JPH05346414A - Method and apparatus for analyzing component of dissolved gas - Google Patents

Method and apparatus for analyzing component of dissolved gas

Info

Publication number
JPH05346414A
JPH05346414A JP4155488A JP15548892A JPH05346414A JP H05346414 A JPH05346414 A JP H05346414A JP 4155488 A JP4155488 A JP 4155488A JP 15548892 A JP15548892 A JP 15548892A JP H05346414 A JPH05346414 A JP H05346414A
Authority
JP
Japan
Prior art keywords
temperature
concentration
dissolved gas
term
dissolved
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4155488A
Other languages
Japanese (ja)
Inventor
Kenji Harada
健治 原田
Satoshi Nishikata
聡 西方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP4155488A priority Critical patent/JPH05346414A/en
Publication of JPH05346414A publication Critical patent/JPH05346414A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

PURPOSE:To obtain a method and apparatus for analyzing component of dissolved gas in which the concentration of dissolved gas in sample liquid is measured through a semiconductor sensor while subjecting the sample liquid to temperature compensation. CONSTITUTION:Outputs from a semiconductor gas sensor are classified into concentration term and temperature dependent term which is represented by a function of temperature of sample liquid 5 detected at a temperature detecting terminal 20, and the constant term, temperature coefficient, and the coefficient of concentration term of the function are stored in a memory section 18. An arithmetic processing section 16 calculates concentration of dissolved gas subjected to temperature compensation based on the output from the semiconductor gas sensor detected at a detecting section 13 and the coefficient of concentration term, constant of temperature dependent term, and temperature coefficient taken out from the memory section 18.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体式ガスセンサを
用いて液体中の溶存ガス成分の濃度を液体の温度を補償
して測定する分析方法及びその装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an analysis method and apparatus for measuring the concentration of a dissolved gas component in a liquid by using a semiconductor gas sensor while compensating for the temperature of the liquid.

【0002】[0002]

【従来の技術】試料液の溶存ガス成分の濃度を、この試
料液を恒温槽に導いて一定温度にした後、抽出槽に流入
して排液し、抽出槽内を通流する試料液の上部のヘッド
スペースにキャリアガスを通流し、溶存ガスをキャリア
ガスに移行させ、キャリアガスとともに検出部に導いて
半導体式ガスセンサにより測定することが知られてい
る。 図2はこのような従来の半導体式ガスセンサによ
る溶存ガスの濃度を測定する溶存ガス分析装置の系統ブ
ロック図である。
2. Description of the Related Art The concentration of a dissolved gas component of a sample liquid is introduced into an extraction tank and discharged to a constant temperature after the sample liquid is introduced into a constant temperature bath to a constant temperature. It is known that a carrier gas is caused to flow through the upper head space, the dissolved gas is transferred to the carrier gas, and the dissolved gas is guided to a detection unit together with the carrier gas for measurement by a semiconductor gas sensor. FIG. 2 is a system block diagram of a dissolved gas analyzer for measuring the concentration of dissolved gas by such a conventional semiconductor gas sensor.

【0003】図2において溶存ガスを含有する試料液は
恒温槽1に導かれてヒータ2により加熱され、その液温
は温度検出端3により検出され、この検出温度と所定温
度との偏差からヒータコントローラ4によりヒータ2を
制御して液温を所定の一定温度に保持する。恒温槽1か
らの一定温度の試料液はポンプ6により抽出槽7に導か
れ、抽出槽7内をヘッドスペース8を形成しながら通流
して排液される。
In FIG. 2, a sample liquid containing a dissolved gas is introduced into a constant temperature bath 1 and heated by a heater 2. The temperature of the liquid is detected by a temperature detecting end 3 and the heater is detected from the deviation between the detected temperature and a predetermined temperature. The controller 2 controls the heater 2 to maintain the liquid temperature at a predetermined constant temperature. The constant temperature sample liquid from the constant temperature bath 1 is introduced into the extraction bath 7 by the pump 6, flows through the extraction bath 7 while forming the head space 8, and is drained.

【0004】エヤポンプ9により送気される空気の一部
は活性炭カラム10により清浄にされたキャリアガスと
してヘッドスペース8に流入し、試料液と接触して試料
液中の溶存ガスをキャリアガスに移行させ、キャリアガ
スと共に抽出槽7外に設けられた混合点11に流入す
る。一方、エヤポンプ9により送気される前記空気の残
りの部分は乾燥管12により乾燥されて混合点11に流
入し、前記溶存ガスを運ぶキャリアガスと混合して半導
体式ガスセンサを有する検出部13に通流する。なお、
乾燥空気を混合するのは湿度による半導体式ガスセンサ
の劣化を防ぐためである。
A part of the air sent by the air pump 9 flows into the head space 8 as a carrier gas cleaned by the activated carbon column 10, contacts the sample solution and transfers the dissolved gas in the sample solution to the carrier gas. Then, it flows into the mixing point 11 provided outside the extraction tank 7 together with the carrier gas. On the other hand, the remaining portion of the air sent by the air pump 9 is dried by the drying pipe 12 and flows into the mixing point 11, and is mixed with the carrier gas that carries the dissolved gas to the detection unit 13 having a semiconductor gas sensor. Flow through. In addition,
The purpose of mixing dry air is to prevent deterioration of the semiconductor gas sensor due to humidity.

【0005】検出部13の半導体式ガスセンサの出力は
増幅回路14にて増幅された後A/D変換回路15にて
A/D変換され、CPUからなる演算処理部16に入力
される。なお17は演算処理部16等を操作するキーボ
ードである。ところで、半導体式ガスセンサで検出した
出力Vと溶存ガス濃度Cとの間には下記(1)式の関係
があるので、(1)式より溶存ガス濃度Cを演算するこ
とができる。
The output of the semiconductor type gas sensor of the detection unit 13 is amplified by the amplification circuit 14, A / D converted by the A / D conversion circuit 15, and input to the arithmetic processing unit 16 including a CPU. Reference numeral 17 is a keyboard for operating the arithmetic processing unit 16 and the like. By the way, since the output V detected by the semiconductor gas sensor and the dissolved gas concentration C have the relationship of the following equation (1), the dissolved gas concentration C can be calculated from the equation (1).

【0006】 logV=β・logC+logα (1) ここで、βは係数であり、logαは溶存ガス濃度1m
g/lのときのセンサ出力のlog値である切片値であ
る。なお、β,logαは恒温槽1により保持される試
料液の一定温度における検定によりあらかじめ求めら
れ、β,logαの値はメモリ部18に記憶される。
LogV = β · logC + logα (1) where β is a coefficient and logα is a dissolved gas concentration of 1 m.
It is an intercept value that is a log value of the sensor output when g / l. It should be noted that β and log α are preliminarily obtained by a test at a constant temperature of the sample liquid held in the constant temperature bath 1, and the values of β and log α are stored in the memory unit 18.

【0007】したがって演算処理部16に入力されるA
/D変換回路15からの半導体式ガスセンサの出力とメ
モリ部18からのβとlogαとにより(1)式に基づ
いて溶存ガス濃度が算出される。そしてこの溶存ガス濃
度はレコーダ19に表示,記録される。
Therefore, A input to the arithmetic processing unit 16
The dissolved gas concentration is calculated based on the equation (1) from the output of the semiconductor gas sensor from the / D conversion circuit 15 and β and log α from the memory unit 18. Then, this dissolved gas concentration is displayed and recorded on the recorder 19.

【0008】[0008]

【発明が解決しようとする課題】上記のように溶存ガス
濃度を測定する場合、半導体式ガスセンサでの出力は温
度に依存するので、図2に示すように恒温槽1により試
料液を一定温度にしている。しかしながら恒温槽で一定
温度に試料液を保つ場合、溶存ガス成分が試料液の加熱
により分解したり、系外に揮散し、正確な溶存ガス濃度
が測定できないという欠点がある。
When the dissolved gas concentration is measured as described above, the output of the semiconductor gas sensor depends on the temperature. Therefore, as shown in FIG. ing. However, when the sample solution is kept at a constant temperature in a constant temperature bath, there is a drawback that the dissolved gas component is decomposed by heating the sample solution or is volatilized out of the system, and an accurate dissolved gas concentration cannot be measured.

【0009】本発明の目的は、試料液の液温により温度
補償して溶存ガス濃度を測定することのできる分析方法
及びその装置を提供することである。
An object of the present invention is to provide an analysis method and apparatus capable of measuring the dissolved gas concentration by compensating the temperature with the liquid temperature of the sample liquid.

【0010】[0010]

【課題を解決するための手段】上記課題を解決するため
に、本発明によれば試料液中の溶存ガス成分を気相に移
行させ、半導体式ガスセンサで溶存ガス成分を検出して
得られる前記センサの出力から溶存ガス濃度を測定する
溶存ガス成分の分析方法において、半導体式ガスセンサ
の出力を濃度項と温度依存項とに分け、温度依存項を試
料液の液温の関数で表わし、試料液の液温を測定して前
記関数を求め、この関数と濃度項の係数と半導体式ガス
センサの出力とから温度補償された溶存ガス濃度を算出
するものとする。
In order to solve the above-mentioned problems, according to the present invention, a dissolved gas component in a sample liquid is transferred to a gas phase, and the dissolved gas component is detected by a semiconductor gas sensor. In the method of analyzing dissolved gas components that measures the dissolved gas concentration from the output of the sensor, the output of the semiconductor gas sensor is divided into a concentration term and a temperature dependent term, and the temperature dependent term is expressed as a function of the liquid temperature of the sample solution. The liquid temperature is measured to obtain the function, and the temperature-compensated dissolved gas concentration is calculated from the function, the coefficient of the concentration term, and the output of the semiconductor gas sensor.

【0011】また上記の方法による溶存ガス成分を温度
補償して分析する分析装置は、溶存ガス成分を含有する
試料液が通流する抽出槽と、この抽出槽内のヘッドスペ
ースに導入されるキャリアガスにより運ばれる溶存ガス
成分を検出して溶存ガス濃度に応じた信号を出力する半
導体式ガスセンサと、この半導体式ガスセンサの出力信
号を増幅する増幅回路と、抽出槽内の試料液の液温を検
出する温度検出端と、この温度検出端からの検出信号を
温度に変換する温度測定回路と、前記増幅回路と温度測
定回路とからの出力信号をA/D変換するA/D変換回
路と、半導体式ガスセンサの出力に係る濃度項の係数と
温度依存項の定数と温度係数とを記憶するメモリ部と、
このメモリ部から読み出した前記濃度項の係数と温度依
存項の定数および温度係数と前記A/D変換回路からの
出力信号とにより溶存ガス濃度を算出する演算処理部と
から構成するものとする。
Further, the analyzer for temperature-compensating and analyzing the dissolved gas component by the above-mentioned method is an extraction tank through which a sample liquid containing the dissolved gas component flows, and a carrier introduced into the head space in this extraction tank. A semiconductor gas sensor that detects the dissolved gas component carried by the gas and outputs a signal according to the dissolved gas concentration, an amplifier circuit that amplifies the output signal of this semiconductor gas sensor, and the liquid temperature of the sample liquid in the extraction tank. A temperature detection end for detection, a temperature measurement circuit for converting a detection signal from the temperature detection end into a temperature, an A / D conversion circuit for A / D converting output signals from the amplification circuit and the temperature measurement circuit, A memory unit that stores a coefficient of a concentration term related to the output of the semiconductor gas sensor, a constant of a temperature-dependent term, and a temperature coefficient,
It is assumed that it comprises an arithmetic processing unit for calculating the dissolved gas concentration by the coefficient of the concentration term, the constant and temperature coefficient of the temperature dependent term read from the memory section, and the output signal from the A / D conversion circuit.

【0012】[0012]

【作用】溶存ガス成分をキャリアガスで気相に移行さ
せ、半導体式ガスセンサに導いて溶存ガスの濃度を分析
する際、半導体式ガスセンサの出力Vと溶存ガス濃度C
との関係は前述の(1)式で表わされる。再記すると logV=β・logC+logα (1) ところで、半導体式ガスセンサの出力Vは試料液の液温
Tに依存する。この場合(1)式においては、βは実用
的には液温に依存しないとみなすことができ、logα
は液温に依存して変化する温度依存項である。
When the dissolved gas component is transferred to the gas phase by the carrier gas and guided to the semiconductor type gas sensor to analyze the concentration of the dissolved gas, the output V of the semiconductor type gas sensor and the dissolved gas concentration C
The relationship between and is expressed by the above-mentioned equation (1). To restate, logV = β · logC + logα (1) By the way, the output V of the semiconductor gas sensor depends on the liquid temperature T of the sample liquid. In this case, in the equation (1), β can be regarded as practically independent of the liquid temperature, and log α
Is a temperature-dependent term that changes depending on the liquid temperature.

【0013】ここで切片値logαと液温Tとの関係は
下記の(2)式の実験式で表わすことができる。 logα=logα0 −γ/T (2) ここで(1),(2)式のβ,logα0 ,γはそれぞ
れ測定系に固有な値であり、(2)式を(1)式に代入
することにより下記の(3)式を得る。
The relation between the intercept value logα and the liquid temperature T can be expressed by the following empirical formula (2). log α = log α 0 −γ / T (2) where β and log α 0 and γ in the equations (1) and (2) are values unique to the measurement system, and the equation (2) is substituted into the equation (1). By doing so, the following expression (3) is obtained.

【0014】 ここで(3)式中のV,Tは測定される値であり、ま
た、β,logα0 ,γはそれぞれあらかじめ検定して
求められる。なお、βを濃度係数,logα0 を定数
項,γを温度係数ということにする。
[0014] Here, V and T in the equation (3) are measured values, and β, log α 0 , and γ are obtained by pre-testing. Note that β is a concentration coefficient, logα 0 is a constant term, and γ is a temperature coefficient.

【0015】したがって、(3)式から実測される試料
液の液温Tと定数項(以下単に定数という)log
α0 ,温度係数γとから温度依存項である関数logα
=logα0 −γ/Tを演算し、この演算結果と実測さ
れた半導体式ガスセンサの出力Vと濃度係数βと、を用
いて温度補償された溶存ガス濃度Cを求めることができ
る。
Therefore, the liquid temperature T of the sample liquid measured from the equation (3) and a constant term (hereinafter simply referred to as a constant) log
From α 0 and temperature coefficient γ, the function log α which is the temperature dependent term
= Logα 0 −γ / T is calculated, and the temperature-compensated dissolved gas concentration C can be obtained using the calculation result and the actually measured output V of the semiconductor gas sensor and the concentration coefficient β.

【0016】このようにして溶存ガス濃度を温度補償し
て測定する分析装置は前述の構成を有し、その作用は次
記の通りである。通流する抽出槽内の試料液に浸漬され
る温度検出端により液温を検出し、この検出信号を温度
測定回路にて温度に変換し、この温度信号をA/D変換
回路にてA/D変換する。一方、抽出槽のヘッドスペー
スに導入されたキャリアガスへ試料液中の溶存ガス成分
を移行させて半導体式ガスセンサに導き、この溶存ガス
成分を検出して得られる半導体式ガスセンサの出力は増
幅回路にて増幅された後、A/D変換回路でA/D変換
される。
The analyzer for measuring the dissolved gas concentration by temperature compensation in this way has the above-mentioned structure, and its operation is as follows. The liquid temperature is detected by the temperature detecting end immersed in the sample liquid in the flowing extraction tank, the detected signal is converted into the temperature by the temperature measuring circuit, and this temperature signal is converted into A / D by the A / D converting circuit. D-convert. On the other hand, the dissolved gas component in the sample liquid is transferred to the carrier gas introduced into the head space of the extraction tank and guided to the semiconductor gas sensor, and the output of the semiconductor gas sensor obtained by detecting this dissolved gas component is output to the amplification circuit. After being amplified, the A / D conversion circuit performs A / D conversion.

【0017】上記のA/D変換回路からの液温の出力信
号と半導体式ガスセンサの出力信号とは演算処理部に入
力され、メモリ部に記憶されている濃度係数β,定数l
ogα0 ,温度係数γ,A/D変換回路からの実測され
た半導体式ガスセンサの出力及び試料液の液温から溶存
ガス濃度が演算処理部にて演算されて算出される。
The liquid temperature output signal from the A / D conversion circuit and the semiconductor gas sensor output signal are input to the arithmetic processing unit, and the concentration coefficient β and the constant l are stored in the memory unit.
The dissolved gas concentration is calculated by the calculation processing unit from ogα 0 , the temperature coefficient γ, the measured output of the semiconductor gas sensor from the A / D conversion circuit, and the liquid temperature of the sample liquid.

【0018】[0018]

【実施例】以下図面に基づいて本発明の実施例について
説明する。図1は本発明の実施例による溶存ガス成分を
温度補償して分析する溶存ガス分析装置の系統ブロック
図である。なお図1において図2の従来例と同一部品に
は同じ符号を付し、その説明を省略する。図1において
図2の従来例と異なるのは下記の通りである。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a system block diagram of a dissolved gas analyzer for temperature-compensating and analyzing a dissolved gas component according to an embodiment of the present invention. In FIG. 1, the same parts as those in the conventional example of FIG. 2 are designated by the same reference numerals, and the description thereof will be omitted. 1 differs from the conventional example of FIG. 2 in the following points.

【0019】図1において抽出槽7の試料液5に浸漬す
る温度検出端20と、この温度検出端20からの検出信
号を温度に変換する温度測定回路21とを設ける。そし
て温度測定回路21からの出力信号をA/D変換回路1
5に入力する。メモリ部18には濃度係数βと、定数l
ogα0 ,と温度係数γとのあらかじめ検定された値を
記憶させる。
In FIG. 1, a temperature detecting end 20 which is immersed in the sample liquid 5 in the extraction tank 7 and a temperature measuring circuit 21 which converts a detection signal from the temperature detecting end 20 into a temperature are provided. The output signal from the temperature measuring circuit 21 is converted into the A / D conversion circuit 1
Enter in 5. The memory unit 18 has a density coefficient β and a constant l.
Pre-tested values of ogα 0 and temperature coefficient γ are stored.

【0020】このような構成により抽出槽7内の試料液
5の液温を温度検出端20で検出し、この検出信号は温
度測定回路21に入力されて温度に変換される。そして
この温度の信号はA/D変換回路15に入力されてA/
D変換され、演算処理部16に入力される。一方、抽出
槽7内の試料液5中の溶存ガス成分は前述のようにキャ
リアガスへ移行され、検出部13に導かれて半導体式ガ
スセンサにより検出され、増幅回路14,A/D変換回
路15を経て演算処理部16に入力される。
With such a configuration, the temperature of the sample liquid 5 in the extraction tank 7 is detected by the temperature detecting end 20, and this detection signal is input to the temperature measuring circuit 21 and converted into temperature. Then, this temperature signal is input to the A / D conversion circuit 15 and A / D
It is D-converted and input to the arithmetic processing unit 16. On the other hand, the dissolved gas component in the sample liquid 5 in the extraction tank 7 is transferred to the carrier gas as described above, guided to the detection unit 13 and detected by the semiconductor gas sensor, and the amplification circuit 14 and the A / D conversion circuit 15 And is input to the arithmetic processing unit 16.

【0021】したがって演算処理部16ではメモリ部1
8からの濃度係数βと定数logα 0 ,温度係数γと、
実測された半導体式ガスセンサの出力Vと液温Tとによ
り(3)式に基づいて溶存ガス濃度Cを演算し、この演
算結果はレコーダ19により表示,記録される。つぎに
本発明による溶存ガスの分析装置により試料液として溶
存オゾン水を用いて温度補償しないときと温度補償した
ときの溶存ガス濃度を測定した結果について説明する。
このときの測定条件は下記の通りである。
Therefore, in the arithmetic processing unit 16, the memory unit 1
Concentration coefficient β from 8 and constant log α 0, Temperature coefficient γ,
According to the measured output V of the semiconductor gas sensor and the liquid temperature T,
The dissolved gas concentration C is calculated based on equation (3), and this
The calculation result is displayed and recorded by the recorder 19. Next
Dissolved as a sample liquid by the dissolved gas analyzer according to the present invention.
The temperature was compensated with and without temperature compensation using existing ozone water.
The result of measuring the dissolved gas concentration at that time will be described.
The measurement conditions at this time are as follows.

【0022】 半導体式ガスセンサ: 半導体薄膜式オゾンガスセンサ 温度検出端 : 熱電対 試料液流量 : 130ml/分 キャリアガス流量 : 30ml/分 乾燥ガス流量 : 30ml/分 上記の条件で溶存オゾン水の液温を13〜35℃の範囲
で変化させて溶存オゾン濃度の測定を行なった。この
際、別に波長350nmの光を使用した吸光度法により
直接溶存オゾン水の溶存オゾン濃度を測定した。
Semiconductor type gas sensor: Semiconductor thin film type ozone gas sensor Temperature detection end: Thermocouple Sample liquid flow rate: 130 ml / min Carrier gas flow rate: 30 ml / min Dry gas flow rate: 30 ml / min The liquid temperature of the dissolved ozone water under the above conditions The dissolved ozone concentration was measured while changing the temperature in the range of 13 to 35 ° C. At this time, the dissolved ozone concentration of the dissolved ozone water was directly measured by the absorbance method using light having a wavelength of 350 nm.

【0023】なお、温度補償を行なわないで測定したと
きの溶存オゾン濃度は、溶存オゾン水の温度を25.5
℃として(1)式のβ,logαを検定し、(1)式に
より演算した。表1に温度補償しないときの溶存オゾン
濃度(無補償オゾン濃度という)と、吸光度法による溶
存オゾン濃度(溶存オゾン濃度という)と、無補償オゾ
ン濃度/溶存オゾン濃度(無補償相対指示値という)と
を示す。
The dissolved ozone concentration measured without temperature compensation is 25.5 at the dissolved ozone water temperature.
As ° C, β and log α in the equation (1) were tested, and calculation was performed using the equation (1). Table 1 shows dissolved ozone concentration without temperature compensation (referred to as uncompensated ozone concentration), dissolved ozone concentration by absorbance method (referred to as dissolved ozone concentration), and uncompensated ozone concentration / dissolved ozone concentration (referred to as uncompensated relative indication value) Indicates.

【0024】[0024]

【表1】 表1より温度補償しないで測定した溶存オゾン水の無補
償オゾン濃度は、溶存オゾン水の液温が25.5℃より
低いときは吸光度法による溶存オゾン濃度より低値とな
り、液温が25.5℃より高いときは逆の傾向を示すこ
とが理解される。 上記表1のデータに基づいて
(1),(2)式より濃度係数β,定数logα0 ,お
よび温度係数γが求められる。求めたlogα0 および
γを用いて、(2)式を書き直すと、下記(4)式のよ
うに温度依存項logαが得られた。
[Table 1] From Table 1, the uncompensated ozone concentration of the dissolved ozone water measured without temperature compensation is lower than the dissolved ozone concentration by the absorbance method when the liquid temperature of the dissolved ozone water is lower than 25.5 ° C., and the liquid temperature is 25. It is understood that when the temperature is higher than 5 ° C, the opposite tendency is exhibited. Based on the data in Table 1 above, the concentration coefficient β, the constant log α 0 , and the temperature coefficient γ are obtained from the equations (1) and (2). By rewriting the equation (2) using the obtained log α 0 and γ, the temperature dependent term log α was obtained as in the following equation (4).

【0025】logα=logα0 −γ/T =3.196−384.7/T (4) したがって(1)式の濃度係数βと(4)式の定数lo
gα0 と温度係数γの値を図1のメモリ部18に記憶さ
せ、演算処理部16にてこれらβ,logα0およびγ
を取出して(3)式により溶存オゾン水中の温度補償し
た溶存オゾン濃度(補償オゾン濃度という)を算出する
ことができる。なおこの演算結果は図3に相対指示値A
(補償オゾン濃度/溶存オゾン濃度)で示す。
Logα = logα 0 −γ / T = 3.196-384.7 / T (4) Therefore, the concentration coefficient β of the equation (1) and the constant lo of the equation (4) are obtained.
The values of g α 0 and the temperature coefficient γ are stored in the memory unit 18 of FIG. 1, and these β, log α 0 and γ are stored in the arithmetic processing unit 16.
The temperature-compensated dissolved ozone concentration in the dissolved ozone water (referred to as the compensated ozone concentration) can be calculated by taking out and taking out the formula (3). The result of this calculation is shown in FIG.
(Compensated ozone concentration / dissolved ozone concentration).

【0026】図3には本発明による装置により温度補償
して得られた溶存オゾン濃度の相対指示値を破線Aで示
し、温度補償しないときの溶存オゾン濃度の無補償相対
指示値を実線Bで示している。図3から、液温13〜3
5℃の範囲で吸光度法による溶存オゾン濃度の値と本発
明による温度補償して得られた溶存オゾン濃度とは±5
%以内で一致することが理解される。
In FIG. 3, a relative indication value of the dissolved ozone concentration obtained by temperature compensation by the apparatus according to the present invention is shown by a broken line A, and a non-compensated relative indication value of the dissolved ozone concentration without temperature compensation is shown by a solid line B. Shows. From FIG. 3, the liquid temperature 13 to 3
The value of the dissolved ozone concentration by the absorbance method in the range of 5 ° C. and the dissolved ozone concentration obtained by temperature compensation according to the present invention are ± 5
It is understood that there is a match within%.

【0027】[0027]

【発明の効果】以上の説明から明らかなように、本発明
によれば半導体式ガスセンサの出力を濃度項と温度依存
項とに分け、試料液の液温と温度依存項の定数および温
度係数を用いて、実測される半導体式ガスセンサの出力
を温度補償して溶存ガス濃度を算出すること、及びこの
溶存ガス濃度を算出するために前述の手段を設けたこと
により、溶存ガス成分を含む液体の温度により温度補償
するので、溶存ガス濃度を正確に測定できる。
As is apparent from the above description, according to the present invention, the output of the semiconductor gas sensor is divided into the concentration term and the temperature dependent term, and the constant and temperature coefficient of the liquid temperature and the temperature dependent term of the sample liquid are determined. Using the measured output of the semiconductor gas sensor to temperature-compensate to calculate the dissolved gas concentration, and by providing the aforementioned means for calculating the dissolved gas concentration, the liquid containing the dissolved gas component Since the temperature is compensated by the temperature, the dissolved gas concentration can be accurately measured.

【0028】また、半導体式ガスセンサの特性にバラツ
キがある場合、異なる特性のセンサに対しても濃度項の
係数、温度依存項の定数および温度係数をあらかじめ求
めてメモリ部に記憶させることにより、温度補償のため
の特別な装置を必要とせずに、容易に演算処理部で温度
補償された溶存ガス濃度を算出できる。
In addition, when the characteristics of the semiconductor gas sensor vary, the coefficient of the concentration term, the constant of the temperature dependence term and the temperature coefficient are previously obtained and stored in the memory section even for the sensors having different characteristics. It is possible to easily calculate the temperature-compensated dissolved gas concentration in the arithmetic processing unit without requiring a special device for compensation.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例による溶存ガス濃度を温度補償
して測定する溶存ガス分析装置の系統ブロック図
FIG. 1 is a system block diagram of a dissolved gas analyzer for measuring a dissolved gas concentration by temperature compensation according to an embodiment of the present invention.

【図2】従来の溶存ガス分析装置の系統ブロック図FIG. 2 is a system block diagram of a conventional dissolved gas analyzer.

【図3】本発明により温度補償したとき及び温度補償し
ないときの溶存オゾン濃度と吸光度法による溶存オゾン
濃度との比である相対指示値と液温との関係を示す線図
FIG. 3 is a diagram showing a relationship between a liquid temperature and a relative indication value, which is a ratio of a dissolved ozone concentration with and without temperature compensation according to the present invention and a dissolved ozone concentration by an absorbance method.

【符号の説明】 5 試料液 7 抽出槽 13 検出部 14 増幅回路 15 A/D変換回路 16 演算処理部 18 メモリ部 20 温度検出端 21 温度測定回路[Explanation of symbols] 5 sample liquid 7 extraction tank 13 detection unit 14 amplification circuit 15 A / D conversion circuit 16 arithmetic processing unit 18 memory unit 20 temperature detection end 21 temperature measurement circuit

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】試料液中の溶存ガス成分を気相に移行さ
せ、半導体式ガスセンサで溶存ガス成分を検出して得ら
れる前記センサの出力から溶存ガス濃度を測定する溶存
ガス成分の分析方法において、半導体式ガスセンサの出
力を濃度項と温度依存項とに分け、温度依存項を試料液
の液温の関数で表わし、試料液の液温を測定して前記関
数を求め、この関数と濃度項の係数と半導体式ガスセン
サの出力とから溶存ガス濃度を算出することを特徴とす
る溶存ガス成分分析方法。
1. A method for analyzing a dissolved gas component, wherein a dissolved gas component in a sample liquid is transferred to a gas phase, and a dissolved gas component is detected by a semiconductor gas sensor, and the dissolved gas concentration is measured from the output of the sensor. , The output of the semiconductor gas sensor is divided into a concentration term and a temperature dependent term, the temperature dependent term is expressed as a function of the liquid temperature of the sample liquid, the liquid temperature of the sample liquid is measured to obtain the function, and this function and the concentration term Dissolved gas component analysis method, wherein the dissolved gas concentration is calculated from the coefficient and the output of the semiconductor gas sensor.
【請求項2】溶存ガス成分を有する試料液が通流する抽
出槽と、この抽出槽内のヘッドスペースに導入されるキ
ャリアガスにより運ばれる溶存ガス成分を検出して溶存
ガス濃度に応じた信号を出力する半導体式ガスセンサ
と、この半導体式ガスセンサの出力信号を増幅する増幅
回路と、抽出槽内の試料液の液温を検出する温度検出端
と、この温度検出端からの検出信号を温度に変換する温
度測定回路と、前記増幅回路と温度測定回路とからの出
力信号をA/D変換するA/D変換回路と、半導体式ガ
スセンサの出力に係る濃度項の係数と温度依存項の定数
と温度係数とを記憶するメモリ部と、このメモリ部から
読み出した前記濃度項の係数と温度依存項の定数および
温度係数と前記A/D変換回路からの出力信号とにより
溶存ガス濃度を算出する演算処理部とからなることを特
徴とする溶存ガス成分を温度補償して分析する分析装
置。
2. A signal corresponding to the dissolved gas concentration by detecting the dissolved gas component carried by a carrier gas introduced into the head space in the extraction tank through which the sample liquid having the dissolved gas component flows. , A semiconductor gas sensor that outputs, an amplifier circuit that amplifies the output signal of this semiconductor gas sensor, a temperature detection end that detects the liquid temperature of the sample liquid in the extraction tank, and the detection signal from this temperature detection end to the temperature. A temperature measuring circuit for converting, an A / D converting circuit for A / D converting output signals from the amplifying circuit and the temperature measuring circuit, a coefficient of a concentration term relating to an output of the semiconductor gas sensor, and a constant of a temperature dependent term. A dissolved gas concentration is calculated by a memory unit that stores a temperature coefficient, a coefficient of the concentration term read from the memory unit, a constant of the temperature dependent term and a temperature coefficient, and an output signal from the A / D conversion circuit. That the arithmetic processing unit to consist of a temperature compensation to analyze analyzer dissolved gas component, wherein.
JP4155488A 1992-06-16 1992-06-16 Method and apparatus for analyzing component of dissolved gas Pending JPH05346414A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4155488A JPH05346414A (en) 1992-06-16 1992-06-16 Method and apparatus for analyzing component of dissolved gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4155488A JPH05346414A (en) 1992-06-16 1992-06-16 Method and apparatus for analyzing component of dissolved gas

Publications (1)

Publication Number Publication Date
JPH05346414A true JPH05346414A (en) 1993-12-27

Family

ID=15607147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4155488A Pending JPH05346414A (en) 1992-06-16 1992-06-16 Method and apparatus for analyzing component of dissolved gas

Country Status (1)

Country Link
JP (1) JPH05346414A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006138653A (en) * 2004-11-10 2006-06-01 Ishikawajima Harima Heavy Ind Co Ltd Method and apparatus for measuring concentration of dissolved gas

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006138653A (en) * 2004-11-10 2006-06-01 Ishikawajima Harima Heavy Ind Co Ltd Method and apparatus for measuring concentration of dissolved gas

Similar Documents

Publication Publication Date Title
US3514377A (en) Measurement of oxygen-containing gas compositions and apparatus therefor
US6085582A (en) Vehicle mass emission measurement
US5033284A (en) Calibration method for gas or vapor relative concentration sensor
US3528779A (en) Chemiluminescent method of detecting ozone
JP2511062B2 (en) Gas verification method and device
JPH07318555A (en) Total organic carbon meter
US4438203A (en) Method and apparatus for determination of lubricant stability
US6623699B1 (en) Analyzing system for high accuracy nitrogen determination
US10451575B2 (en) Gas measurement device and measurement method thereof
US6834536B2 (en) Probe for measuring alcohol in liquids
JPH05346414A (en) Method and apparatus for analyzing component of dissolved gas
US4149949A (en) Electrochemical analysis apparatus employing single ion measuring sensor
US4120659A (en) Sulfur analysis
JP2938301B2 (en) Dissolved gas concentration measuring method and dissolved gas concentration measuring device
JP2003075426A (en) Wet oxidation type element analysis apparatus
JPH10260149A (en) Method for measuring concentration of gas
US4922747A (en) Method for the determination of volative components in continuous flow condensed phase sample stream
US3852036A (en) Breath testing system
CN111929224B (en) Method, device, equipment and storage medium for determining particle content in infrared cell detection
JP2681767B2 (en) Isothermal capacity transient spectroscopy
JPS6042690A (en) Gas analyzer in container for nuclear reactor
US4680472A (en) Process and apparatus for the stabilization of measuring results furnished by an "electron capture" detector with identification of anomalies affecting the detector
KR810001160B1 (en) Analysis method of hydrogen gas
JPS6352058A (en) Detection of concentration of organic gas
JP2929761B2 (en) Gas in oil detector