (en) Matrix panel with an active driving system
US6172663B1 (en) Driver circuit
JPH0534653B2 (en)
EP0697690B1 (en) Method for driving active matrix type liquid crystal display device
KR100495934B1 (en) Display driving apparatus and driving control method
US5790089A (en) Method of driving an active matrix type liquid crystal display
EP1611564B1 (en) Active matrix displays and contrast control method
US6271817B1 (en) Method of driving liquid crystal display device that reduces afterimages
JPH0534655B2 (en)
JPH0643427A (en) Driving circuit for liquid crystal display device
EP0607860B1 (en) Method of driving liquid crystal display device
JP2004350256A (en) Offset compensation circuit, drive circuit with offset-compensation function using the same, and liquid-crystal display device
US6317113B1 (en) Method for driving thin film transistor of liquid crystal display
JPH07120720A (en) Liquid crystal display device
JP3302728B2 (en) Liquid crystal display device and driving method thereof
JP3454567B2 (en) Driving method of liquid crystal display device
JP3611581B2 (en) Liquid crystal display
JPH0580354A (en) Liquid crystal display device
JPH1049110A (en) Sample-hold circuit, data driver using it and flat panel display device
KR19980013720A (en) Driving method of active matrix liquid crystal display device
JP2541773B2 (en) Matrix display
US5666131A (en) Active matrix liquid-crystal display device with two-terminal switching elements and method of driving the same
JP2563883B2 (en) Driving method of liquid crystal display device
JP2563882B2 (en) Driving method of liquid crystal display device