JPH05343741A - Gallium nitride series semiconductor element and manufacture thereof - Google Patents

Gallium nitride series semiconductor element and manufacture thereof

Info

Publication number
JPH05343741A
JPH05343741A JP33525591A JP33525591A JPH05343741A JP H05343741 A JPH05343741 A JP H05343741A JP 33525591 A JP33525591 A JP 33525591A JP 33525591 A JP33525591 A JP 33525591A JP H05343741 A JPH05343741 A JP H05343741A
Authority
JP
Japan
Prior art keywords
substrate
layer
intermediate layer
single crystal
gallium nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33525591A
Other languages
Japanese (ja)
Other versions
JP3352712B2 (en
Inventor
Tetsuya Takeuchi
哲也 竹内
Hiroshi Amano
浩 天野
Isamu Akasaki
勇 赤崎
Atsushi Watanabe
温 渡辺
Katsuhide Manabe
勝英 真部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pioneer Corp
Toyoda Gosei Co Ltd
Original Assignee
Toyoda Gosei Co Ltd
Pioneer Electronic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Gosei Co Ltd, Pioneer Electronic Corp filed Critical Toyoda Gosei Co Ltd
Priority to JP33525591A priority Critical patent/JP3352712B2/en
Priority to US07/971,208 priority patent/US5239188A/en
Priority to EP92310314A priority patent/EP0551721B1/en
Priority to DE69217903T priority patent/DE69217903T2/en
Priority to US08/046,960 priority patent/US5389571A/en
Publication of JPH05343741A publication Critical patent/JPH05343741A/en
Application granted granted Critical
Publication of JP3352712B2 publication Critical patent/JP3352712B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of group III and group V of the periodic system
    • H01L33/32Materials of the light emitting region containing only elements of group III and group V of the periodic system containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02636Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
    • H01L21/02639Preparation of substrate for selective deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02636Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
    • H01L21/02647Lateral overgrowth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S148/00Metal treatment
    • Y10S148/065Gp III-V generic compounds-processing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S148/00Metal treatment
    • Y10S148/113Nitrides of boron or aluminum or gallium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S438/00Semiconductor device manufacturing: process
    • Y10S438/933Germanium or silicon or Ge-Si on III-V

Abstract

PURPOSE:To operate even by injecting a large current and to miniaturize and particularly easily form electrodes by forming a single crystal of (Ga1-xAlx)1-yInyN having high quality of crystal in which a crystal defect is suppressed and excellent flatness. CONSTITUTION:A method for manufacturing a gallium nitride series semiconductor element comprises the steps of holding a silicon single crystalline substrate 1 at 400-1300 deg.C, holding the substrate in an atmosphere containing organic metal compound including at least aluminum and compound including nitrogen, forming an intermediate layer 2 of a thin film containing at least aluminum and nitrogen partly or entirely on a surface of the substrate, and then forming at least one or multi-layer (Ga1-xAlx)1-yInyN single crystalline layer 3 on the intermediate layer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ワイドギャップ半導体
として産業界より注目されている(Ga1-xAlx1-y
InyNの単結晶からなる窒化ガリウム(GaN)系半
導体素子及びその作製方法に関し、特に、シリコン(S
i)を基板として、その上に、特に波長にして200〜
700nm帯の発光及び受光素子用材料として期待され
ている(Ga1-xAlx1-yInyNの高品質単結晶を作
製する方法に関する。
BACKGROUND OF THE INVENTION The present invention has attracted attention from the industrial world as a wide-gap semiconductor (Ga 1-x Al x ) 1-y
TECHNICAL FIELD The present invention relates to a gallium nitride (GaN) -based semiconductor device made of an In y N single crystal and a method for manufacturing the same, and particularly to silicon (S)
i) as a substrate, on which, in particular, a wavelength of 200 to
The present invention relates to a method for producing a high-quality single crystal of (Ga 1-x Al x ) 1-y In y N, which is expected as a material for light-emitting and light-receiving elements in the 700 nm band.

【0002】[0002]

【従来の技術及び問題点】(Ga1-xAlx1-yIny
(0≦x≦1,0≦y≦1,但し、x=1かつy=0の
場合は除く)の結晶は、室温でのエネルギーバンドギャ
ップに対応する光の波長が200〜700nm帯にある
直接遷移型半導体であり、特に可視短波長及び紫外光領
域の発光及び受光素子用材料として期待されている。
2. Description of the Related Art (Ga 1-x Al x ) 1-y In y N
The crystal of (0 ≦ x ≦ 1, 0 ≦ y ≦ 1, except for x = 1 and y = 0) has a light wavelength corresponding to the energy band gap at room temperature in the 200 to 700 nm band. It is a direct transition type semiconductor, and is particularly expected as a material for light emitting and light receiving elements in the visible short wavelength and ultraviolet light regions.

【0003】(Ga1-xAlx1-yInyN結晶は成長温
度付近で構成元素である窒素(N)の平衡蒸気圧が極め
て高いため、そのバルク結晶の作製は容易でない。従っ
て、現在単結晶作製は異種結晶を基板として用いたヘテ
ロエピタキシャル成長により行っている。(Ga1-x
x1-yInyN結晶作製用基板として必要な条件は、
(1)融点が高いこと(少なくとも 1,000℃以上)、
(2)化学的に安定であること、(3)結晶品質がすぐ
れていること、(4)格子定数差が小さいこと、(5)
入手が容易であること、(6)基板が大型であること、
が望ましい。また、電気的に動作する素子を作製する場
合、(7)電気的特性の制御が容易であること、特に低
抵抗であること、が望ましい。
Since the (Ga 1-x Al x ) 1-y In y N crystal has an extremely high equilibrium vapor pressure of nitrogen (N), which is a constituent element, near the growth temperature, it is not easy to prepare its bulk crystal. Therefore, currently, single crystal production is performed by heteroepitaxial growth using a heterogeneous crystal as a substrate. (Ga 1-x A
l x ) 1-y In y N The conditions necessary for the crystal production substrate are:
(1) High melting point (at least 1,000 ℃),
(2) Chemically stable, (3) Excellent crystal quality, (4) Small difference in lattice constant, (5)
Easy to obtain, (6) Large board,
Is desirable. Further, in the case of manufacturing an element that operates electrically, it is desirable that (7) the electrical characteristics be easily controlled, particularly that the resistance be low.

【0004】これらすべての条件を満足する結晶はな
い。現在最もよく用いられている基板は、(1)(2)
(3)(5)(6)を満足するサファイアから形成され
ている。サファイアと(Ga1-xAlx1-yInyNとの
間には格子定数差が11%以上あり、(4)の条件から
は望ましくないが、本発明者らは、(Ga1-xAlx1-
yInyNの結晶成長直前に、低温(〜600℃)で薄膜
のAlN(〜50nm)をサファイア基板上に堆積して
緩衝層とすることにより、高品質の(Ga1-xAlx
1-yInyN結晶の作製が可能であることを見いだしてい
る(特願昭60−256806号)。この技術を用いて高性能
青色、紫外光LEDの作製にも成功している。しかしな
がら、サファイアは絶縁体であり、かつ堅固であるため
窒化ガリウム系半導体素子形成、特にその電極形成が容
易でないという問題点があり、大電流注入により動作す
る半導体素子には不向きであった。
No crystal satisfies all these conditions. The most popular substrates at present are (1) and (2)
It is formed of sapphire satisfying (3), (5) and (6). The lattice constant difference between sapphire and (Ga 1-x Al x ) 1-y In y N is 11% or more, which is not desirable from the condition of (4), but the present inventors have (Ga 1 -x Al x ) 1-
crystal growth immediately before the y an In y N, low temperature (to 600 ° C.) with a thin film of AlN by a deposited (up to 50 nm) on a sapphire substrate by a buffer layer, high-quality (Ga 1-x Al x)
It has found that the production of 1-y In y N crystal can be (Japanese Patent Application No. Sho 60-256806). Using this technology, we have succeeded in producing high-performance blue and ultraviolet LEDs. However, since sapphire is an insulator and is solid, it has a problem that it is not easy to form a gallium nitride-based semiconductor device, particularly an electrode thereof, and is not suitable for a semiconductor device that operates by high current injection.

【0005】この問題点を解決する基板材料の候補の一
つにシリコン(Si)がある。Siでは容易に低抵抗高
融点基板が得られ、しかも大型の完全に近い結晶を容易
に得ることが出来、Si基板は安価高結晶品質でかつ大
面積化及び微細加工も容易である。すなわち、(1)
(2)(3)(5)(6)(7)の条件を満足する。S
i基板上の(Ga1-xAlx1-yInyN結晶作製におけ
る最も大きな問題点は、例えばGaNとSiとの間にお
いて17%程度という大きな格子定数差であり、この格
子定数差に基づく結晶欠陥の発生を抑制する技術の確立
が望まれていた。
Silicon (Si) is one of the candidates for the substrate material to solve this problem. With Si, a low-resistance high-melting-point substrate can be easily obtained, and a large, almost perfect crystal can be easily obtained. The Si substrate is inexpensive, has high crystal quality, and can easily have a large area and fine processing. That is, (1)
The conditions (2), (3), (5), (6) and (7) are satisfied. S
The biggest problem in producing (Ga 1-x Al x ) 1-y In y N crystal on the i substrate is a large lattice constant difference of, for example, about 17% between GaN and Si. It has been desired to establish a technique for suppressing the generation of crystal defects based on

【0006】[0006]

【発明の目的】本発明の目的は、可視短波長及び紫外光
発光及び受光素子用材料として期待される(Ga1-x
x1-yInyN結晶を、安価、高結晶品質で大面積
化、及び低抵抗化が容易なSi基板上に形成することの
出来る窒化ガリウム系半導体素子及びその製造方法を提
供することにある。
OBJECTS OF THE INVENTION The object of the present invention is expected as a material for visible short wavelength and ultraviolet light emission and light receiving elements (Ga 1-x A
Provided is a gallium nitride-based semiconductor device capable of forming an l x ) 1-y In y N crystal on a Si substrate that is inexpensive, has high crystal quality, can easily have a large area, and can have a low resistance, and a method for manufacturing the same. Especially.

【0007】[0007]

【問題点を解決するための手段】本発明は、(Ga1-x
Alx1-yInyN単結晶をSi基板に作製する場合に
おいて、(Ga1-xAlx1-yInyN単結晶の成長前
に、少なくともAlを含む有機金属化合物、及び窒素化
合物の両方を成長炉内に導入して、少なくともAl及び
Nを含む化合物、例えばAlN薄層をSi基板表面の一
部分ないし全体に形成した後、次にAlを含む有機金属
化合物の供給のみを一旦止め、必要とする混晶組成に見
合った分のAlを含む有機金属化合物、Gaを含む有機
金属化合物、及びInを含む有機金属化合物を引続き供
給することにより、Al及びNを含む化合物の薄層、即
ち中間層上に(Ga1-xAlx1-yInyN結晶(0≦x
≦1,0≦y≦1,但し、x=1かつy=0の場合は除
く)を作製する工程を含む製造方法によって、窒化ガリ
ウム系半導体素子を製造することを特徴とする。
The present invention provides (Ga 1-x
In the case of producing an Al x ) 1-y In y N single crystal on a Si substrate, an organometallic compound containing at least Al before the growth of the (Ga 1-x Al x ) 1-y In y N single crystal, and After introducing both of the nitrogen compounds into the growth furnace to form a compound containing at least Al and N, for example, a thin layer of AlN on a part or the whole of the surface of the Si substrate, then only supplying the organometallic compound containing Al. Once stopped, the organic metal compound containing Al, the organic metal compound containing Ga, and the organic metal compound containing In corresponding to the required mixed crystal composition are continuously supplied to reduce the thickness of the compound containing Al and N. (Ga 1-x Al x ) 1-y In y N crystal (0 ≦ x
≤1, 0 ≤ y ≤ 1, except where x = 1 and y = 0), and a gallium nitride based semiconductor device is manufactured by a manufacturing method including a step of manufacturing.

【0008】本発明の実施例では、Alを含む有機金属
化合物、及び窒素化合物を成長炉内に導入して、少なく
ともAl及びNを含む化合物、例えばAlN(以下、A
lNと記す)を形成する場合、Si基板の温度は400〜1
300℃の範囲内であることが好ましい。なお、本発明
は、上記(Ga1-xAlx1-yInyN層におけるAlN
モル分率が0及び1を含み0から1の範囲内で、InN
モル分率yは0及び1を含み0から1の範囲内(ただ
し、x=1かつy=0の場合は除く)で有効である。
In an embodiment of the present invention, an organometallic compound containing Al and a nitrogen compound are introduced into a growth furnace to produce a compound containing at least Al and N, such as AlN (hereinafter referred to as AN).
1N), the temperature of the Si substrate is 400 to 1
It is preferably in the range of 300 ° C. In the present invention, the AlN in the (Ga 1-x Al x ) 1-y In y N layer is used.
When the mole fraction is within the range of 0 to 1 including 0 and 1, InN
The mole fraction y is effective within the range of 0 to 1 inclusive of 0 and 1 (except when x = 1 and y = 0).

【0009】[0009]

【発明の作用】本発明の発明者らは、電気的特性の制御
が容易であり結晶学的に優れた特性を有しかつ安価であ
るSi基板上に、気相成長法、特に原料として有機金属
化合物を用いた有機金属化合物気相成長法により、高品
質(Ga1-xAlx1-yInyN単結晶を得るべくSi基
板表面処理方法を種々検討した結果、上記発明を完成し
た。
INDUSTRIAL APPLICABILITY The inventors of the present invention have conducted a vapor phase growth method, particularly an organic material as a raw material, on a Si substrate which has easy control of electrical characteristics, excellent crystallographic characteristics and is inexpensive. As a result of various investigations on the surface treatment method of the Si substrate to obtain a high-quality (Ga 1-x Al x ) 1-y In y N single crystal by the metal organic compound vapor phase epitaxy method, the above-mentioned invention was completed. did.

【0010】Si基板上への(Ga1-xAlx1-yIny
N層の成長における最も大きな問題点は、例えばGaN
とSiを比較した場合、17%ものきわめて大きな格子
定数差が存在することであった。実際、GaNを直接S
i基板上に成長させても、多結晶化するか、或は単結晶
であっても六角柱状の島状に成長し、平坦性のよい高品
質単結晶の作製は困難であった(例えば、T. L. Chu, J
ournal of Electrochemical Society, Solid State Sci
ence, 第118巻,1971年,1200頁、あるいはYasuo Morimo
to, Kosuke Uchiho and Shintaro Ushio, Journal of E
lectrochemicalSociety,第120巻,1973年,1783頁など
に、GaNをSi基板上に直接成長させた場合の報告が
あり、実際、本発明者もいろいろな検討を行ったが、直
接高品質結晶をSi基板上に成長させるのは困難であっ
た)。そこで、本発明者らは、なんらかの中間層が必要
であると考え、種々の結晶を検討し、最初、3C−Si
Cを候補とした。
(Ga 1-x Al x ) 1-y In y on Si substrate
The biggest problem in the growth of the N layer is, for example, GaN.
When compared with Si, it was found that there was an extremely large lattice constant difference of 17%. In fact, GaN is directly converted to S
Even if grown on an i substrate, it is polycrystallized, or even if it is a single crystal, it grows in an island shape of a hexagonal column, and it is difficult to produce a high quality single crystal with good flatness (for example, TL Chu, J
ournal of Electrochemical Society, Solid State Sci
ence, Volume 118, 1971, 1200 pages, or Yasuo Morimo
to, Kosuke Uchiho and Shintaro Ushio, Journal of E
The lectrochemical Society, Volume 120, 1973, p. 1783, etc., has reported a case where GaN is directly grown on a Si substrate. In fact, the present inventor also conducted various studies. It was difficult to grow on a substrate). Therefore, the present inventors considered that some kind of intermediate layer is necessary, investigated various crystals, and first examined 3C-Si.
C was selected as a candidate.

【0011】3C−SiCを中間層とした場合は既に、
高品質単結晶(Ga1-xAlx1-yInyNの成長が可能
であることを確認している(特願平2-418003号)。本発
明者らは更に、3C−SiCとほぼ同一の格子定数を持
つAlNを中間層としても、同様の効果が期待できると
考え、検討を行い、上記発明に至った。表1を見ればわ
かるように3C−SiCとAlNとは格子定数差が 0.9
4%と極めて小さい。
When 3C-SiC is used as the intermediate layer,
It has been confirmed that a high quality single crystal (Ga 1-x Al x ) 1-y In y N can be grown (Japanese Patent Application No. 2-418003). The present inventors further considered that the same effect can be expected even when AlN having a lattice constant substantially the same as that of 3C-SiC is used as an intermediate layer, studied and made the above-mentioned invention. As can be seen from Table 1, the lattice constant difference between 3C-SiC and AlN is 0.9.
Very small at 4%.

【0012】[0012]

【表1】 [Table 1]

【0013】本発明の特徴は、あくまでAlNを中間層
として用いることにあり、AlNを中間層として用いて
Si基板上に(Ga1-xAlx1-yInyN層を成長させ
ることにより、Si基板上に直接成長させたものと比較
して、各段に品質が優れ、しかも平坦性の極めて優れた
(Ga1-xAlx1-yInyNの単結晶を得ることが出来
る。
The feature of the present invention lies in the fact that AlN is used as the intermediate layer, and the growth of the (Ga 1-x Al x ) 1-y In y N layer on the Si substrate using AlN as the intermediate layer. To obtain a single crystal of (Ga 1-x Al x ) 1-y In y N which is superior in quality to each step and has extremely excellent flatness as compared with the case of directly growing on a Si substrate. Can be done.

【0014】本発明により、(Ga1-xAlx1-yIny
Nの単結晶を安価に得られるようになる。また、微細加
工が容易でかつ大電流の注入により動作できる窒化ガリ
ウム系半導体素子、特に半導体レーザダイオードを得る
ことが出来る。
According to the present invention, (Ga 1-x Al x ) 1-y In y
A single crystal of N can be obtained at low cost. Further, it is possible to obtain a gallium nitride-based semiconductor element, particularly a semiconductor laser diode, which can be easily microfabricated and can be operated by injection of a large current.

【0015】[0015]

【実施例】以下、本発明によるSi基板上への(Ga
1-xAlx1-yInyN(0≦x≦1,0≦y≦1、但
し、x=1かつy=0の場合は除く)の単結晶の作製方
法の実施例を説明する。以下に説明する実施例は、本発
明を例示するに過ぎず、本発明を限定するものではな
い。
Embodiments (Ga on a Si substrate according to the present invention will be described below.
Example of a method for producing a single crystal of 1-x Al x ) 1-y In y N (0 ≦ x ≦ 1, 0 ≦ y ≦ 1, except for x = 1 and y = 0) To do. The examples described below are merely illustrative of the present invention and are not intended to limit the present invention.

【0016】本実施例によれば、量産性及び膜厚制御性
に優れる有機金属化合物気相成長法を用いており、特に
発光素子の作製は容易である。図1に示すように、ウェ
ーハの低抵抗n型Si(111)面基板1上に、AlN薄
膜の中間層2を形成の後、アンドープまたはSiドープ
n型GaN層3を成長する。引続き、MgドープGaN
層4を選択的に成長したのち、成長炉よりウェーハを取
り出し、低加速電子線照射処理(特願平2−2614号)を
行い、MgドープGaN層4を部分的にp型化してp型
領域5とする。次に、n型GaN層3及びp型GaN領
域5のそれぞれに金属電極6A,6Bを蒸着し、それら
各々にリード線7A,7Bを接続して発光ダイオードを
形成する。n型GaN層3側を負、Mgドープp型Ga
N領域5側を正としてバイアスをかけることにより、室
温において電圧3.5V付近から青色及び紫外線発光を
確認できた。 (1)中間層作製プロセス AlNの中間層作製及び(Ga1-xAlx1-yIny
(0≦x<1、0≦y≦1、但し、x=1かつy=0の
場合は除く)の単結晶作製は、通常の横型化合物半導体
結晶成長装置を用いた。成長手順を以下に示す。まず結
晶成長用基板、即ち低抵抗Si基板(実験では(11
1)面を用いた)をメタノールなどの有機薬品による洗
浄の後、弗酸系エッチャントにより表面の酸化物を取り
除き、純水による洗浄の後、結晶成長部に設置する。成
長炉を真空排気後、水素を供給し、例えば1200℃程度
(400〜1300℃の範囲内)まで昇温する。本成長装置で
は成長炉内に石英を用いており、その軟化点は1300℃で
あるため、それ以上の温度での実験は困難であり、実験
を行っていない。
According to this embodiment, the organic metal compound vapor phase growth method, which is excellent in mass productivity and film thickness controllability, is used, and in particular, a light emitting element can be easily manufactured. As shown in FIG. 1, after forming an intermediate layer 2 of an AlN thin film on a low-resistance n-type Si (111) plane substrate 1 of a wafer, an undoped or Si-doped n-type GaN layer 3 is grown. Subsequently, Mg-doped GaN
After the layer 4 is selectively grown, the wafer is taken out from the growth furnace and subjected to low-acceleration electron beam irradiation treatment (Japanese Patent Application No. 2-2614) to partially convert the Mg-doped GaN layer 4 into p-type and p-type. Area 5 is set. Next, metal electrodes 6A and 6B are vapor-deposited on each of the n-type GaN layer 3 and the p-type GaN region 5, and lead wires 7A and 7B are connected to each of them to form a light emitting diode. N-type GaN layer 3 side is negative, Mg-doped p-type Ga
By applying a bias with the N region 5 side being positive, blue and ultraviolet light emission could be confirmed at a room temperature from around a voltage of 3.5V. (1) Intermediate layer preparation process: AlN intermediate layer preparation and (Ga 1-x Al x ) 1-y In y N
(0 ≦ x <1, 0 ≦ y ≦ 1, except when x = 1 and y = 0) was prepared by using a normal lateral compound semiconductor crystal growth apparatus. The growth procedure is shown below. First, a substrate for crystal growth, that is, a low resistance Si substrate ((11
(1) surface is cleaned with an organic chemical such as methanol, the surface oxide is removed with a hydrofluoric acid-based etchant, and after cleaning with pure water, it is placed in the crystal growth part. After evacuation of the growth furnace, hydrogen is supplied and the temperature is raised to, for example, about 1200 ° C (within the range of 400 to 1300 ° C). In this growth apparatus, quartz is used in the growth furnace, and its softening point is 1300 ° C, so it is difficult to conduct experiments at temperatures above that, and no experiments have been conducted.

【0017】この後、成長炉内に水素に加え、Alを含
む有機金属化合物、例えばトリメチルアルミニウム(Tr
imethyl Aluminum:TMA)及び窒素化合物、例えばアンモ
ニア(Ammonia:NH3)を成長装置内に導入し、5nmか
ら200nm程度の膜厚を持つAlN薄膜をSi基板上
に形成する。AlN薄膜形成時の基板温度400℃より
低い場合、原料ガスの分解が不十分になり、本発明の効
果は期待できなくなる。また装置の都合上、成長炉に石
英を用いているため、1300℃以上では実験できない。ま
たAlN緩衝層が200nmより厚くなると、そのAl
N層上に成長する(Ga1-xAlx1-yInyN層の平坦
性は悪化する。
After that, in addition to hydrogen, an organometallic compound containing Al, for example, trimethylaluminum (Tr
(iMethyl Aluminum: TMA) and a nitrogen compound such as ammonia (Ammonia: NH 3 ) are introduced into the growth apparatus to form an AlN thin film having a thickness of about 5 nm to 200 nm on the Si substrate. When the substrate temperature at the time of forming the AlN thin film is lower than 400 ° C., the decomposition of the raw material gas becomes insufficient and the effect of the present invention cannot be expected. Also, because of the equipment's convenience, quartz is used in the growth furnace, so experiments cannot be performed above 1300 ° C. If the AlN buffer layer becomes thicker than 200 nm, the Al
The flatness of the (Ga 1-x Al x ) 1-y In y N layer grown on the N layer deteriorates.

【0018】さらに、上記のAlN中間層を用いる方法
は、Si基板上に高品質の例えばGaN単結晶を作製す
るのに有効であるが、AlN層は高抵抗であり、基板と
GaN層とは電気的に絶縁されてしまうため、基板を電
極替わりに利用することができない。この問題を解決す
るには多くの方法があるが、ここではそのうち、4つの
方法を示す。
Further, the method using the above AlN intermediate layer is effective for producing a high quality GaN single crystal, for example, on a Si substrate, but the AlN layer has a high resistance and the substrate and the GaN layer are different from each other. Since it is electrically insulated, the substrate cannot be used in place of the electrode. There are many ways to solve this problem, of which four are shown here.

【0019】(i) 選択多結晶析出技術の利用 図2の成長プロセスの概略に示すように、一部分SiO
2などで覆ったSi基板1上にAlN中間層2を形成し
(図2a)、一旦成長炉から取り出して、SiO2を剥
離する。これにより、Si基板の表面はAlN層で覆わ
れている部分とSi基板の露出部分ができる(図2
b)。この場合、AlN層の部分とSi基板の露出部分
は面積的に大体同程度にする。次にそれを基板として、
GaNの成長を行う。GaNはAlN中間層2上には単
結晶で成長し、Si基板1上にはGaN多結晶が析出す
る。Si基板1上のGaN多結晶は低抵抗n型伝導性を
示し、アクセプタ不純物を添加しても高抵抗化しないた
め、Si基板とGaN単結晶とは、GaN多結晶を通し
て、電気的に接続される(図2c)。図3に選択多結晶
析出技術により形成した発光素子の概略構造図を示し、
この発光素子は、順に積層されたAu−Sb電極、Si
基板、AlN中間層、n型GaN多結晶層で接続された
n型GaN単結晶層、p型GaN単結晶層及びAu電極
からなる。
(I) Utilization of Selective Polycrystal Deposition Technique As shown in the outline of the growth process in FIG.
An AlN intermediate layer 2 is formed on a Si substrate 1 covered with 2 or the like (FIG. 2a), taken out of the growth furnace, and SiO 2 is peeled off. As a result, the surface of the Si substrate has a portion covered with the AlN layer and an exposed portion of the Si substrate (see FIG. 2).
b). In this case, the area of the AlN layer and the exposed portion of the Si substrate are approximately the same in area. Then use it as a substrate,
GaN is grown. GaN grows as a single crystal on the AlN intermediate layer 2, and a GaN polycrystal is deposited on the Si substrate 1. Since the GaN polycrystal on the Si substrate 1 exhibits low resistance n-type conductivity and does not have high resistance even when an acceptor impurity is added, the Si substrate and the GaN single crystal are electrically connected through the GaN polycrystal. (Fig. 2c). Fig. 3 shows a schematic structural diagram of a light emitting device formed by the selective polycrystalline deposition technique.
This light emitting device has an Au--Sb electrode and a Si layer that are sequentially stacked.
It is composed of a substrate, an AlN intermediate layer, an n-type GaN single crystal layer connected by an n-type GaN polycrystal layer, a p-type GaN single crystal layer, and an Au electrode.

【0020】(ii) 選択横方向技術の利用 図4の成長プロセスの概略に示すように、(1)の選択多
結晶析出技術と同様の手段を用いて(図4a,図4
b)、Si基板1表面にAlN中間層2の部分とSi基
板の露出部分とを形成する。ここでは、AlN中間層部
分を、Si基板の露出部分より面積的にかなり大きくす
る。その上にGaN単結晶を成長すると、最初はAlN
中間層部分にのみGaN単結晶が成長する(図4c)。
AlN中間層上に成長したGaN単結晶は横方向に成長
し、隣接するAlN中間層上から成長したGaN層とつ
ながり、最終的にSi基板全体で一つのGaN単結晶が
作製される(図4d)。Si基板とGaN単結晶とは横
方向に成長した部分で電気的に接続される。図5に選択
横方向技術により形成した発光素子の概略構造図を示
し、この発光素子は、順に積層されたAu−Sb電極、
Si基板、AlN中間層、n型GaN単結晶層、p型G
aN単結晶層及びAu電極からなる。
(Ii) Utilization of Selective Lateral Technique As shown in the outline of the growth process of FIG. 4, the same means as the selective polycrystalline deposition technique of (1) is used (FIGS. 4a and 4a).
b), a portion of the AlN intermediate layer 2 and an exposed portion of the Si substrate are formed on the surface of the Si substrate 1. Here, the AlN intermediate layer portion is made considerably larger in area than the exposed portion of the Si substrate. When a GaN single crystal is grown on top of it, AlN
A GaN single crystal grows only in the intermediate layer portion (FIG. 4c).
The GaN single crystal grown on the AlN intermediate layer grows laterally and is connected to the GaN layer grown on the adjacent AlN intermediate layer, and finally one GaN single crystal is produced on the entire Si substrate (FIG. 4d). ). The Si substrate and the GaN single crystal are electrically connected at the laterally grown portion. FIG. 5 is a schematic structural view of a light emitting device formed by the selective lateral direction technique. This light emitting device is composed of Au--Sb electrodes stacked in order,
Si substrate, AlN intermediate layer, n-type GaN single crystal layer, p-type G
It consists of an aN single crystal layer and an Au electrode.

【0021】(iii) AlxGa1-xN(x≠1)中間
層の利用 図6の成長プロセスの概略に示すように、まず、Si基
板1上にAlN中間層のかわりにAlxGa1-xN(x≠
1)中間層2を一様に形成する(図6a)。AlxGa
1-xNは、ドナー不純物の添加により低抵抗化が可能で
あるため、Si基板1と電気的に接続される。実際に
は、AlxGa1-xN中でSiはドナーとして働き、ま
た、成長中にSiは基板からオートドープされることか
ら、故意に不純物を添加しなくても、AlxGa1-xN中
間層2は低抵抗n型になり、好都合である。混晶組成に
関してはxが(0.1)以上が好ましく、これによりA
xGa1 -xN中間層2は上記のAlN中間層と同程度の
効果を奏する。この中間層2上にGaN単結晶が作製さ
れる(図6b)。図7にAlGaN中間層を形成した発
光素子の概略構造図を示し、この発光素子は、順に積層
されたAu−Sb電極、Si基板、AlGaN中間層、
n型GaN単結晶層、p型GaN単結晶層及びAu電極
からなる。
(Iii) Utilization of Al x Ga 1-x N (x ≠ 1) Intermediate Layer As shown in the outline of the growth process in FIG. 6, first, on the Si substrate 1, instead of the AlN Ga intermediate layer, Al x Ga is used. 1-x N (x ≠
1) Form the intermediate layer 2 uniformly (FIG. 6a). Al x Ga
Since 1-x N can be made low in resistance by adding a donor impurity, it is electrically connected to the Si substrate 1. In reality, Si acts as a donor in Al x Ga 1-x N, and Si is auto-doped from the substrate during growth, so that Al x Ga 1- The xN intermediate layer 2 has a low resistance n-type, which is convenient. With regard to the mixed crystal composition, x is preferably (0.1) or more, whereby A
The l x Ga 1 -x N intermediate layer 2 has the same effect as the above AlN intermediate layer. A GaN single crystal is produced on this intermediate layer 2 (FIG. 6b). FIG. 7 shows a schematic structural diagram of a light emitting device in which an AlGaN intermediate layer is formed. The light emitting device includes an Au—Sb electrode, a Si substrate, an AlGaN intermediate layer, which are sequentially stacked.
It is composed of an n-type GaN single crystal layer, a p-type GaN single crystal layer, and an Au electrode.

【0022】(iv) 極薄膜AlN中間層の利用 図8の成長プロセスの概略に示すように、まず、Si基
板1上にAlN中間層2を極薄膜化すると(図8a)、
例えば低抵抗n型Si基板中の電子の波動関数とn型G
aN中の電子の波動関数が重なるようになり、トンネル
電流が流れ、電気的に接続される。この効果を利用する
には、AlN中間層2の層厚は、波動関数の広がりと同
程度、即ち厚くとも10nm以下にする必要があり、し
かも中間層として効果があるためには少なくとも1nm
以上あることが好ましい。この方法では、極薄膜成長技
術を利用する。この中間層2上にGaN単結晶が作製さ
れる(図8b)。図9に極薄膜AlN中間層を形成した
発光素子の概略構造図を示し、この発光素子は、順に積
層されたAu−Sb電極、Si基板、極薄膜AlN中間
層、n型GaN単結晶層、p型GaN単結晶層及びAu
電極からなる。
(Iv) Utilization of Ultrathin AlN Intermediate Layer As shown in the outline of the growth process in FIG. 8, first, the AlN intermediate layer 2 is made extremely thin on the Si substrate 1 (FIG. 8a).
For example, the electron wave function and n-type G in a low-resistance n-type Si substrate
The wave functions of the electrons in the aN come to overlap each other, a tunnel current flows, and they are electrically connected. In order to utilize this effect, the layer thickness of the AlN intermediate layer 2 needs to be about the same as the spread of the wave function, that is, at least 10 nm or less, and to be effective as an intermediate layer, it is at least 1 nm.
It is preferable to have the above. This method utilizes ultrathin film growth technology. A GaN single crystal is produced on this intermediate layer 2 (FIG. 8b). FIG. 9 shows a schematic structural diagram of a light emitting device in which an ultrathin film AlN intermediate layer is formed. This light emitting device includes an Au—Sb electrode, a Si substrate, an ultrathin film AlN intermediate layer, an n-type GaN single crystal layer, which are sequentially stacked, p-type GaN single crystal layer and Au
It consists of electrodes.

【0023】中間層作製プロセスは以上である。 (2)pn接合の形成 中間層作製プロセスの後はサファイア上に作製している
場合と同様、例えば基板温度を1040℃として、ガリウム
を含む有機金属化合物、例えばトリメチルガリウム(Tr
imethyl gallium:TMG)及びNH3を供給してGaN層の
成長を行う。混晶を成長させる場合には混晶組成に見合
うだけのTMG、TMA及びトリメチルインジウム(Tr
imethyl Indium:TMI)を供給する。
The intermediate layer manufacturing process is as described above. (2) Formation of pn junction After the intermediate layer manufacturing process, as in the case of manufacturing on sapphire, for example, the substrate temperature is set to 1040 ° C., and an organometallic compound containing gallium such as trimethylgallium (Tr
Immethyl gallium (TMG) and NH 3 are supplied to grow the GaN layer. When growing a mixed crystal, TMG, TMA and trimethylindium (Tr
imethyl Indium (TMI).

【0024】(Ga1-xAlx1-yInyN層が所望の成
長膜厚に達した後、TMG、TMA、TMIの供給を止
め降温し、基板温度が600℃以下になったのちNH3
の供給を止め、温度が室温程度に下がったとき成長装置
より取り出す。本発明は、(Ga1-xAlx1-yIny
混晶のうち、ほとんど全ての混晶組成において、中間層
上に成長させる場合、同様な効果が得られる。但し、A
lN(x=1かつy=0)を中間層の上に成長する場合
には、本発明の効果は期待できない。
After the (Ga 1-x Al x ) 1-y In y N layer reached the desired growth film thickness, the supply of TMG, TMA, and TMI was stopped and the temperature was lowered to 600 ° C. or less. Later NH 3
Is stopped, and when the temperature drops to about room temperature, it is taken out from the growth apparatus. The present invention relates to (Ga 1-x Al x ) 1-y In y N
In almost all mixed crystal compositions among the mixed crystals, the same effect can be obtained when grown on the intermediate layer. However, A
When 1N (x = 1 and y = 0) is grown on the intermediate layer, the effect of the present invention cannot be expected.

【0025】上記のように作製した(Ga1-xAlx
1-yInyN結晶は故意に不純物を添加しなくてもn型伝
導性を示すため、そのまま発光素子のn型層に利用す
る。もちろん、上記(Ga1-xAlx1-yInyN結晶作
製時に故意にドナーとして働く不純物を添加してもよ
い。次に、結晶表面の全体、または一部に、x及びyが
所望の値となるよう、原料ガスの流量を制御し、同時に
アクセプタとなる不純物、例えば亜鉛やマグネシウムな
どの原料となるガスを供給して、伝導性の異なる(Ga
1-xAlx1-yInyN結晶の接合を形成する。成長を終
了し、成長炉内よりウェーハを取り出した後に、各々伝
導性の異なる層それぞれに電極を形成し、発光素子が作
製される。
Produced as described above (Ga 1-x Al x ).
1-y In y N because crystals having n-type conductivity even without the addition of impurities intentionally, it uses the n-type layer of the light-emitting element. Of course, an impurity that acts as a donor may be intentionally added when the (Ga 1-x Al x ) 1-y In y N crystal is produced. Next, the flow rate of the raw material gas is controlled so that x and y have desired values, and at the same time, impurities serving as acceptors, for example, raw material gases such as zinc and magnesium are supplied to all or part of the crystal surface. And have different conductivity (Ga
1-x Al x ) 1-y In y N forming a crystal junction. After the growth is completed and the wafer is taken out from the growth furnace, electrodes are formed on the respective layers having different conductivities to manufacture a light emitting device.

【0026】本発明により作製したAlN中間層上のG
aN結晶の表面を顕微鏡を介し写真撮影したもの及び反
射電子線回折像を図10(a)及び図10(b)にそれ
ぞれ示す。図11(a)及び図11(b)に、比較例と
してSi基板上に直接GaNを作製した場合のGaN結
晶の表面顕微鏡写真及び反射電子線回折像をそれぞれ示
す。図から明らかなように、本発明のようにAlN中間
層を用いて作製したGaNの表面は極めて平坦であり
(図10(a))、また、反射電子回折像から、得られ
たGaNが単結晶であることがわかり、また菊池線や菊
池帯が観測されるなど結晶性が極めて良いことが分る
((図10(b))。一方、比較例のSi基板上に直接
成長させた場合は、島状にしか成長せず(図11
(a))、また、反射電子線回折像も観測されないこと
から((図11(b))、結晶性はきわめて悪い。
G on the AlN intermediate layer prepared according to the present invention
A photograph of the surface of the aN crystal taken through a microscope and a backscattered electron diffraction image are shown in FIGS. 10 (a) and 10 (b), respectively. 11 (a) and 11 (b) respectively show a surface micrograph and a backscattered electron diffraction image of a GaN crystal in the case where GaN was directly produced on a Si substrate as a comparative example. As is clear from the figure, the surface of GaN produced by using the AlN intermediate layer as in the present invention has an extremely flat surface (FIG. 10 (a)), and the obtained GaN shows that the GaN obtained is simple. It can be seen that it is a crystal, and the crystallinity is extremely good, such as the Kikuchi line and the Kikuchi zone being observed ((FIG. 10 (b)). On the other hand, when directly grown on the Si substrate of the comparative example. Grow only like islands (Fig. 11
(A)) Moreover, since the backscattered electron diffraction image is not observed ((FIG. 11 (b))), the crystallinity is extremely poor.

【0027】単結晶X線回折評価装置により銅のKα線
を入射X線として、それぞれの膜を評価すると、本発明
により作製したGaN層からは、X線回折強度は強く、
また、Kα1線とKα2線も明瞭に分離されるなど、サフ
ァイア上に成長したものと遜色ない結晶性を有している
ことが分った。一方、比較例のSi基板上に直接成長し
た膜からはX線回折は認められず、結晶性は悪いことが
結論づけられた。
When the respective films were evaluated by the single crystal X-ray diffraction evaluation apparatus using the copper Kα rays as the incident X-rays, the X-ray diffraction intensity was strong from the GaN layer produced according to the present invention.
Further, it was found that the Kα 1 ray and the Kα 2 ray were clearly separated and had crystallinity comparable to that grown on sapphire. On the other hand, no X-ray diffraction was observed from the film directly grown on the Si substrate of the comparative example, and it was concluded that the crystallinity was poor.

【0028】本発明は、安価なSiを基板として用いて
おり、今後、特に可視短波長発光素子及び近紫外光発光
素子の実用化にとって必須の技術である。
The present invention uses inexpensive Si as a substrate and is an essential technology for practical use of visible short wavelength light emitting elements and near-ultraviolet light emitting elements in the future.

【0029】[0029]

【発明の効果】以上のように、本発明によれば、窒化ガ
リウム系半導体素子において、シリコン基板と、シリコ
ン基板上に形成された少なくともアルミニウム及び窒素
を含む化合物からなる中間層と、中間層上に形成された
(Ga1-xAlx1-yInyN(0≦x≦1,0≦y≦
1,但しx=1かつy=0の場合は除く)の結晶層とか
らなる構造を有しているので、大電流注入によっても動
作できかつ微細加工特に電極形成が容易にできる窒化ガ
リウム系半導体素子を得ることが出来る。
As described above, according to the present invention, in the gallium nitride based semiconductor device, the silicon substrate, the intermediate layer formed on the silicon substrate and containing the compound containing at least aluminum and nitrogen, and the intermediate layer are formed. (Ga 1-x Al x ) 1-y In y N (0 ≦ x ≦ 1, 0 ≦ y ≦
1, but x = 1 and y = 0) is excluded), a gallium nitride-based semiconductor that can be operated by a large current injection and that can be easily microfabricated, especially an electrode is formed. A device can be obtained.

【0030】また、本発明の窒化ガリウム系半導体素子
製造方法によれば、シリコンの単結晶基板を温度400〜
1300℃に保持し、少なくともアルミニウムを含む有機金
属化合物及び窒素を含む化合物が存在する雰囲気内に単
結晶基板を保持して少なくともアルミニウム及び窒素を
含む薄膜の中間層を単結晶基板の表面の一部分又は全体
に形成し、しかる後、中間層の上に(Ga1-xAlx
1-yInyNの単結晶層を少なくとも一層又は多層形成す
るので、得られた単結晶層の結晶欠陥の発生を抑制した
高結晶品質で平坦性の極めて優れた(Ga1-xAlx
1-yInyNの単結晶を有する窒化ガリウム系半導体素子
を得ることが出来る。
Further, according to the method for producing a gallium nitride-based semiconductor device of the present invention, a silicon single crystal substrate is heated at a temperature of 400-400.
Hold the temperature at 1300 ° C., hold the single crystal substrate in an atmosphere in which an organometallic compound containing at least aluminum and a compound containing nitrogen are present, and form an intermediate layer of a thin film containing at least aluminum and nitrogen at a part of the surface of the single crystal substrate or Formed on the whole surface, and then on the intermediate layer (Ga 1-x Al x ).
Since at least one 1-y In y N single crystal layer is formed, a single crystal layer having high crystal quality and extremely excellent flatness (Ga 1-x Al x )
1-y In y gallium nitride-based semiconductor device having a single crystal of N can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による窒化ガリウム系半導体素子である
Si基板上の(Ga1-xAlx 1-yInyN(0≦x≦
1,0≦y≦1、但し、x=1かつy=0の場合は除
く)からなる発光ダイオードの概略構成断面図である。
FIG. 1 is a gallium nitride based semiconductor device according to the present invention.
(Ga on Si substrate1-xAlx) 1-yInyN (0 ≦ x ≦
1,0 ≦ y ≦ 1, except when x = 1 and y = 0
FIG. 3 is a schematic cross-sectional view of a light emitting diode including

【図2】本発明による実施例の窒化ガリウム系半導体素
子製造方法におけるSi基板上の各層を示す概略断面図
である。
FIG. 2 is a schematic cross-sectional view showing each layer on a Si substrate in a method for manufacturing a gallium nitride-based semiconductor device according to an example of the present invention.

【図3】本発明による実施例の窒化ガリウム系半導体素
子である発光ダイオードを示すの概略構成断面図であ
る。
FIG. 3 is a schematic structural cross-sectional view showing a light emitting diode which is a gallium nitride based semiconductor device according to an embodiment of the present invention.

【図4】本発明による他の実施例の窒化ガリウム系半導
体素子製造方法におけるSi基板上の各層を示す概略断
面図である。
FIG. 4 is a schematic cross-sectional view showing each layer on a Si substrate in a gallium nitride-based semiconductor device manufacturing method according to another embodiment of the present invention.

【図5】本発明による他の実施例の窒化ガリウム系半導
体素子である発光ダイオードを示す概略構成断面図であ
る。
FIG. 5 is a schematic cross-sectional view showing a light emitting diode which is a gallium nitride based semiconductor device according to another embodiment of the present invention.

【図6】本発明による他の実施例の窒化ガリウム系半導
体素子製造方法におけるSi基板上の各層を示す概略断
面図である。
FIG. 6 is a schematic cross-sectional view showing each layer on a Si substrate in a gallium nitride based semiconductor device manufacturing method according to another embodiment of the present invention.

【図7】本発明による他の実施例の窒化ガリウム系半導
体素子である発光ダイオードを示す概略構成断面図であ
る。
FIG. 7 is a schematic cross-sectional view showing a light emitting diode which is a gallium nitride based semiconductor device according to another embodiment of the present invention.

【図8】本発明による他の実施例の窒化ガリウム系半導
体素子製造方法におけるSi基板上の各層を示す概略断
面図である。
FIG. 8 is a schematic cross-sectional view showing each layer on a Si substrate in a method of manufacturing a gallium nitride based semiconductor device according to another embodiment of the present invention.

【図9】本発明による他の実施例の窒化ガリウム系半導
体素子である発光ダイオードを示す概略構成断面図であ
る。
FIG. 9 is a schematic cross-sectional view showing a light emitting diode which is a gallium nitride based semiconductor device according to another embodiment of the present invention.

【図10】本発明による窒化ガリウム系半導体素子製造
方法により作製したGaNの表面の様子を示す顕微鏡写
真に基づく拡大平面図(a)及び反射電子線回析線像を
示す図(b)である。
FIG. 10 is an enlarged plan view (a) based on a micrograph showing a state of the surface of GaN produced by the method for producing a gallium nitride-based semiconductor device according to the present invention, and a diagram (b) showing a reflected electron beam diffraction line image. ..

【図11】比較例のSi基板上に直接GaN成長させた
場合のGaNの表面の様子を示す顕微鏡写真に基づく拡
大平面図(a)、及び反射電子線回析線像を示す図
(b)である。
FIG. 11 is an enlarged plan view (a) based on a micrograph showing a state of the surface of GaN when GaN is directly grown on a Si substrate of a comparative example, and a view (b) showing a backscattered electron diffraction image. Is.

【主要部分の符号の説明】[Explanation of symbols for main parts]

1 n型Si(111)面基板 2 AlN中間層 3 アンドープまたはSiドープn型(Ga1-xAlx
1-yInyN単結晶層 4 Mgドープ高抵抗(Ga1-xAlx1-xInyN単結
晶層 5 低加速電子照射処理されたMgドープp型(Ga
1-xAlx1-yInyN単結晶 6A,6B 金属電極 7A,7B リード線
1 n-type Si (111) plane substrate 2 AlN intermediate layer 3 undoped or Si-doped n-type (Ga 1-x Al x )
1-y In y N single crystal layer 4 Mg-doped high resistance (Ga 1-x Al x ) 1-x In y N single-crystal layer 5 Mg-doped p-type (Ga
1-x Al x ) 1-y In y N single crystal 6A, 6B metal electrode 7A, 7B lead wire

───────────────────────────────────────────────────── フロントページの続き (71)出願人 000241463 豊田合成株式会社 愛知県西春日井郡春日町大字落合字長畑1 番地 (72)発明者 竹内 哲也 愛知県名古屋市昭和区伊勝町2丁目96番地 ラフォーレ山の手B−205 (72)発明者 天野 浩 愛知県名古屋市名東区神丘町2丁目21虹ケ 丘東団地19棟103号室 (72)発明者 赤崎 勇 愛知県名古屋市西区浄心1丁目1番38− 805 (72)発明者 渡辺 温 埼玉県鶴ヶ島市富士見6丁目1番1号パイ オニア株式会社総合研究所内 (72)発明者 真部 勝英 愛知県西春日井郡春日町大字落合字長畑1 番地 豊田合成株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (71) Applicant 000241463 Toyoda Gosei Co., Ltd. 1 Ochiai, Ochiai, Kasuga-cho, Nishikasugai-gun, Aichi (72) Inventor Tetsuya Takeuchi 2-96, Ikatsu-cho, Showa-ku, Nagoya, Aichi Prefecture B-205 (72) Inventor Hiroshi Amano 2-21, Kamioka-cho, Meito-ku, Aichi Prefecture Nijigaoka-higashi housing complex, Room 103, Room 103 (72) Inventor, Isamu Akasaki 1-3-1, Jyoshin, Nishi-ku, Aichi Prefecture (72) Inventor Atsushi Watanabe 6-1, 1-1 Fujimi, Tsurugashima City, Saitama Pioneer Co., Ltd. Research Institute (72) Inventor Katsuhide Mabe 1 Ochihata, Nagahata, Ochiai, Kasuga-cho, Nishikasugai-gun, Aichi Prefecture Toyoda Gosei Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 シリコン(Si)基板と、前記シリコン
基板上に形成された少なくともアルミニウム(Al)及
び窒素(N)を含む化合物からなる中間層と、前記中間
層上に形成された(Ga1-xAlx1-yInyN(0≦x
≦1,0≦y≦1,但しx=1かつy=0の場合は除
く)の結晶層とからなることを特徴とする窒化ガリウム
系半導体素子。
1. A silicon (Si) substrate, an intermediate layer made of a compound containing at least aluminum (Al) and nitrogen (N) formed on the silicon substrate, and formed on the intermediate layer (Ga 1 -x Al x ) 1-y In y N (0 ≦ x
≤1, 0 ≤ y ≤ 1, except where x = 1 and y = 0), and a gallium nitride based semiconductor device.
【請求項2】 前記(Ga1-xAlx1-yInyN(0≦
x≦1,0≦y≦1,但しx=1かつy=0の場合は除
く)の結晶層上に形成されかつ伝導性が該結晶層のそれ
とは異なりかつpn接合を形成する少なくとも1つの
(Ga1-xAlx1-yInyN(0≦x≦1,0≦y≦
1,但し、x=1かつy=0の場合は除く)の他の結晶
層を有し、各々の結晶層においてx及びyは等しい場
合、あるいは異なる場合を含むことを特徴とする請求項
1記載の窒化ガリウム系半導体素子。
2. The (Ga 1-x Al x ) 1-y In y N (0 ≦
x ≦ 1, 0 ≦ y ≦ 1, except where x = 1 and y = 0) and has conductivity different from that of the crystal layer and forming a pn junction. (Ga 1-x Al x ) 1-y In y N (0 ≦ x ≦ 1, 0 ≦ y ≦
1, except that x = 1 and y = 0), and x and y are equal or different in each crystal layer. The gallium nitride-based semiconductor device described.
【請求項3】 シリコン(Si)基板と、前記シリコン
基板上に形成された少なくともアルミニウム(Al)及
び窒素(N)を含む化合物からなる中間層と、前記中間
層上に形成された(Ga1-xAlx1-yInyN(0≦x
≦1,0≦y≦1,但しx=1かつy=0の場合は除
く)の結晶層とからなる窒化ガリウム系半導体素子を製
造する方法であって、シリコンの単結晶基板を温度400
〜 1300℃に保持し、少なくともアルミニウムを含む有
機金属化合物及び窒素を含む化合物が存在する雰囲気内
に前記単結晶基板を保持して少なくともアルミニウム及
び窒素を含む薄膜の中間層を前記単結晶基板の表面の一
部分又は全体に形成し、しかる後、前記中間層の上に
(Ga1-xAlx1-yInyNの単結晶層を少なくとも一
層又は多層形成することを特徴とする窒化ガリウム系半
導体素子の製造方法。
3. A silicon (Si) substrate, an intermediate layer made of a compound containing at least aluminum (Al) and nitrogen (N) formed on the silicon substrate, and formed on the intermediate layer (Ga 1 -x Al x ) 1-y In y N (0 ≦ x
≤1, 0 ≤ y ≤ 1, except where x = 1 and y = 0), and a gallium nitride based semiconductor device having a temperature of 400
~ 1300 ℃, holding the single crystal substrate in an atmosphere containing an organometallic compound containing at least aluminum and a compound containing nitrogen, the intermediate layer of a thin film containing at least aluminum and nitrogen surface of the single crystal substrate portions or formed on the entire, thereafter, (Ga 1-x Al x ) on the intermediate layer 1-y in y gallium nitride, which comprises at least one layer or multi-layer forming a single crystal layer of N Manufacturing method of semiconductor device.
【請求項4】 前記(Ga1-xAlx1-yInyNの単結
晶層におけるAlNモル分率xが0及び1を含み0から
1の範囲内で、InNモル分率yが0及び1を含み0か
ら1の範囲内(但し、x=1かつy=0の場合は除く)
であることを特徴とする請求項3記載の製造方法。
4. The AlN mole fraction x in the single crystal layer of (Ga 1-x Al x ) 1-y In y N is in the range of 0 to 1 inclusive of 0 and 1, and the InN mole fraction y is Within 0 to 1 including 0 and 1 (except when x = 1 and y = 0)
The manufacturing method according to claim 3, wherein
JP33525591A 1991-12-18 1991-12-18 Gallium nitride based semiconductor device and method of manufacturing the same Expired - Lifetime JP3352712B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP33525591A JP3352712B2 (en) 1991-12-18 1991-12-18 Gallium nitride based semiconductor device and method of manufacturing the same
US07/971,208 US5239188A (en) 1991-12-18 1992-11-04 Gallium nitride base semiconductor device
EP92310314A EP0551721B1 (en) 1991-12-18 1992-11-12 Gallium nitride base semiconductor device and method of fabricating the same
DE69217903T DE69217903T2 (en) 1991-12-18 1992-11-12 Semiconductor device based on gallium nitride and method of manufacture
US08/046,960 US5389571A (en) 1991-12-18 1993-04-16 Method of fabricating a gallium nitride based semiconductor device with an aluminum and nitrogen containing intermediate layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33525591A JP3352712B2 (en) 1991-12-18 1991-12-18 Gallium nitride based semiconductor device and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH05343741A true JPH05343741A (en) 1993-12-24
JP3352712B2 JP3352712B2 (en) 2002-12-03

Family

ID=18286479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33525591A Expired - Lifetime JP3352712B2 (en) 1991-12-18 1991-12-18 Gallium nitride based semiconductor device and method of manufacturing the same

Country Status (4)

Country Link
US (2) US5239188A (en)
EP (1) EP0551721B1 (en)
JP (1) JP3352712B2 (en)
DE (1) DE69217903T2 (en)

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998047170A1 (en) * 1997-04-11 1998-10-22 Nichia Chemical Industries, Ltd. Method of growing nitride semiconductors, nitride semiconductor substrate and nitride semiconductor device
US6121121A (en) * 1997-11-07 2000-09-19 Toyoda Gosei Co., Ltd Method for manufacturing gallium nitride compound semiconductor
JP2001160539A (en) * 1999-09-24 2001-06-12 Sanyo Electric Co Ltd Forming method for nitride semiconductor device and nitride semiconductor
US6380051B1 (en) 1998-06-24 2002-04-30 Sharp Kabushiki Kaisha Layered structure including a nitride compound semiconductor film and method for making the same
US6410939B1 (en) 2000-10-12 2002-06-25 Sharp Kabushiki Kaisha Semiconductor light-emitting device and method of manufacturing the same
JP2002208729A (en) * 2001-01-11 2002-07-26 Sanken Electric Co Ltd Light emitting element and its fabricating method
JP2002217453A (en) * 2001-01-17 2002-08-02 Sanken Electric Co Ltd Light-emitting device and method of manufacturing the same
JP2003037287A (en) * 2001-07-26 2003-02-07 Sanken Electric Co Ltd Light-emitting element
US6580098B1 (en) 1999-07-27 2003-06-17 Toyoda Gosei Co., Ltd. Method for manufacturing gallium nitride compound semiconductor
US6617668B1 (en) 1999-05-21 2003-09-09 Toyoda Gosei Co., Ltd. Methods and devices using group III nitride compound semiconductor
US6635901B2 (en) 2000-12-15 2003-10-21 Nobuhiko Sawaki Semiconductor device including an InGaAIN layer
US6645295B1 (en) 1999-05-10 2003-11-11 Toyoda Gosei Co., Ltd. Method for manufacturing group III nitride compound semiconductor and a light-emitting device using group III nitride compound semiconductor
JP2003536257A (en) * 2000-06-09 2003-12-02 セントレ・ナショナル・デ・ラ・レシェルシェ・サイエンティフィーク Method of manufacturing gallium nitride coating
US6822270B2 (en) 2002-02-12 2004-11-23 Sharp Kabushiki Kaisha Semiconductor light emitting device having gallium nitride based compound semiconductor layer
US6830948B2 (en) 1999-12-24 2004-12-14 Toyoda Gosei Co., Ltd. Method for producing group III nitride compound semiconductor and group III nitride compound semiconductor device
US6844246B2 (en) 2001-03-22 2005-01-18 Toyoda Gosei Co., Ltd. Production method of III nitride compound semiconductor, and III nitride compound semiconductor element based on it
US6855620B2 (en) 2000-04-28 2005-02-15 Toyoda Gosei Co., Ltd. Method for fabricating Group III nitride compound semiconductor substrates and semiconductor devices
US6860943B2 (en) 2001-10-12 2005-03-01 Toyoda Gosei Co., Ltd. Method for producing group III nitride compound semiconductor
US6861305B2 (en) 2000-03-31 2005-03-01 Toyoda Gosei Co., Ltd. Methods for fabricating group III nitride compound semiconductors and group III nitride compound semiconductor devices
US6967122B2 (en) 2000-03-14 2005-11-22 Toyoda Gosei Co., Ltd. Group III nitride compound semiconductor and method for manufacturing the same
US6979584B2 (en) 1999-12-24 2005-12-27 Toyoda Gosei Co, Ltd. Method for producing group III nitride compound semiconductor and group III nitride compound semiconductor device
US7052979B2 (en) 2001-02-14 2006-05-30 Toyoda Gosei Co., Ltd. Production method for semiconductor crystal and semiconductor luminous element
US7128846B2 (en) 2002-02-28 2006-10-31 Toyoda Gosei Co., Ltd. Process for producing group III nitride compound semiconductor
US7141444B2 (en) 2000-03-14 2006-11-28 Toyoda Gosei Co., Ltd. Production method of III nitride compound semiconductor and III nitride compound semiconductor element
JP2007184624A (en) * 1998-07-31 2007-07-19 Sharp Corp Nitride semiconductor structure, producing method thereof, and light emitting element
JP2009059974A (en) * 2007-09-03 2009-03-19 Univ Meijo Semiconductor substrate, semiconductor light emitting element and manufacturing method of semiconductor substrate
JP2009088327A (en) * 2007-10-01 2009-04-23 Fuji Electric Device Technology Co Ltd Gallium nitride semiconductor device and method of manufacturing the same
JP2009130010A (en) * 2007-11-21 2009-06-11 New Japan Radio Co Ltd Manufacturing method of nitride semiconductor device
JP2009200513A (en) * 2009-04-17 2009-09-03 Sharp Corp CRYSTAL SUBSTRATE, AND MANUFACTURING METHOD OF GaN-BASED CRYSTAL FILM
US7619261B2 (en) 2000-08-07 2009-11-17 Toyoda Gosei Co., Ltd. Method for manufacturing gallium nitride compound semiconductor
JP2010141369A (en) * 1998-07-14 2010-06-24 Fujitsu Ltd Nitride based group iii-v compound semiconductor device, and method for manufacturing semiconductor device
JP4701513B2 (en) * 2001-02-16 2011-06-15 サンケン電気株式会社 Light emitting device and manufacturing method thereof
JP2011187965A (en) * 1998-07-31 2011-09-22 Sharp Corp Nitride semiconductor structure, method of manufacturing the same, and light emitting element
US8934513B2 (en) 1994-09-14 2015-01-13 Rohm Co., Ltd. Semiconductor light emitting device and manufacturing method therefor
JP2016092169A (en) * 2014-11-04 2016-05-23 エア・ウォーター株式会社 Semiconductor device and manufacturing method of the same
EP3767762A1 (en) 2019-07-14 2021-01-20 Instytut Wysokich Cisnien Polskiej Akademii Nauk Distributed feedback laser diode and method of making the same
US11424162B2 (en) 2002-03-12 2022-08-23 Hamamatsu Photonics K.K. Substrate dividing method

Families Citing this family (152)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5602418A (en) * 1992-08-07 1997-02-11 Asahi Kasei Kogyo Kabushiki Kaisha Nitride based semiconductor device and manufacture thereof
PL173917B1 (en) * 1993-08-10 1998-05-29 Ct Badan Wysokocisnieniowych P Method of obtaining a crystalline lamellar structure
EP0647730B1 (en) * 1993-10-08 2002-09-11 Mitsubishi Cable Industries, Ltd. GaN single crystal
US5657335A (en) * 1993-11-01 1997-08-12 The Regents, University Of California P-type gallium nitride
US6958093B2 (en) * 1994-01-27 2005-10-25 Cree, Inc. Free-standing (Al, Ga, In)N and parting method for forming same
US5679152A (en) * 1994-01-27 1997-10-21 Advanced Technology Materials, Inc. Method of making a single crystals Ga*N article
US5909040A (en) * 1994-03-09 1999-06-01 Kabushiki Kaisha Toshiba Semiconductor device including quaternary buffer layer with pinholes
JPH07273366A (en) * 1994-03-28 1995-10-20 Pioneer Electron Corp Manufacture of light-emitting device made of nitride of group iii element
DE4419080A1 (en) * 1994-05-31 1995-12-07 Max Planck Gesellschaft Semiconductor device for photovoltaic solar cell
JPH0832115A (en) * 1994-07-19 1996-02-02 Sharp Corp Electrode structure and its manufacture
US5814533A (en) * 1994-08-09 1998-09-29 Rohm Co., Ltd. Semiconductor light emitting element and manufacturing method therefor
US5843590A (en) * 1994-12-26 1998-12-01 Sumitomo Electric Industries, Ltd. Epitaxial wafer and method of preparing the same
US5563428A (en) * 1995-01-30 1996-10-08 Ek; Bruce A. Layered structure of a substrate, a dielectric layer and a single crystal layer
US6346720B1 (en) * 1995-02-03 2002-02-12 Sumitomo Chemical Company, Limited Layered group III-V compound semiconductor, method of manufacturing the same, and light emitting element
US5739554A (en) * 1995-05-08 1998-04-14 Cree Research, Inc. Double heterojunction light emitting diode with gallium nitride active layer
JP3564811B2 (en) * 1995-07-24 2004-09-15 豊田合成株式会社 Group III nitride semiconductor light emitting device
US6377596B1 (en) 1995-09-18 2002-04-23 Hitachi, Ltd. Semiconductor materials, methods for fabricating semiconductor materials, and semiconductor devices
JPH0992882A (en) * 1995-09-25 1997-04-04 Mitsubishi Electric Corp Light emitting semiconductor device and manufacturing method thereof
US5641975A (en) * 1995-11-09 1997-06-24 Northrop Grumman Corporation Aluminum gallium nitride based heterojunction bipolar transistor
US5923058A (en) * 1995-11-09 1999-07-13 Northrop Grumman Corporation Aluminum gallium nitride heterojunction bipolar transistor
JP3396356B2 (en) * 1995-12-11 2003-04-14 三菱電機株式会社 Semiconductor device and method of manufacturing the same
JP3461074B2 (en) * 1995-12-12 2003-10-27 パイオニア株式会社 Method of manufacturing group III nitride semiconductor light emitting device
JP2872096B2 (en) * 1996-01-19 1999-03-17 日本電気株式会社 Vapor phase growth method of low resistance p-type gallium nitride based compound semiconductor
JP3164016B2 (en) * 1996-05-31 2001-05-08 住友電気工業株式会社 Light emitting device and method for manufacturing wafer for light emitting device
US5923950A (en) * 1996-06-14 1999-07-13 Matsushita Electric Industrial Co., Inc. Method of manufacturing a semiconductor light-emitting device
US6284395B1 (en) 1997-03-05 2001-09-04 Corning Applied Technologies Corp. Nitride based semiconductors and devices
EP0874405A3 (en) * 1997-03-25 2004-09-15 Mitsubishi Cable Industries, Ltd. GaN group crystal base member having low dislocation density, use thereof and manufacturing methods thereof
JP3257442B2 (en) * 1997-04-09 2002-02-18 松下電器産業株式会社 Method for producing gallium nitride crystal
DE19725900C2 (en) * 1997-06-13 2003-03-06 Dieter Bimberg Process for the deposition of gallium nitride on silicon substrates
DE69835216T2 (en) 1997-07-25 2007-05-31 Nichia Corp., Anan SEMICONDUCTOR DEVICE OF A NITRIDE CONNECTION
US6633120B2 (en) * 1998-11-19 2003-10-14 Unisplay S.A. LED lamps
US6051849A (en) 1998-02-27 2000-04-18 North Carolina State University Gallium nitride semiconductor structures including a lateral gallium nitride layer that extends from an underlying gallium nitride layer
US6608327B1 (en) 1998-02-27 2003-08-19 North Carolina State University Gallium nitride semiconductor structure including laterally offset patterned layers
US6500257B1 (en) * 1998-04-17 2002-12-31 Agilent Technologies, Inc. Epitaxial material grown laterally within a trench and method for producing same
TW398084B (en) * 1998-06-05 2000-07-11 Hewlett Packard Co Multilayered indium-containing nitride buffer layer for nitride epitaxy
US6265289B1 (en) * 1998-06-10 2001-07-24 North Carolina State University Methods of fabricating gallium nitride semiconductor layers by lateral growth from sidewalls into trenches, and gallium nitride semiconductor structures fabricated thereby
US6344375B1 (en) 1998-07-28 2002-02-05 Matsushita Electric Industrial Co., Ltd Substrate containing compound semiconductor, method for manufacturing the same and semiconductor device using the same
US6240115B1 (en) * 1998-08-27 2001-05-29 Agilent Technologies, Inc. Epitaxial facet formation for laser diodes based on III-V material systems
SG94712A1 (en) 1998-09-15 2003-03-18 Univ Singapore Method of fabricating group-iii nitride-based semiconductor device
US6734515B1 (en) * 1998-09-18 2004-05-11 Mitsubishi Cable Industries, Ltd. Semiconductor light receiving element
US6255198B1 (en) 1998-11-24 2001-07-03 North Carolina State University Methods of fabricating gallium nitride microelectronic layers on silicon layers and gallium nitride microelectronic structures formed thereby
US6177688B1 (en) 1998-11-24 2001-01-23 North Carolina State University Pendeoepitaxial gallium nitride semiconductor layers on silcon carbide substrates
US6326654B1 (en) 1999-02-05 2001-12-04 The United States Of America As Represented By The Secretary Of The Air Force Hybrid ultraviolet detector
JP3770014B2 (en) 1999-02-09 2006-04-26 日亜化学工業株式会社 Nitride semiconductor device
WO2000052796A1 (en) 1999-03-04 2000-09-08 Nichia Corporation Nitride semiconductor laser element
JP3702700B2 (en) * 1999-03-31 2005-10-05 豊田合成株式会社 Group III nitride compound semiconductor device and method for manufacturing the same
US6521514B1 (en) 1999-11-17 2003-02-18 North Carolina State University Pendeoepitaxial methods of fabricating gallium nitride semiconductor layers on sapphire substrates
US6380108B1 (en) 1999-12-21 2002-04-30 North Carolina State University Pendeoepitaxial methods of fabricating gallium nitride semiconductor layers on weak posts, and gallium nitride semiconductor structures fabricated thereby
US6403451B1 (en) 2000-02-09 2002-06-11 Noerh Carolina State University Methods of fabricating gallium nitride semiconductor layers on substrates including non-gallium nitride posts
US20020158253A1 (en) * 2000-02-21 2002-10-31 Tetsuji Moku Light-emitting semiconductor device and method of fabrication
US6261929B1 (en) 2000-02-24 2001-07-17 North Carolina State University Methods of forming a plurality of semiconductor layers using spaced trench arrays
US6534332B2 (en) 2000-04-21 2003-03-18 The Regents Of The University Of California Method of growing GaN films with a low density of structural defects using an interlayer
US7687888B2 (en) 2000-08-04 2010-03-30 The Regents Of The University Of California Method of controlling stress in gallium nitride films deposited on substrates
US6391748B1 (en) * 2000-10-03 2002-05-21 Texas Tech University Method of epitaxial growth of high quality nitride layers on silicon substrates
US6649287B2 (en) 2000-12-14 2003-11-18 Nitronex Corporation Gallium nitride materials and methods
US6611002B2 (en) 2001-02-23 2003-08-26 Nitronex Corporation Gallium nitride material devices and methods including backside vias
US7233028B2 (en) * 2001-02-23 2007-06-19 Nitronex Corporation Gallium nitride material devices and methods of forming the same
US6956250B2 (en) * 2001-02-23 2005-10-18 Nitronex Corporation Gallium nitride materials including thermally conductive regions
JP3714188B2 (en) * 2001-04-19 2005-11-09 ソニー株式会社 Nitride semiconductor vapor phase growth method and nitride semiconductor device
US20040029365A1 (en) * 2001-05-07 2004-02-12 Linthicum Kevin J. Methods of fabricating gallium nitride microelectronic layers on silicon layers and gallium nitride microelectronic structures formed thereby
US7030428B2 (en) * 2001-12-03 2006-04-18 Cree, Inc. Strain balanced nitride heterojunction transistors
US6881983B2 (en) * 2002-02-25 2005-04-19 Kopin Corporation Efficient light emitting diodes and lasers
US6911079B2 (en) * 2002-04-19 2005-06-28 Kopin Corporation Method for reducing the resistivity of p-type II-VI and III-V semiconductors
US7002180B2 (en) * 2002-06-28 2006-02-21 Kopin Corporation Bonding pad for gallium nitride-based light-emitting device
WO2003107442A2 (en) 2002-06-17 2003-12-24 Kopin Corporation Electrode for p-type gallium nitride-based semiconductors
US6734091B2 (en) 2002-06-28 2004-05-11 Kopin Corporation Electrode for p-type gallium nitride-based semiconductors
US6955985B2 (en) 2002-06-28 2005-10-18 Kopin Corporation Domain epitaxy for thin film growth
JP4528489B2 (en) * 2003-01-27 2010-08-18 独立行政法人理化学研究所 Ultraviolet light emitting device using p-type semiconductor
US7122841B2 (en) 2003-06-04 2006-10-17 Kopin Corporation Bonding pad for gallium nitride-based light-emitting devices
US7135720B2 (en) * 2003-08-05 2006-11-14 Nitronex Corporation Gallium nitride material transistors and methods associated with the same
US20050145851A1 (en) * 2003-12-17 2005-07-07 Nitronex Corporation Gallium nitride material structures including isolation regions and methods
US7071498B2 (en) * 2003-12-17 2006-07-04 Nitronex Corporation Gallium nitride material devices including an electrode-defining layer and methods of forming the same
US7901994B2 (en) * 2004-01-16 2011-03-08 Cree, Inc. Methods of manufacturing group III nitride semiconductor devices with silicon nitride layers
US7045404B2 (en) * 2004-01-16 2006-05-16 Cree, Inc. Nitride-based transistors with a protective layer and a low-damage recess and methods of fabrication thereof
US7612390B2 (en) * 2004-02-05 2009-11-03 Cree, Inc. Heterojunction transistors including energy barriers
US7170111B2 (en) * 2004-02-05 2007-01-30 Cree, Inc. Nitride heterojunction transistors having charge-transfer induced energy barriers and methods of fabricating the same
US20050179042A1 (en) * 2004-02-13 2005-08-18 Kopin Corporation Monolithic integration and enhanced light extraction in gallium nitride-based light-emitting devices
US20050179046A1 (en) * 2004-02-13 2005-08-18 Kopin Corporation P-type electrodes in gallium nitride-based light-emitting devices
WO2005106985A2 (en) * 2004-04-22 2005-11-10 Cree, Inc. Improved substrate buffer structure for group iii nitride devices
US7084441B2 (en) 2004-05-20 2006-08-01 Cree, Inc. Semiconductor devices having a hybrid channel layer, current aperture transistors and methods of fabricating same
US7432142B2 (en) * 2004-05-20 2008-10-07 Cree, Inc. Methods of fabricating nitride-based transistors having regrown ohmic contact regions
US7361946B2 (en) * 2004-06-28 2008-04-22 Nitronex Corporation Semiconductor device-based sensors
US7339205B2 (en) * 2004-06-28 2008-03-04 Nitronex Corporation Gallium nitride materials and methods associated with the same
US7687827B2 (en) * 2004-07-07 2010-03-30 Nitronex Corporation III-nitride materials including low dislocation densities and methods associated with the same
US20060017064A1 (en) * 2004-07-26 2006-01-26 Saxler Adam W Nitride-based transistors having laterally grown active region and methods of fabricating same
JP2008519441A (en) * 2004-10-28 2008-06-05 ニトロネックス コーポレイション Monolithic microwave integrated circuit using gallium nitride material
US7456443B2 (en) * 2004-11-23 2008-11-25 Cree, Inc. Transistors having buried n-type and p-type regions beneath the source region
US7709859B2 (en) * 2004-11-23 2010-05-04 Cree, Inc. Cap layers including aluminum nitride for nitride-based transistors
US7247889B2 (en) 2004-12-03 2007-07-24 Nitronex Corporation III-nitride material structures including silicon substrates
US7161194B2 (en) * 2004-12-06 2007-01-09 Cree, Inc. High power density and/or linearity transistors
SG145706A1 (en) * 2005-02-02 2008-09-29 Agency Science Tech & Res Method and structure for fabricating iii-v nitride layers on silicon substrates
DE102005010821B4 (en) * 2005-03-07 2007-01-25 Technische Universität Berlin Method for producing a component
US7465967B2 (en) * 2005-03-15 2008-12-16 Cree, Inc. Group III nitride field effect transistors (FETS) capable of withstanding high temperature reverse bias test conditions
US8575651B2 (en) 2005-04-11 2013-11-05 Cree, Inc. Devices having thick semi-insulating epitaxial gallium nitride layer
US7626217B2 (en) * 2005-04-11 2009-12-01 Cree, Inc. Composite substrates of conductive and insulating or semi-insulating group III-nitrides for group III-nitride devices
US7544963B2 (en) * 2005-04-29 2009-06-09 Cree, Inc. Binary group III-nitride based high electron mobility transistors
US7615774B2 (en) * 2005-04-29 2009-11-10 Cree.Inc. Aluminum free group III-nitride based high electron mobility transistors
US7365374B2 (en) 2005-05-03 2008-04-29 Nitronex Corporation Gallium nitride material structures including substrates and methods associated with the same
US9331192B2 (en) * 2005-06-29 2016-05-03 Cree, Inc. Low dislocation density group III nitride layers on silicon carbide substrates and methods of making the same
US20070018198A1 (en) * 2005-07-20 2007-01-25 Brandes George R High electron mobility electronic device structures comprising native substrates and methods for making the same
US20070202360A1 (en) * 2005-10-04 2007-08-30 Nitronex Corporation Gallium nitride material transistors and methods for wideband applications
US7566913B2 (en) 2005-12-02 2009-07-28 Nitronex Corporation Gallium nitride material devices including conductive regions and methods associated with the same
EP1969635B1 (en) 2005-12-02 2017-07-19 Infineon Technologies Americas Corp. Gallium nitride material devices and associated methods
US20080035143A1 (en) * 2006-08-14 2008-02-14 Sievers Robert E Human-powered dry powder inhaler and dry powder inhaler compositions
US8823057B2 (en) 2006-11-06 2014-09-02 Cree, Inc. Semiconductor devices including implanted regions for providing low-resistance contact to buried layers and related devices
EP2126963A4 (en) * 2007-03-16 2011-03-16 Sebastian Lourdudoss Semiconductor heterostructures and manufacturing thereof
WO2009007943A1 (en) * 2007-07-09 2009-01-15 Freescale Semiconductor, Inc. Hetero-structure field effect transistor, integrated circuit including a hetero-structure field effect transistor and method for manufacturing a hetero-structure field effect transistor
JP5903714B2 (en) * 2007-07-26 2016-04-13 ソイテックSoitec Epitaxial method and template grown by this method
US7745848B1 (en) 2007-08-15 2010-06-29 Nitronex Corporation Gallium nitride material devices and thermal designs thereof
US8026581B2 (en) * 2008-02-05 2011-09-27 International Rectifier Corporation Gallium nitride material devices including diamond regions and methods associated with the same
US8343824B2 (en) * 2008-04-29 2013-01-01 International Rectifier Corporation Gallium nitride material processing and related device structures
TWI362769B (en) 2008-05-09 2012-04-21 Univ Nat Chiao Tung Light emitting device and fabrication method therefor
GB2467911B (en) * 2009-02-16 2013-06-05 Rfmd Uk Ltd A semiconductor structure and a method of manufacture thereof
JP5287406B2 (en) * 2009-03-24 2013-09-11 豊田合成株式会社 Method for producing group III nitride semiconductor
US8039371B2 (en) * 2009-07-01 2011-10-18 International Business Machines Corporation Reduced defect semiconductor-on-insulator hetero-structures
US20110017972A1 (en) * 2009-07-22 2011-01-27 Rfmd (Uk) Limited Light emitting structure with integral reverse voltage protection
JP2011086928A (en) * 2009-09-17 2011-04-28 Sumitomo Chemical Co Ltd Method for producing compound semiconductor crystal, method for manufacturing electronic device, and semiconductor substrate
WO2011084269A2 (en) * 2009-12-16 2011-07-14 National Semiconductor Corporation Stress compensation for large area gallium nitride or other nitride-based structures on semiconductor substrates
US8318563B2 (en) 2010-05-19 2012-11-27 National Semiconductor Corporation Growth of group III nitride-based structures and integration with conventional CMOS processing tools
US8592292B2 (en) 2010-09-02 2013-11-26 National Semiconductor Corporation Growth of multi-layer group III-nitride buffers on large-area silicon substrates and other substrates
KR20120032329A (en) 2010-09-28 2012-04-05 삼성전자주식회사 Semiconductor device
JP2012089612A (en) * 2010-10-18 2012-05-10 Sumitomo Electric Ind Ltd Composite substrate having silicon carbide substrate
US9093420B2 (en) 2012-04-18 2015-07-28 Rf Micro Devices, Inc. Methods for fabricating high voltage field effect transistor finger terminations
US9124221B2 (en) 2012-07-16 2015-09-01 Rf Micro Devices, Inc. Wide bandwidth radio frequency amplier having dual gate transistors
US8988097B2 (en) 2012-08-24 2015-03-24 Rf Micro Devices, Inc. Method for on-wafer high voltage testing of semiconductor devices
US9917080B2 (en) 2012-08-24 2018-03-13 Qorvo US. Inc. Semiconductor device with electrical overstress (EOS) protection
US9147632B2 (en) 2012-08-24 2015-09-29 Rf Micro Devices, Inc. Semiconductor device having improved heat dissipation
US9202874B2 (en) 2012-08-24 2015-12-01 Rf Micro Devices, Inc. Gallium nitride (GaN) device with leakage current-based over-voltage protection
US9142620B2 (en) 2012-08-24 2015-09-22 Rf Micro Devices, Inc. Power device packaging having backmetals couple the plurality of bond pads to the die backside
WO2014035794A1 (en) 2012-08-27 2014-03-06 Rf Micro Devices, Inc Lateral semiconductor device with vertical breakdown region
US9070761B2 (en) 2012-08-27 2015-06-30 Rf Micro Devices, Inc. Field effect transistor (FET) having fingers with rippled edges
US9325281B2 (en) 2012-10-30 2016-04-26 Rf Micro Devices, Inc. Power amplifier controller
US9455327B2 (en) 2014-06-06 2016-09-27 Qorvo Us, Inc. Schottky gated transistor with interfacial layer
US9536803B2 (en) 2014-09-05 2017-01-03 Qorvo Us, Inc. Integrated power module with improved isolation and thermal conductivity
US10615158B2 (en) 2015-02-04 2020-04-07 Qorvo Us, Inc. Transition frequency multiplier semiconductor device
US10062684B2 (en) 2015-02-04 2018-08-28 Qorvo Us, Inc. Transition frequency multiplier semiconductor device
CN105047779B (en) * 2015-08-18 2017-08-25 西安电子科技大学 Based on yellow light LED material on Si substrates and preparation method thereof
US9704705B2 (en) 2015-09-08 2017-07-11 Macom Technology Solutions Holdings, Inc. Parasitic channel mitigation via reaction with active species
US9773898B2 (en) 2015-09-08 2017-09-26 Macom Technology Solutions Holdings, Inc. III-nitride semiconductor structures comprising spatially patterned implanted species
US9806182B2 (en) 2015-09-08 2017-10-31 Macom Technology Solutions Holdings, Inc. Parasitic channel mitigation using elemental diboride diffusion barrier regions
US10211294B2 (en) 2015-09-08 2019-02-19 Macom Technology Solutions Holdings, Inc. III-nitride semiconductor structures comprising low atomic mass species
US20170069721A1 (en) 2015-09-08 2017-03-09 M/A-Com Technology Solutions Holdings, Inc. Parasitic channel mitigation using silicon carbide diffusion barrier regions
US9799520B2 (en) 2015-09-08 2017-10-24 Macom Technology Solutions Holdings, Inc. Parasitic channel mitigation via back side implantation
US9627473B2 (en) 2015-09-08 2017-04-18 Macom Technology Solutions Holdings, Inc. Parasitic channel mitigation in III-nitride material semiconductor structures
US9673281B2 (en) 2015-09-08 2017-06-06 Macom Technology Solutions Holdings, Inc. Parasitic channel mitigation using rare-earth oxide and/or rare-earth nitride diffusion barrier regions
US9960127B2 (en) 2016-05-18 2018-05-01 Macom Technology Solutions Holdings, Inc. High-power amplifier package
US10134658B2 (en) 2016-08-10 2018-11-20 Macom Technology Solutions Holdings, Inc. High power transistors
JP6772820B2 (en) * 2016-12-22 2020-10-21 日亜化学工業株式会社 Manufacturing method of recycled circuit board and manufacturing method of light emitting element
US10418499B2 (en) 2017-06-01 2019-09-17 Glo Ab Self-aligned nanowire-based light emitting diode subpixels for a direct view display and method of making thereof
WO2019055271A1 (en) 2017-09-15 2019-03-21 Glo Ab Etendue enhancement for light emitting diode subpixels
US11038023B2 (en) 2018-07-19 2021-06-15 Macom Technology Solutions Holdings, Inc. III-nitride material semiconductor structures on conductive silicon substrates
US20230078017A1 (en) * 2021-09-16 2023-03-16 Wolfspeed, Inc. Semiconductor device incorporating a substrate recess

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60173829A (en) * 1984-02-14 1985-09-07 Nippon Telegr & Teleph Corp <Ntt> Growing method of compound semiconductor thin-film
JPS6230696A (en) * 1985-07-31 1987-02-09 Sharp Corp Production of semiconductor crystal havinb broad forbidden band width
JPS62119196A (en) * 1985-11-18 1987-05-30 Univ Nagoya Method for growing compound semiconductor
DE3850582T2 (en) * 1987-01-31 1994-11-10 Toyoda Gosei Kk Gallium nitride semiconductor luminescence diode and process for its production.
US4911102A (en) * 1987-01-31 1990-03-27 Toyoda Gosei Co., Ltd. Process of vapor growth of gallium nitride and its apparatus
NL8701497A (en) * 1987-06-26 1989-01-16 Philips Nv SEMICONDUCTOR DEVICE FOR GENERATING ELECTROMAGNETIC RADIATION.
DE68919408T2 (en) * 1989-01-13 1995-04-20 Toshiba Kawasaki Kk Compound semiconductor, the same semiconductor component using and manufacturing method of the semiconductor component.
JP2704181B2 (en) * 1989-02-13 1998-01-26 日本電信電話株式会社 Method for growing compound semiconductor single crystal thin film
JP3026087B2 (en) * 1989-03-01 2000-03-27 豊田合成株式会社 Gas phase growth method of gallium nitride based compound semiconductor
JPH03160714A (en) * 1989-11-20 1991-07-10 Fujitsu Ltd Semiconductor device and manufacture thereof
JPH03203388A (en) * 1989-12-29 1991-09-05 Matsushita Electric Ind Co Ltd Semiconductor light emitting element and its manufacture
JP2500319B2 (en) * 1990-01-11 1996-05-29 名古屋大学長 Method for producing p-type gallium nitride compound semiconductor crystal
JP3102647B2 (en) * 1990-12-10 2000-10-23 日本電信電話株式会社 Semiconductor light emitting device
JP3160914B2 (en) * 1990-12-26 2001-04-25 豊田合成株式会社 Gallium nitride based compound semiconductor laser diode
US5173751A (en) * 1991-01-21 1992-12-22 Pioneer Electronic Corporation Semiconductor light emitting device
US5182670A (en) * 1991-08-30 1993-01-26 Apa Optics, Inc. Narrow band algan filter

Cited By (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8934513B2 (en) 1994-09-14 2015-01-13 Rohm Co., Ltd. Semiconductor light emitting device and manufacturing method therefor
US7154128B2 (en) 1997-04-11 2006-12-26 Nichia Chemical Industries, Limited Nitride semiconductor growth method, nitride semiconductor substrate, and nitride semiconductor device
US6153010A (en) * 1997-04-11 2000-11-28 Nichia Chemical Industries Ltd. Method of growing nitride semiconductors, nitride semiconductor substrate and nitride semiconductor device
USRE42770E1 (en) 1997-04-11 2011-10-04 Nichia Corporation Nitride semiconductor device having a nitride semiconductor substrate and an indium containing active layer
WO1998047170A1 (en) * 1997-04-11 1998-10-22 Nichia Chemical Industries, Ltd. Method of growing nitride semiconductors, nitride semiconductor substrate and nitride semiconductor device
US6940103B2 (en) 1997-04-11 2005-09-06 Nichia Chemical Industries, Ltd. Nitride semiconductor growth method, nitride semiconductor substrate and nitride semiconductor device
US7083679B2 (en) 1997-04-11 2006-08-01 Nichia Corporation Nitride semiconductor growth method, nitride semiconductor substrate, and nitride semiconductor device
US7442254B2 (en) 1997-04-11 2008-10-28 Nichia Corporation Nitride semiconductor device having a nitride semiconductor substrate and an indium containing active layer
US6756611B2 (en) 1997-04-11 2004-06-29 Nichia Chemical Industries, Ltd. Nitride semiconductor growth method, nitride semiconductor substrate, and nitride semiconductor device
US6121121A (en) * 1997-11-07 2000-09-19 Toyoda Gosei Co., Ltd Method for manufacturing gallium nitride compound semiconductor
US6380051B1 (en) 1998-06-24 2002-04-30 Sharp Kabushiki Kaisha Layered structure including a nitride compound semiconductor film and method for making the same
JP2010141369A (en) * 1998-07-14 2010-06-24 Fujitsu Ltd Nitride based group iii-v compound semiconductor device, and method for manufacturing semiconductor device
JP4666295B2 (en) * 1998-07-14 2011-04-06 富士通株式会社 Semiconductor laser and semiconductor device manufacturing method
JP2007184624A (en) * 1998-07-31 2007-07-19 Sharp Corp Nitride semiconductor structure, producing method thereof, and light emitting element
JP2011187965A (en) * 1998-07-31 2011-09-22 Sharp Corp Nitride semiconductor structure, method of manufacturing the same, and light emitting element
US6645295B1 (en) 1999-05-10 2003-11-11 Toyoda Gosei Co., Ltd. Method for manufacturing group III nitride compound semiconductor and a light-emitting device using group III nitride compound semiconductor
US6790279B2 (en) 1999-05-10 2004-09-14 Toyoda Gosei Co., Ltd. Method for manufacturing group III nitride compound semiconductor and a light-emitting device using group III nitride compound semiconductor
US6617668B1 (en) 1999-05-21 2003-09-09 Toyoda Gosei Co., Ltd. Methods and devices using group III nitride compound semiconductor
US6881651B2 (en) 1999-05-21 2005-04-19 Toyoda Gosei Co., Ltd. Methods and devices using group III nitride compound semiconductor
US6893945B2 (en) 1999-07-27 2005-05-17 Toyoda Gosei Co., Ltd. Method for manufacturing gallium nitride group compound semiconductor
US6930329B2 (en) 1999-07-27 2005-08-16 Toyoda Gosei Co., Ltd. Method for manufacturing gallium nitride compound semiconductor
US6580098B1 (en) 1999-07-27 2003-06-17 Toyoda Gosei Co., Ltd. Method for manufacturing gallium nitride compound semiconductor
US7176497B2 (en) 1999-07-27 2007-02-13 Toyoda Gosei Co., Ltd. Group III nitride compound semiconductor
US6835966B2 (en) 1999-07-27 2004-12-28 Toyoda Gosei Co., Ltd. Method for manufacturing gallium nitride compound semiconductor
US6818926B2 (en) 1999-07-27 2004-11-16 Toyoda Gosei Co., Ltd. Method for manufacturing gallium nitride compound semiconductor
JP2001160539A (en) * 1999-09-24 2001-06-12 Sanyo Electric Co Ltd Forming method for nitride semiconductor device and nitride semiconductor
US7560725B2 (en) 1999-12-24 2009-07-14 Toyoda Gosei Co., Ltd. Method for fabricating group III nitride compound semiconductors and group III nitride compound semiconductor devices
US6979584B2 (en) 1999-12-24 2005-12-27 Toyoda Gosei Co, Ltd. Method for producing group III nitride compound semiconductor and group III nitride compound semiconductor device
US6830948B2 (en) 1999-12-24 2004-12-14 Toyoda Gosei Co., Ltd. Method for producing group III nitride compound semiconductor and group III nitride compound semiconductor device
US6967122B2 (en) 2000-03-14 2005-11-22 Toyoda Gosei Co., Ltd. Group III nitride compound semiconductor and method for manufacturing the same
US7462867B2 (en) 2000-03-14 2008-12-09 Toyoda Gosei Co., Ltd. Group III nitride compound semiconductor devices and method for fabricating the same
US7141444B2 (en) 2000-03-14 2006-11-28 Toyoda Gosei Co., Ltd. Production method of III nitride compound semiconductor and III nitride compound semiconductor element
US6861305B2 (en) 2000-03-31 2005-03-01 Toyoda Gosei Co., Ltd. Methods for fabricating group III nitride compound semiconductors and group III nitride compound semiconductor devices
US7491984B2 (en) 2000-03-31 2009-02-17 Toyoda Gosei Co., Ltd. Method for fabricating group III nitride compound semiconductors and group III nitride compound semiconductor devices
US6855620B2 (en) 2000-04-28 2005-02-15 Toyoda Gosei Co., Ltd. Method for fabricating Group III nitride compound semiconductor substrates and semiconductor devices
JP2003536257A (en) * 2000-06-09 2003-12-02 セントレ・ナショナル・デ・ラ・レシェルシェ・サイエンティフィーク Method of manufacturing gallium nitride coating
US7619261B2 (en) 2000-08-07 2009-11-17 Toyoda Gosei Co., Ltd. Method for manufacturing gallium nitride compound semiconductor
US6410939B1 (en) 2000-10-12 2002-06-25 Sharp Kabushiki Kaisha Semiconductor light-emitting device and method of manufacturing the same
US6635901B2 (en) 2000-12-15 2003-10-21 Nobuhiko Sawaki Semiconductor device including an InGaAIN layer
JP2002208729A (en) * 2001-01-11 2002-07-26 Sanken Electric Co Ltd Light emitting element and its fabricating method
JP2002217453A (en) * 2001-01-17 2002-08-02 Sanken Electric Co Ltd Light-emitting device and method of manufacturing the same
US7052979B2 (en) 2001-02-14 2006-05-30 Toyoda Gosei Co., Ltd. Production method for semiconductor crystal and semiconductor luminous element
JP4701513B2 (en) * 2001-02-16 2011-06-15 サンケン電気株式会社 Light emitting device and manufacturing method thereof
US6844246B2 (en) 2001-03-22 2005-01-18 Toyoda Gosei Co., Ltd. Production method of III nitride compound semiconductor, and III nitride compound semiconductor element based on it
JP2003037287A (en) * 2001-07-26 2003-02-07 Sanken Electric Co Ltd Light-emitting element
US6860943B2 (en) 2001-10-12 2005-03-01 Toyoda Gosei Co., Ltd. Method for producing group III nitride compound semiconductor
US6822270B2 (en) 2002-02-12 2004-11-23 Sharp Kabushiki Kaisha Semiconductor light emitting device having gallium nitride based compound semiconductor layer
US7128846B2 (en) 2002-02-28 2006-10-31 Toyoda Gosei Co., Ltd. Process for producing group III nitride compound semiconductor
US11424162B2 (en) 2002-03-12 2022-08-23 Hamamatsu Photonics K.K. Substrate dividing method
JP2009059974A (en) * 2007-09-03 2009-03-19 Univ Meijo Semiconductor substrate, semiconductor light emitting element and manufacturing method of semiconductor substrate
JP2009088327A (en) * 2007-10-01 2009-04-23 Fuji Electric Device Technology Co Ltd Gallium nitride semiconductor device and method of manufacturing the same
JP2009130010A (en) * 2007-11-21 2009-06-11 New Japan Radio Co Ltd Manufacturing method of nitride semiconductor device
JP2009200513A (en) * 2009-04-17 2009-09-03 Sharp Corp CRYSTAL SUBSTRATE, AND MANUFACTURING METHOD OF GaN-BASED CRYSTAL FILM
JP2016092169A (en) * 2014-11-04 2016-05-23 エア・ウォーター株式会社 Semiconductor device and manufacturing method of the same
EP3767762A1 (en) 2019-07-14 2021-01-20 Instytut Wysokich Cisnien Polskiej Akademii Nauk Distributed feedback laser diode and method of making the same

Also Published As

Publication number Publication date
JP3352712B2 (en) 2002-12-03
EP0551721A2 (en) 1993-07-21
US5239188A (en) 1993-08-24
US5389571A (en) 1995-02-14
EP0551721A3 (en) 1994-04-20
DE69217903T2 (en) 1997-07-17
EP0551721B1 (en) 1997-03-05
DE69217903D1 (en) 1997-04-10

Similar Documents

Publication Publication Date Title
JP3352712B2 (en) Gallium nitride based semiconductor device and method of manufacturing the same
TWI231077B (en) Semiconductor light emitting device and its manufacturing method
US6069021A (en) Method of growing group III nitride semiconductor crystal layer and semiconductor device incorporating group III nitride semiconductor crystal layer
TWI352436B (en)
TWI413279B (en) Group iii nitride semiconductor light emitting device, process for producing the same, and lamp
JP4191227B2 (en) Group III nitride semiconductor light emitting device manufacturing method, group III nitride semiconductor light emitting device, and lamp
TWI408733B (en) Process for producing iii group nitride compound semiconductor, iii group nitride compound semiconductor light emitting element, and lamp
KR101074178B1 (en) Method for manufacturing group ⅲ nitride compound semiconductor light-emitting device, group ⅲ nitride compound semiconductor light-emitting device, and lamp
JPH07202265A (en) Manufacture of group iii nitride semiconductor
TW200838000A (en) Group-III nitride compound semiconductor device and production method thereof, group-III nitride compound semiconductor light-emitting device and production method thereof, and lamp
JPWO2006025407A1 (en) Light emitting device and manufacturing method thereof
JP2003023220A (en) Nitride semiconductor element
JPWO2008136504A1 (en) Group III nitride semiconductor light emitting device manufacturing method
KR20100082379A (en) Method for manufacturing iii nitride semiconductor, method for manufacturing iii nitride semiconductor light emitting element, iii nitride semiconductor light emitting element, and lamp
KR20090074092A (en) Method for manufacturing group iii nitride semiconductor light-emitting device, group iii nitride semiconductor light-emitting device, and lamp
JP2010073750A (en) Method for growing zinc-oxide-based semiconductor, and method for manufacturing semiconductor light emitting element
US6194744B1 (en) Method of growing group III nitride semiconductor crystal layer and semiconductor device incorporating group III nitride semiconductor crystal layer
JP3207918B2 (en) Light-emitting device using polycrystalline semiconductor material of group III-V compound and method for manufacturing the same
JP3718329B2 (en) GaN compound semiconductor light emitting device
JP2010040692A (en) Nitride based semiconductor device and method of manufacturing the same
JP3772816B2 (en) Gallium nitride crystal substrate, method for manufacturing the same, gallium nitride semiconductor device, and light emitting diode
JP2008098224A (en) Film forming method of group iii nitride compound semiconductor laminate structure
JP2008115463A (en) Layered structure of semiconductor of group iii nitride, production method therefor, semiconductor light-emitting element and lamp
JP2008098245A (en) Film forming method of group iii nitride compound semiconductor laminate structure
JPH1075018A (en) Manufacture of semiconductor and semiconductor light-emitting device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080920

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090920

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100920

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100920

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110920

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120920

Year of fee payment: 10

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120920

Year of fee payment: 10