JPH05343615A - Semiconductor device and its manufacture - Google Patents

Semiconductor device and its manufacture

Info

Publication number
JPH05343615A
JPH05343615A JP4149519A JP14951992A JPH05343615A JP H05343615 A JPH05343615 A JP H05343615A JP 4149519 A JP4149519 A JP 4149519A JP 14951992 A JP14951992 A JP 14951992A JP H05343615 A JPH05343615 A JP H05343615A
Authority
JP
Japan
Prior art keywords
capacitor
dielectric
electrodes
semiconductor device
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4149519A
Other languages
Japanese (ja)
Other versions
JP3250257B2 (en
Inventor
Koji Kato
晃次 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP14951992A priority Critical patent/JP3250257B2/en
Publication of JPH05343615A publication Critical patent/JPH05343615A/en
Application granted granted Critical
Publication of JP3250257B2 publication Critical patent/JP3250257B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a semiconductor device of high density and high performance at a low cost, by reducing the occupied area by a capacitor while keeping the capacitance constant. eliminating difference of capacitor characteristics like permittivity due to the applied voltage direction, and reducing manufacturing process. CONSTITUTION:The surfaces on which dielectric substance 110 of a capacitor comes into contact with electrodes 112, 113 are vertical to a semiconductor substrate 101. The two electrodes of the capacitor are formed at the same time before the dielectric substance is formed. The whole part or a part of the substrate except bonding pads of a wiring layer 107 is covered with the whole part or a part of the dielectric substance.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、主に、キャパシタを有
する半導体装置、特に半導体記憶装置の構造、及びその
製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention mainly relates to a semiconductor device having a capacitor, and more particularly to a structure of a semiconductor memory device and a manufacturing method thereof.

【0002】[0002]

【従来の技術】従来のキャパシタが半導体基板上に集積
された半導体装置としては、ダイナミック・ランダム・
アクセス・メモリ(DRAM)等が実用化されており、
また、最近ではMOS型半導体装置に、強誘電体膜を積
層した構造の不揮発性メモリがインターナショナル・エ
レクトロン・デバイセズ・ミーティング(IEDM)’
87、850頁−851頁に提案されている。
2. Description of the Related Art A conventional semiconductor device in which capacitors are integrated on a semiconductor substrate is a dynamic random
Access memory (DRAM) has been put to practical use,
In addition, recently, a non-volatile memory having a structure in which a ferroelectric film is laminated on a MOS semiconductor device has been used in International Electron Devices Meeting (IEDM) '.
87, p.850-851.

【0003】図5にMOS型半導体装置に強誘電体膜を
積層した構造の、不揮発性半導体メモリの一例を示す。
図5において、501はP型シリコン基板であり、50
2は素子分離用のLOCOS酸化膜、503はソースと
なるN型拡散層であり、504はドレインとなるN型拡
散層である。505はゲート電極であり、506は層間
絶縁膜である。507が強誘電体を用いた誘電体膜であ
り、下部電極508と上部電極509により挟まれ、キ
ャパシタを構成している。510は第2層間絶縁膜であ
り、511が配線電極である。
FIG. 5 shows an example of a non-volatile semiconductor memory having a structure in which a ferroelectric film is laminated on a MOS semiconductor device.
In FIG. 5, 501 is a P-type silicon substrate,
Reference numeral 2 is a LOCOS oxide film for element isolation, 503 is an N-type diffusion layer that serves as a source, and 504 is an N-type diffusion layer that serves as a drain. Reference numeral 505 is a gate electrode, and 506 is an interlayer insulating film. Reference numeral 507 denotes a dielectric film using a ferroelectric substance, which is sandwiched by a lower electrode 508 and an upper electrode 509 to form a capacitor. Reference numeral 510 is a second interlayer insulating film, and 511 is a wiring electrode.

【0004】[0004]

【発明が解決しようとする課題】このように能動素子の
形成された半導体基板上に、能動素子と隣接するように
平面的なキャパシタを形成した構造では、最低でもひと
つのキャパシタをひとつのメモリセル内におさめなけれ
ばならず、キャパシタの面積がメモリセルの面積で決定
される。また、キャパシタの下部電極508、誘電体膜
507、上部電極509をそれぞれ形成するための工程
が追加され、コスト増大を招く。
In a structure in which a planar capacitor is formed so as to be adjacent to an active element on a semiconductor substrate on which an active element is thus formed, at least one capacitor corresponds to one memory cell. The area of the capacitor is determined by the area of the memory cell. In addition, a step for forming each of the lower electrode 508, the dielectric film 507, and the upper electrode 509 of the capacitor is added, which causes an increase in cost.

【0005】また、下部電極508と上部電極509は
別個に形成されるので、下部電極508と誘電体507
との界面状態と、上部電極509と誘電体507との界
面状態とが異なり、電極にかける電圧の方向による、分
極等のキャパシタ特性の差異、すなわちキャパシタ特性
の非対称性が生じる。
Since the lower electrode 508 and the upper electrode 509 are formed separately, the lower electrode 508 and the dielectric 507 are formed.
And the interface state between the upper electrode 509 and the dielectric 507 are different, and a difference in capacitor characteristics such as polarization depending on the direction of the voltage applied to the electrodes, that is, an asymmetry of the capacitor characteristics occurs.

【0006】そこで本発明はこのような課題を解決する
もので、その目的とするところは、キャパシタの占有面
積を、同一容量を確保したまま縮小させ、あるいはメモ
リセル以外の領域をキャパシタとして使用してキャパシ
タの有効面積を稼ぐとともに、キャパシタ形成に伴う工
程増を削減し、また、キャパシタ特性の非対称性をなく
すことによって、高性能・高密度な半導体装置を低コス
トに提供することにある。
Therefore, the present invention solves such a problem. An object of the present invention is to reduce the occupied area of the capacitor while ensuring the same capacitance, or to use a region other than the memory cell as a capacitor. By increasing the effective area of the capacitor, reducing the number of steps required for forming the capacitor, and eliminating the asymmetry of the capacitor characteristics, it is possible to provide a high-performance and high-density semiconductor device at low cost.

【0007】[0007]

【課題を解決するための手段】誘電体が二つの電極によ
って挟まれた構造を有するキャパシタが、能動素子の形
成された同一半導体基板上に集積された半導体装置にお
いて、前記二つの電極の有するキャパシタンスに寄与す
る面のうち全て、もしくは一部が、半導体基板の主面と
垂直、もしくは垂直に近く配置されていることを特徴と
する。
In a semiconductor device in which a capacitor having a structure in which a dielectric is sandwiched between two electrodes is integrated on the same semiconductor substrate on which an active element is formed, the capacitance of the two electrodes is All or part of the surface that contributes to the above is arranged perpendicularly or nearly perpendicularly to the main surface of the semiconductor substrate.

【0008】また、誘電体が二つの電極によって挟まれ
た構造を有するキャパシタが、能動素子の形成された同
一半導体基板上に集積された半導体装置の製造方法にお
いて、前記二つの電極となる薄膜を形成する工程と、前
記二つの電極を同時にエッチングする工程と、その後、
前記誘電体を形成する工程とを含むことを特徴とする。
Further, in a method of manufacturing a semiconductor device in which a capacitor having a structure in which a dielectric is sandwiched between two electrodes is integrated on the same semiconductor substrate on which an active element is formed, a thin film serving as the two electrodes is formed. A step of forming, a step of simultaneously etching the two electrodes, and then,
And a step of forming the dielectric.

【0009】また、誘電体が二つの電極によって挟まれ
た構造を有するキャパシタが、能動素子の形成された同
一半導体基板上に集積された半導体装置において、前記
誘電体の全部、もしくは一部が、前記半導体基板上に形
成された配線層の、ボンディング・パッド以外の領域の
全部、もしくは一部を覆うことを特徴とする。
In a semiconductor device in which a capacitor having a structure in which a dielectric is sandwiched between two electrodes is integrated on the same semiconductor substrate on which active elements are formed, all or part of the dielectric is It is characterized in that the wiring layer formed on the semiconductor substrate covers all or part of a region other than the bonding pad.

【0010】[0010]

【実施例】図1(a)〜(d)は本発明による半導体装
置の第1の実施例を示す主要工程断面図である。図1
(e)および(f)は本発明による半導体装置の第1の
実施例を示す主要平面図である。まず、図1にしたが
い、本発明の第1の実施例について説明する。ここでは
説明の都合上シリコン基板を用い、Nチャンネルトラン
ジスタを用いた例につき説明する。
1 (a) to 1 (d) are sectional views showing main steps of a semiconductor device according to a first embodiment of the present invention. Figure 1
(E) and (f) are principal plan views showing the first embodiment of the semiconductor device according to the present invention. First, a first embodiment of the present invention will be described with reference to FIG. Here, for convenience of explanation, an example in which a silicon substrate is used and an N-channel transistor is used will be described.

【0011】(図1(a))101はP型シリコン基板
であり、例えば20Ω・cmの比抵抗のウェハを用い
る。102は素子分離用の絶縁膜であり、例えば、従来
技術であるLOCOS法により二酸化シリコン膜を60
00Å形成する。103はトランジスタのソースとなる
N型拡散層であり、例えばリンを80keV、5×10
15cmー2イオン注入することによって形成する。104
はドレインとなるN型拡散層であり、103と同時に形
成する。105はゲート電極であり、例えばリンでドー
プされたポリシリコンを用いる。106は第1層間絶縁
膜であり、例えば化学的気相成長(以下、CVDとす
る)法によりリンガラスを4000Å形成する。107
は配線電極であり、例えばタングステンを5000Åス
パッタする。108は第2層間絶縁膜であり、例えばC
VD法により二酸化シリコンを8000Å形成する。こ
の時、スピン・オン・グラス等を併用して十分に平坦化
することが望ましい。109はスルーホールの埋め込み
プラグであり、例えばタングステンをCVD法によって
形成する。
(FIG. 1A) 101 is a P-type silicon substrate, for example, a wafer having a specific resistance of 20 Ω · cm is used. Reference numeral 102 denotes an insulating film for element isolation. For example, a silicon dioxide film 60 is formed by the conventional LOCOS method.
00Å Form. Reference numeral 103 is an N-type diffusion layer that serves as a source of the transistor, and is made of, for example, phosphorus at 80 keV and 5 × 10 5.
It is formed by implanting 15 cm −2 ions. 104
Is an N-type diffusion layer serving as a drain, and is formed simultaneously with 103. Reference numeral 105 denotes a gate electrode, which uses, for example, polysilicon doped with phosphorus. Reference numeral 106 denotes a first interlayer insulating film, which is formed by a chemical vapor deposition (hereinafter referred to as CVD) method to form phosphorous glass at a thickness of 4000 liters. 107
Is a wiring electrode, for example, tungsten is sputtered at 5000 Å. 108 is a second interlayer insulating film, for example, C
8000Å of silicon dioxide is formed by the VD method. At this time, it is desirable to use a spin-on-glass or the like together to sufficiently flatten the surface. Reference numeral 109 denotes an embedded plug of a through hole, which is made of, for example, tungsten by the CVD method.

【0012】110は本発明の趣旨による誘電体であ
り、例えばチタン酸ジルコン酸鉛(Pb(Ti0.6Zr0.4)O3
を2μmスパッタ法により形成し、フォト・リソグラフ
ィにより所定のパターンに形成する。この時、誘電体1
10の側壁がキャパシタの電極と接する面となるので、
誘電体110の高さ、すなわち膜形成時の膜厚が大きい
方がキャパシタの有効面積が大きくなる。また、誘電体
110の幅がキャパシタの電極間隔となるので、できる
だけ小さくすることが望ましい。また、キャパシタの電
極は誘電体110の側壁にのみ形成するので、誘電体1
10はキャパシタの電極と配線層、あるいは拡散層とを
接続する埋め込みプラグの近傍に形成されるのが望まし
い。
Reference numeral 110 denotes a dielectric substance according to the gist of the present invention, for example, lead zirconate titanate (Pb (Ti 0.6 Zr 0.4 ) O 3 ).
Is formed by a 2 μm sputtering method and formed into a predetermined pattern by photolithography. At this time, dielectric 1
Since the side wall of 10 is the surface in contact with the electrode of the capacitor,
The larger the height of the dielectric 110, that is, the larger the film thickness at the time of film formation, the larger the effective area of the capacitor. Further, since the width of the dielectric 110 becomes the electrode interval of the capacitor, it is desirable to make it as small as possible. In addition, since the capacitor electrodes are formed only on the side walls of the dielectric 110, the dielectric 1
It is desirable that 10 is formed in the vicinity of a buried plug that connects the electrode of the capacitor and the wiring layer or the diffusion layer.

【0013】(図1(b))次に、キャパシタの電極と
なる膜111として、例えば白金をスパッタ法により2
000Å形成する。
(FIG. 1 (b)) Next, as the film 111 to be the electrode of the capacitor, for example, platinum is sputtered to form a film 2.
000Å form.

【0014】(図1(c))次に、異方性エッチングに
よって、全面エッチングを行なう。本実施例において
は、例えば不活性ガスであるアルゴンをイオン・ソース
として用いたイオン・ビーム・エッチングを用いて、半
導体基板101と垂直方向にビームを入射させ全面エッ
チングする。すると、異方性エッチングであるので、誘
電体110の側壁はエッチングされずに電極112、及
び113が残り、誘電体110近傍の埋め込みプラグ1
09とは自己整合的に接続される。また、本実施例にお
いては不活性ガスを用いてエッチングしたので、キャパ
シタの電極となる膜111のうち第2層間絶縁膜108
上の部位はエッチングされた後誘電体110の側壁に再
付着する。したがって、キャパシタの電極となる膜11
1の付きまわりが悪く、誘電体110の側壁部に十分に
堆積されていなかったとしても、再付着によって補填さ
れるので、キャパシタの電極112、及び113は十分
な厚みをもって形成することができる。また、この時誘
電体110を、図1(e)や図1(f)に示すように、
閉曲線をもったパターンとしておけば、二つのキャパシ
タ電極112、及び113を分離する工程は必要ない。
図1(e)および図1(f)において115は一方の電
極と配線層とを接続する埋め込みプラグである。
(FIG. 1 (c)) Next, the entire surface is etched by anisotropic etching. In this embodiment, ion beam etching using, for example, an inert gas, argon, as an ion source is used, and a beam is incident in the direction perpendicular to the semiconductor substrate 101 to etch the entire surface. Then, since the etching is anisotropic etching, the sidewalls of the dielectric 110 are not etched and the electrodes 112 and 113 remain, and the embedded plug 1 near the dielectric 110 is etched.
09 are connected in a self-aligned manner. In addition, since the etching is performed using an inert gas in the present embodiment, the second interlayer insulating film 108 of the film 111 that will be the electrode of the capacitor is used.
The upper portion is redeposited on the sidewall of the dielectric 110 after being etched. Therefore, the film 11 serving as the capacitor electrode
Even if 1 is not attached well and is not sufficiently deposited on the side wall of the dielectric 110, it is compensated by redeposition, so that the electrodes 112 and 113 of the capacitor can be formed with a sufficient thickness. Further, at this time, as shown in FIG. 1E and FIG.
If the pattern has a closed curve, the step of separating the two capacitor electrodes 112 and 113 is not necessary.
In FIGS. 1E and 1F, 115 is a buried plug that connects one electrode to the wiring layer.

【0015】(図1(d))最後にパッシベーション1
14として例えば窒化シリコン(SiNx)をCVD法によ
り1μm形成する。
(FIG. 1 (d)) Finally, passivation 1
As 14, for example, silicon nitride (SiN x ) is formed to a thickness of 1 μm by the CVD method.

【0016】以上をもって本発明の第1の実施例とす
る。
The above is the first embodiment of the present invention.

【0017】このように、キャパシタの誘電体111を
半導体基板101に垂直に形成し、その両側に二つの電
極を形成すれば、図5の従来の技術で示したような、半
導体基板に平行に配置した場合と比較して、同一の電極
面積、同一の電極間隔を取った場合、キャパシタの占有
面積を小さくすることができる。本実施例では、誘電体
107の高さを2μmとしたが、更に高くすることによ
って、キャパシタの占有面積を大きくすることなく、キ
ャパシタの容量を大きくすることができる。また、キャ
パシタの電極112と113を同時に、しかもフォトリ
ソグラフィ工程を必要とせずに形成するので、工程数を
削減することができ、また、電極と誘電体111との界
面状態は対称的であり、電極にかける電圧の方向によ
る、分極、誘電率、誘電正接等のキャパシタ特性に差異
はなかった。
As described above, if the dielectric 111 of the capacitor is formed vertically on the semiconductor substrate 101 and two electrodes are formed on both sides thereof, it becomes parallel to the semiconductor substrate as shown in the prior art of FIG. When the same electrode area and the same electrode interval are provided, the occupied area of the capacitor can be reduced as compared with the case where they are arranged. In this embodiment, the height of the dielectric 107 is set to 2 μm, but by further increasing the height, the capacitance of the capacitor can be increased without increasing the occupied area of the capacitor. Further, since the electrodes 112 and 113 of the capacitor are formed at the same time and without requiring a photolithography process, the number of processes can be reduced, and the interface state between the electrode and the dielectric 111 is symmetrical. There was no difference in the capacitor characteristics such as polarization, dielectric constant and dielectric loss tangent depending on the direction of the voltage applied to the electrodes.

【0018】図2は本発明による半導体装置の第2の実
施例を示す主要断面図である。図2にしたがい、本発明
の第2の実施例について説明する。ここでも説明の都合
上シリコン基板を用い、Nチャンネルトランジスタを用
いた例につき説明する。
FIG. 2 is a main sectional view showing a second embodiment of the semiconductor device according to the present invention. A second embodiment of the present invention will be described with reference to FIG. Here, for convenience of explanation, an example using a silicon substrate and an N-channel transistor will be described.

【0019】201はP型シリコン基板であり、例えば
20Ω・cmの比抵抗のウェハを用いる。202は素子
分離用の絶縁膜であり、例えば、従来技術であるLOC
OS法により二酸化シリコン(SiO2)膜を6000Å形
成する。203はトランジスタのソースとなるN型拡散
層であり、例えばリンを80keV5×1015cmー2
オン注入することによって形成する。204はドレイン
となるN型拡散層であり、203と同時に形成する。2
05はゲート電極であり、例えばリンでドープされたポ
リシリコンを用いる。206は第1層間絶縁膜であり、
例えばCVD法によりリンガラスを4000Å形成す
る。
Reference numeral 201 denotes a P-type silicon substrate, which uses a wafer having a specific resistance of 20 Ω · cm, for example. Reference numeral 202 denotes an insulating film for element isolation, for example, LOC which is a conventional technique.
A silicon dioxide (SiO 2 ) film of 6000Å is formed by the OS method. 203 is an N-type diffusion layer serving as the source of the transistor, for example, is formed by phosphorus 80keV5 × 10 15 cm -2 ion implantation. Reference numeral 204 is an N-type diffusion layer that serves as a drain, and is formed simultaneously with 203. Two
Reference numeral 05 denotes a gate electrode, which uses, for example, polysilicon doped with phosphorus. 206 is a first interlayer insulating film,
For example, phosphorous glass of 4000 Å is formed by the CVD method.

【0020】207は本発明の趣旨によるキャパシタの
誘電体であり、例えば高誘電率のチタン酸ストロンチウ
ム(SrTiO3)を幅0.5μm、高さ2μmに形成する。
208及び209は本発明の趣旨によるキャパシタの電
極であり、例えば白金を2000Åスパッタした後、従
来のフォト・リソグラフィ技術によって208と209
を所望のパターンに形成する。
Reference numeral 207 is a dielectric of a capacitor according to the present invention. For example, strontium titanate (SrTiO 3 ) having a high dielectric constant is formed to have a width of 0.5 μm and a height of 2 μm.
Numerals 208 and 209 are electrodes of a capacitor according to the gist of the present invention.
Are formed into a desired pattern.

【0021】210は第2の層間絶縁膜であり、例え
ば、CVD法によって、二酸化シリコンを2000Å形
成する。211は配線電極であり、例えばアルミニウム
を5000Åスパッタする。
Reference numeral 210 denotes a second interlayer insulating film, which is formed with 2000 Å of silicon dioxide by the CVD method, for example. Reference numeral 211 is a wiring electrode, for example, aluminum is sputtered at 5000 Å.

【0022】以上をもって、本発明の第2の実施例とす
る。
The above is the second embodiment of the present invention.

【0023】このように、キャパシタの誘電体207を
半導体基板201に垂直に形成し、その両側に二つの電
極を形成すれば、図5の従来の技術で示したような、半
導体基板に平行に配置した場合と比較して、同一の電極
面積、同一の電極間隔を取った場合、キャパシタの占有
面積を小さくすることができる。本実施例では、誘電体
207の高さを2μmとしたが、更に高くすることによ
って、キャパシタの占有面積を大きくすることなく、キ
ャパシタの容量を大きくすることができる。また、キャ
パシタの電極208と209を同時に形成するので、電
極と誘電体207との界面状態は対称的であり、電極に
かける電圧の方向による、分極、誘電率、誘電正接等の
キャパシタ特性に差異はなかった。
As described above, when the capacitor dielectric 207 is formed vertically on the semiconductor substrate 201 and two electrodes are formed on both sides thereof, the capacitor dielectric 207 is formed parallel to the semiconductor substrate as shown in the prior art of FIG. When the same electrode area and the same electrode interval are provided, the occupied area of the capacitor can be reduced as compared with the case where they are arranged. In the present embodiment, the height of the dielectric 207 is set to 2 μm, but by further increasing the height, the capacitance of the capacitor can be increased without increasing the occupied area of the capacitor. Further, since the electrodes 208 and 209 of the capacitor are formed at the same time, the interface state between the electrode and the dielectric 207 is symmetrical, and the capacitor characteristics such as polarization, dielectric constant, and dielectric loss tangent differ depending on the direction of the voltage applied to the electrode. There was no.

【0024】図3(a)〜(d)は本発明による半導体
装置の製造方法の実施例(以下、第3の実施例とす
る。)を示す主要工程断面図である。図3にしたがい、
本発明の第3の実施例について説明する。ここでも説明
の都合上シリコン基板を用い、Nチャンネルトランジス
タを用いた例につき説明する。
FIGS. 3A to 3D are cross-sectional views of main steps showing an embodiment (hereinafter, referred to as a third embodiment) of the method for manufacturing a semiconductor device according to the present invention. According to FIG.
A third embodiment of the present invention will be described. Here, for convenience of explanation, an example using a silicon substrate and an N-channel transistor will be described.

【0025】(図3(a))301はP型シリコン基板
であり、例えば20Ω・cmの比抵抗のウェハを用い
る。302は素子分離用の絶縁膜であり、例えば、従来
技術であるLOCOS法により二酸化シリコン膜を60
00Å形成する。303はトランジスタのソースとなる
N型拡散層であり、例えばリンを80keV、5×10
15cmー2イオン注入することによって形成する。304
はドレインとなるN型拡散層であり、303と同時に形
成する。305はゲート電極であり、例えばリンでドー
プされたポリシリコンを用いる。306は第1層間絶縁
膜であり、例えばCVD法によりリンガラスを4000
Å形成する。
(FIG. 3A) 301 is a P-type silicon substrate, for example, a wafer having a specific resistance of 20 Ω · cm is used. Reference numeral 302 is an insulating film for element isolation. For example, a silicon dioxide film 60 is formed by the conventional LOCOS method.
00Å Form. Reference numeral 303 denotes an N-type diffusion layer which serves as a source of the transistor, and is made of phosphorus, for example, at 80 keV and 5 × 10 5.
It is formed by implanting 15 cm −2 ions. 304
Is an N-type diffusion layer serving as a drain, and is formed simultaneously with 303. A gate electrode 305 is made of, for example, polysilicon doped with phosphorus. Reference numeral 306 denotes a first interlayer insulating film, which is made of phosphorus glass, for example, by a CVD method.
Å Form.

【0026】(図3(b))次に、キャパシタの電極と
して、例えば白金をスパッタ法により3μm形成し、フ
ォトリソグラフィ技術によって、所望のパターンに形成
する。
(FIG. 3 (b)) Next, for example, platinum is formed to a thickness of 3 μm as a capacitor electrode by a sputtering method, and is formed into a desired pattern by a photolithography technique.

【0027】この時、電極307と308との間の距離
がキャパシタの電極間隔となるので、キャパシタ容量を
大きくするにはなるべく小さくすることが望ましい。本
実施例においては、電極307と308との間隔を1μ
mとした。また、電極307および308の膜厚がキャ
パシタの容量に寄与する面の一辺となるので、なるべく
厚くすることが望ましい。
At this time, since the distance between the electrodes 307 and 308 becomes the electrode interval of the capacitor, it is desirable to make it as small as possible in order to increase the capacitance of the capacitor. In this embodiment, the distance between the electrodes 307 and 308 is 1 μm.
m. Further, since the film thickness of the electrodes 307 and 308 is one side of the surface that contributes to the capacitance of the capacitor, it is desirable to make it as thick as possible.

【0028】(図3(c))次に、誘電体309とし
て、例えばチタン酸ジルコン酸鉛(Pb(Ti0.6Zr0.4)O3
をゾル−ゲル法により形成する。この時、電極307と
308との狭い隙間に誘電体309を充填する必要があ
るので、誘電体309の形成方法としては、ゾル−ゲル
法やCVD法等によることが望ましい。その後、誘電体
309を600℃で焼結し、フォトリソグラフィ技術を
用いて、所望のパターンに形成する。フォトリソグラフ
ィを用いずに、全面エッチバックによって電極307及
び308との隙間にのみ、誘電体309を残すことも可
能である。
(FIG. 3C) Next, as the dielectric 309, for example, lead zirconate titanate (Pb (Ti 0.6 Zr 0.4 ) O 3 ) is used.
Are formed by the sol-gel method. At this time, since it is necessary to fill the narrow gap between the electrodes 307 and 308 with the dielectric 309, the method of forming the dielectric 309 is preferably a sol-gel method, a CVD method, or the like. After that, the dielectric 309 is sintered at 600 ° C. and formed into a desired pattern by using the photolithography technique. It is also possible to leave the dielectric 309 only in the gaps between the electrodes 307 and 308 by etching back the entire surface without using photolithography.

【0029】(図3(d))次に、第2の層間絶縁膜3
10として、例えば二酸化シリコンをCVD法により2
000Å形成し、必要な箇所に開孔する。その後、配線
電極311として例えばアルミニウムを1μm形成し、
所望のパターンに形成する。
(FIG. 3D) Next, the second interlayer insulating film 3 is formed.
10 is, for example, 2 using silicon dioxide by the CVD method.
Form 000Å and open holes where necessary. After that, for example, aluminum is formed to a thickness of 1 μm as the wiring electrode 311.
Form into a desired pattern.

【0030】以上をもって、本発明の第3の実施例とす
る。
The above is the third embodiment of the present invention.

【0031】このように、電極307と308を同時に
形成することによって、キャパシタに必要な二つの電極
を、一度のフォトリソグラフィによって形成することが
できるので、製造工程を短縮することができる。また、
電極307と308を形成した後に誘電体309を形成
するので、誘電体309の配向性を、電極の配向性によ
って制御することが可能である。
By thus forming the electrodes 307 and 308 at the same time, the two electrodes required for the capacitor can be formed by one-time photolithography, so that the manufacturing process can be shortened. Also,
Since the dielectric 309 is formed after forming the electrodes 307 and 308, the orientation of the dielectric 309 can be controlled by the orientation of the electrodes.

【0032】図4は本発明による半導体装置の実施例
(以下、第4の実施例とする。)を示す主要断面図であ
る。図4にしたがい、本発明の第4の実施例について説
明する。ここでも説明の都合上シリコン基板を用い、N
チャンネルトランジスタを用いた例につき説明する。
FIG. 4 is a main sectional view showing an embodiment (hereinafter, referred to as a fourth embodiment) of a semiconductor device according to the present invention. A fourth embodiment of the present invention will be described with reference to FIG. Again, for convenience of explanation, a silicon substrate is used, and N
An example using a channel transistor will be described.

【0033】401はP型シリコン基板であり、例えば
20Ω・cmの比抵抗のウェハを用いる。402は素子
分離用の絶縁膜であり、例えば、従来技術であるLOC
OS法により二酸化シリコン膜を6000Å形成する。
403はトランジスタのソースとなるN型拡散層であ
り、例えばリンを80keV5×1015cmー2イオン注
入することによって形成する。404はドレインとなる
N型拡散層であり、403と同時に形成する。405は
ゲート電極であり、例えばリンでドープされたポリシリ
コンを用いる。406は第1層間絶縁膜であり、例えば
CVD法によりリンガラスを4000Å形成する。40
7は配線電極であり、例えばタングステンを5000Å
スパッタする。408は第2層間絶縁膜であり、例えば
CVD法により二酸化シリコンを8000Å形成する。
この時、スピン・オン・グラス等を併用して十分に平坦
化することが望ましい。409はスルーホールの埋め込
みプラグであり、例えばタングステンをCVD法によっ
て形成する。
Reference numeral 401 denotes a P-type silicon substrate, for example, a wafer having a specific resistance of 20 Ω · cm is used. Reference numeral 402 is an insulating film for element isolation, for example, LOC which is a conventional technique.
A 6000Å silicon dioxide film is formed by the OS method.
403 is an N-type diffusion layer serving as the source of the transistor, for example, is formed by phosphorus 80keV5 × 10 15 cm -2 ion implantation. Reference numeral 404 is an N-type diffusion layer that serves as a drain, and is formed simultaneously with 403. A gate electrode 405 is made of, for example, polysilicon doped with phosphorus. 406 is a first interlayer insulating film, for example, phosphorus glass is formed in a thickness of 4000 Å by a CVD method. 40
Reference numeral 7 is a wiring electrode, for example, tungsten of 5000 Å
Sputter. Reference numeral 408 denotes a second interlayer insulating film, which is formed with silicon dioxide of 8000 Å by, for example, a CVD method.
At this time, it is desirable to use a spin-on-glass or the like together to sufficiently flatten the surface. Reference numeral 409 is a plug for filling a through hole, and tungsten is formed by a CVD method, for example.

【0034】410及び411は本発明の趣旨による、
キャパシタの二つの電極であり、例えば白金をスパッタ
法により4μm形成した後、410及び411を同時
に、所望のパターンに形成する。412は本発明の趣旨
によるキャパシタの誘電体であり、例えばチタン酸ジル
コン酸鉛(Pb(Ti0.6Zr0.4)O3)をゾル−ゲル法により形
成し、500℃で焼結する。
Reference numerals 410 and 411 represent the gist of the present invention.
Two electrodes of a capacitor, for example, platinum is formed to a thickness of 4 μm by a sputtering method, and then 410 and 411 are simultaneously formed into a desired pattern. Reference numeral 412 is a capacitor dielectric according to the gist of the present invention. For example, lead zirconate titanate (Pb (Ti 0.6 Zr 0.4 ) O 3 ) is formed by a sol-gel method and sintered at 500 ° C.

【0035】以上をもって本発明の第4の実施例とす
る。
The above is the fourth embodiment of the present invention.

【0036】このように、誘電体412のキャパシタン
スに寄与する部分を半導体基板401に垂直に形成した
ことによって、第1の実施例と同様に、キャパシタの占
有面積を小さくすることができる。またさらに、誘電体
412をキャパシタ部分だけでなく素子全体を覆うよう
に形成したことによって、パッシベーションとしての効
果が得られるので、パッシベーション形成にともなう工
程を削減することができる。
Since the portion of the dielectric 412 that contributes to the capacitance is formed perpendicularly to the semiconductor substrate 401 in this manner, the occupied area of the capacitor can be reduced as in the first embodiment. Furthermore, since the dielectric 412 is formed so as to cover not only the capacitor portion but also the entire element, an effect as passivation can be obtained, so that the steps involved in passivation formation can be reduced.

【0037】[0037]

【発明の効果】本発明によれば、キャパシタの誘電体の
キャパシタンスに寄与する面を、半導体基板と垂直とし
たことにより、キャパシタの占有面積を小さくできると
いう効果を有する。
According to the present invention, since the surface of the capacitor that contributes to the capacitance of the capacitor is perpendicular to the semiconductor substrate, the area occupied by the capacitor can be reduced.

【0038】また、本発明によれば、キャパシタの二つ
の電極を、誘電体形成の前に、しかも同時に形成したこ
とにより、キャパシタ形成に関する工程増を抑制でき、
また、誘電体の結晶配向性を電極の配向性によって制御
することができ、さらに、キャパシタの誘電率などの特
性の印加電圧の方向による差異、すなわち非対称性を無
くすことができるという効果を有する。
Further, according to the present invention, since the two electrodes of the capacitor are formed at the same time before the dielectric is formed, it is possible to suppress an increase in the number of steps for forming the capacitor.
Further, the crystal orientation of the dielectric can be controlled by the orientation of the electrodes, and further, the difference in characteristics such as the dielectric constant of the capacitor depending on the direction of the applied voltage, that is, the asymmetry can be eliminated.

【0039】また、本発明によれば、キャパシタの誘電
体の一部をパッシベーションとしたことにより、工程数
の削減を図ることができるという効果を有する。
Further, according to the present invention, since a part of the dielectric of the capacitor is passivated, the number of steps can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の第1の実施例の半導体装置の、主要
工程断面図、及び平面図。
FIG. 1 is a sectional view showing a main step and a plan view of a semiconductor device according to a first example of the present invention.

【図2】 本発明の第2の実施例の半導体装置の、主要
断面図。
FIG. 2 is a main sectional view of a semiconductor device according to a second embodiment of the present invention.

【図3】 本発明の第3の実施例の半導体装置の製造方
法の、主要工程断面図。
FIG. 3 is a sectional view showing main steps in a method for manufacturing a semiconductor device according to a third embodiment of the present invention.

【図4】 本発明の第4の実施例の半導体装置の、主要
断面図。
FIG. 4 is a main sectional view of a semiconductor device according to a fourth embodiment of the present invention.

【図5】 従来の技術による、半導体装置の主要断面
図。
FIG. 5 is a main cross-sectional view of a semiconductor device according to a conventional technique.

【符号の説明】[Explanation of symbols]

101 半導体基板 102 素子分離膜 103 ソース領域 104 ドレイン領域 105 ゲート電極 106 第1層間絶縁膜 107 配線電極 108 第2層間絶縁膜 109 埋め込みプラグ 110 誘電体 111 キャパシタ電極となる膜 112 キャパシタ電極 113 キャパシタ電極 114 パッシベーション 115 埋め込みプラグ 201 半導体基板 202 素子分離膜 203 ソース領域 204 ドレイン領域 205 ゲート電極 206 第1層間絶縁膜 207 誘電体 208 キャパシタ電極 209 キャパシタ電極 210 第2層間絶縁膜 211 配線電極 301 半導体基板 302 素子分離膜 303 ソース領域 304 ドレイン領域 305 ゲート電極 306 第1層間絶縁膜 307 キャパシタ電極 308 キャパシタ電極 309 誘電体 310 第2層間絶縁膜 311 配線電極 401 半導体基板 402 素子分離膜 403 ソース領域 404 ドレイン領域 405 ゲート電極 406 第1層間絶縁膜 407 配線電極 408 第2層間絶縁膜 409 埋め込みプラグ 410 キャパシタ電極 411 キャパシタ電極 412 誘電体 501 半導体基板 502 素子分離膜 503 ソース領域 504 ドレイン領域 505 ゲート電極 506 第1層間絶縁膜 507 強誘電体膜 508 下部電極 509 上部電極 510 第2層間絶縁膜 511 配線電極 Reference Signs List 101 semiconductor substrate 102 element isolation film 103 source region 104 drain region 105 gate electrode 106 first interlayer insulating film 107 wiring electrode 108 second interlayer insulating film 109 embedded plug 110 dielectric 111 film to be a capacitor electrode 112 capacitor electrode 113 capacitor electrode 114 Passivation 115 embedded plug 201 semiconductor substrate 202 element isolation film 203 source region 204 drain region 205 gate electrode 206 first interlayer insulating film 207 dielectric 208 capacitor electrode 209 capacitor electrode 210 second interlayer insulating film 211 wiring electrode 301 semiconductor substrate 302 device isolation Film 303 Source region 304 Drain region 305 Gate electrode 306 First interlayer insulating film 307 Capacitor electrode 308 Capacitor electrode 309 Dielectric 310 second interlayer insulating film 311 wiring electrode 401 semiconductor substrate 402 element isolation film 403 source region 404 drain region 405 gate electrode 406 first interlayer insulating film 407 wiring electrode 408 second interlayer insulating film 409 embedded plug 410 capacitor electrode 411 capacitor electrode 412 Dielectric 501 Semiconductor substrate 502 Element isolation film 503 Source region 504 Drain region 505 Gate electrode 506 First interlayer insulating film 507 Ferroelectric film 508 Lower electrode 509 Upper electrode 510 Second interlayer insulating film 511 Wiring electrode

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01L 29/792 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location H01L 29/792

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 誘電体が二つの電極によって挟まれた構
造を有するキャパシタが、能動素子の形成された同一半
導体基板上に集積された半導体装置において、前記二つ
の電極の有するキャパシタンスに寄与する面のうち全
て、もしくは一部が、半導体基板の主面と垂直、もしく
は45度以上の角をなして配置されていることを特徴と
する半導体装置。
1. In a semiconductor device in which a capacitor having a structure in which a dielectric is sandwiched between two electrodes is integrated on the same semiconductor substrate on which an active element is formed, a surface that contributes to the capacitance of the two electrodes. A semiconductor device, characterized in that all or part of them is arranged perpendicular to the main surface of the semiconductor substrate or at an angle of 45 degrees or more.
【請求項2】 誘電体が二つの電極によって挟まれた構
造を有するキャパシタが、能動素子の形成された同一半
導体基板上に集積された半導体装置の製造方法におい
て、前記二つの電極となる薄膜を形成する工程と、前記
薄膜をエッチングして前記二つの電極を同時に形成する
工程と、その後、前記誘電体を形成する工程とを含むこ
とを特徴とする半導体装置の製造方法。
2. In a method of manufacturing a semiconductor device, wherein a capacitor having a structure in which a dielectric is sandwiched between two electrodes is integrated on the same semiconductor substrate on which an active element is formed, a thin film serving as the two electrodes is formed. A method of manufacturing a semiconductor device, comprising: a step of forming, a step of simultaneously etching the thin film to form the two electrodes, and a step of forming the dielectric.
【請求項3】 誘電体が二つの電極によって挟まれた構
造を有するキャパシタが、能動素子の形成された同一半
導体基板上に集積された半導体装置において、前記誘電
体の全部、もしくは一部が、前記半導体基板上に形成さ
れた配線層の、ボンディング・パッド以外の領域の全
部、もしくは一部を覆うことを特徴とする半導体装置。
3. In a semiconductor device in which a capacitor having a structure in which a dielectric is sandwiched between two electrodes is integrated on the same semiconductor substrate on which an active element is formed, all or part of the dielectric is A semiconductor device, characterized in that the wiring layer formed on the semiconductor substrate covers all or part of a region other than a bonding pad.
【請求項4】 前記誘電体が、ペロブスカイト型の結晶
構造を持つセラミックスであることを特徴とする請求項
1及び請求項3記載の半導体装置。
4. The semiconductor device according to claim 1, wherein the dielectric is a ceramic having a perovskite type crystal structure.
【請求項5】 前記ペロブスカイト型の結晶構造を持つ
セラミックスが、チタン酸ジルコン酸鉛(Pb(TixZr1-x)
O3)、ランタン含有のチタン酸ジルコン酸鉛((Pb1-yLa
y)(TixZr1-x)O3)、チタン酸ストロンチウム(SrTi
O3)、チタン酸ストロンチウムバリウム((Sr1-yBay)Ti
O3)のうち何れかを主たる成分とすることを特徴とする
請求項1及び請求項3記載の半導体装置。
5. The ceramic having a perovskite type crystal structure is lead zirconate titanate (Pb (Ti x Zr 1-x ).
O 3 ), lanthanum-containing lead zirconate titanate ((Pb 1-y La
y ) (Ti x Zr 1-x ) O 3 ), strontium titanate (SrTi
O 3), barium strontium titanate ((Sr 1-y Ba y ) Ti
4. The semiconductor device according to claim 1, wherein any one of O 3 ) is a main component.
JP14951992A 1992-06-09 1992-06-09 Semiconductor device and manufacturing method thereof Expired - Lifetime JP3250257B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14951992A JP3250257B2 (en) 1992-06-09 1992-06-09 Semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14951992A JP3250257B2 (en) 1992-06-09 1992-06-09 Semiconductor device and manufacturing method thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP11163061A Division JP2000004006A (en) 1999-06-09 1999-06-09 Semiconductor device

Publications (2)

Publication Number Publication Date
JPH05343615A true JPH05343615A (en) 1993-12-24
JP3250257B2 JP3250257B2 (en) 2002-01-28

Family

ID=15476916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14951992A Expired - Lifetime JP3250257B2 (en) 1992-06-09 1992-06-09 Semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3250257B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07326681A (en) * 1994-05-30 1995-12-12 Nec Corp Semiconductor storage device and its manufacture
US5585998A (en) * 1995-12-22 1996-12-17 International Business Machines Corporation Isolated sidewall capacitor with dual dielectric
DE19543539C1 (en) * 1995-11-22 1997-04-10 Siemens Ag Method for producing a memory cell arrangement
US5633781A (en) * 1995-12-22 1997-05-27 International Business Machines Corporation Isolated sidewall capacitor having a compound plate electrode
US5712759A (en) * 1995-12-22 1998-01-27 International Business Machines Corporation Sidewall capacitor with L-shaped dielectric
DE19640273C1 (en) * 1996-09-30 1998-03-12 Siemens Ag Method for manufacturing barrier-free semiconductor memory devices
WO1998013877A1 (en) * 1996-09-27 1998-04-02 Siemens Aktiengesellschaft Semiconductor storage arrangement with stacked capacitor
US5914851A (en) * 1995-12-22 1999-06-22 International Business Machines Corporation Isolated sidewall capacitor
US6144051A (en) * 1997-05-30 2000-11-07 Nec Corporation Semiconductor device having a metal-insulator-metal capacitor
DE10131491A1 (en) * 2001-06-29 2003-01-16 Infineon Technologies Ag Production of device e.g. ferroelectric random access memory comprises forming substrate, passivating region and/or surface region with a complementary metal oxide semiconductor structure and contacting with capacitor arrangements
DE10131492A1 (en) * 2001-06-29 2003-01-16 Infineon Technologies Ag Production of a semiconductor device e.g. chain ferroelectric random access memory device comprises forming and/or structuring capacitor arrangements on semiconductor substrate, passivating region and/or surface region
DE10131624A1 (en) * 2001-06-29 2003-01-23 Infineon Technologies Ag Manufacturing method of semiconductor memory device esp. chain-FeRAM store, involves forming passivation zone and surface zone from this extending mainly vertically in structure
DE10152636A1 (en) * 2001-06-29 2003-01-30 Infineon Technologies Ag Semiconductor memory used especially as a ferroelectric random access memory has capacitor devices each vertically extending from a substrate and/or a passivating region and/or a surface region
DE10131627A1 (en) * 2001-06-29 2003-01-30 Infineon Technologies Ag Semiconductor memory used especially as a chain-FeRAM memory has capacitor devices each vertically extending from a substrate and/or a passivating region and/or a surface region
US6515325B1 (en) * 2002-03-06 2003-02-04 Micron Technology, Inc. Nanotube semiconductor devices and methods for making the same
FR2833783A1 (en) * 2001-12-13 2003-06-20 St Microelectronics Sa Small dimension logic integrated circuit construction having first/second capacitor series connected first/second node and control wire common point connected between capacitors.
JP2007201435A (en) * 2005-12-27 2007-08-09 Semiconductor Energy Lab Co Ltd Semiconductor device and method for manufacturing therefor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5544347A (en) 1990-09-24 1996-08-06 Emc Corporation Data storage system controlled remote data mirroring with respectively maintained data indices

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2643833B2 (en) * 1994-05-30 1997-08-20 日本電気株式会社 Semiconductor memory device and method of manufacturing the same
JPH07326681A (en) * 1994-05-30 1995-12-12 Nec Corp Semiconductor storage device and its manufacture
US6300652B1 (en) 1995-11-22 2001-10-09 Infineon Technologies Ag Memory cell configuration and method for its production
DE19543539C1 (en) * 1995-11-22 1997-04-10 Siemens Ag Method for producing a memory cell arrangement
EP0776044A3 (en) * 1995-11-22 2005-09-14 Infineon Technologies AG Memory cell array and method of producing the same
US5585998A (en) * 1995-12-22 1996-12-17 International Business Machines Corporation Isolated sidewall capacitor with dual dielectric
US5633781A (en) * 1995-12-22 1997-05-27 International Business Machines Corporation Isolated sidewall capacitor having a compound plate electrode
US5701647A (en) * 1995-12-22 1997-12-30 International Business Machines Corporation Method for making an isolated sidewall capacitor having a compound plate electrode
US5712759A (en) * 1995-12-22 1998-01-27 International Business Machines Corporation Sidewall capacitor with L-shaped dielectric
US5914851A (en) * 1995-12-22 1999-06-22 International Business Machines Corporation Isolated sidewall capacitor
US6027966A (en) * 1995-12-22 2000-02-22 International Business Machines Corporation Isolated sidewall capacitor
WO1998013877A1 (en) * 1996-09-27 1998-04-02 Siemens Aktiengesellschaft Semiconductor storage arrangement with stacked capacitor
DE19639899B4 (en) * 1996-09-27 2005-07-07 Infineon Technologies Ag Method for producing a memory arrangement
US6168988B1 (en) 1996-09-30 2001-01-02 Infineon Technologies, Ag Method for producing barrier-free semiconductor memory configurations
DE19640273C1 (en) * 1996-09-30 1998-03-12 Siemens Ag Method for manufacturing barrier-free semiconductor memory devices
US6144051A (en) * 1997-05-30 2000-11-07 Nec Corporation Semiconductor device having a metal-insulator-metal capacitor
DE10131624A1 (en) * 2001-06-29 2003-01-23 Infineon Technologies Ag Manufacturing method of semiconductor memory device esp. chain-FeRAM store, involves forming passivation zone and surface zone from this extending mainly vertically in structure
DE10131492A1 (en) * 2001-06-29 2003-01-16 Infineon Technologies Ag Production of a semiconductor device e.g. chain ferroelectric random access memory device comprises forming and/or structuring capacitor arrangements on semiconductor substrate, passivating region and/or surface region
DE10131627A1 (en) * 2001-06-29 2003-01-30 Infineon Technologies Ag Semiconductor memory used especially as a chain-FeRAM memory has capacitor devices each vertically extending from a substrate and/or a passivating region and/or a surface region
DE10152636B4 (en) * 2001-06-29 2008-07-10 Qimonda Ag Chain-FeRAM memory device
DE10131492B4 (en) * 2001-06-29 2006-09-14 Infineon Technologies Ag A method of manufacturing a semiconductor memory device
US6773986B2 (en) 2001-06-29 2004-08-10 Infineon Technologies Ag Method for fabricating a semiconductor memory device
US6818503B2 (en) 2001-06-29 2004-11-16 Infineon Technologies Ag Method for fabricating a semiconductor memory device
US6858492B2 (en) 2001-06-29 2005-02-22 Infineon Technologies Ag Method for fabricating a semiconductor memory device
DE10131627B4 (en) * 2001-06-29 2006-08-10 Infineon Technologies Ag Method for producing a semiconductor memory device
DE10152636A1 (en) * 2001-06-29 2003-01-30 Infineon Technologies Ag Semiconductor memory used especially as a ferroelectric random access memory has capacitor devices each vertically extending from a substrate and/or a passivating region and/or a surface region
DE10131491A1 (en) * 2001-06-29 2003-01-16 Infineon Technologies Ag Production of device e.g. ferroelectric random access memory comprises forming substrate, passivating region and/or surface region with a complementary metal oxide semiconductor structure and contacting with capacitor arrangements
DE10131491B4 (en) * 2001-06-29 2006-06-29 Infineon Technologies Ag Method for producing a semiconductor memory device
FR2833783A1 (en) * 2001-12-13 2003-06-20 St Microelectronics Sa Small dimension logic integrated circuit construction having first/second capacitor series connected first/second node and control wire common point connected between capacitors.
US7081385B2 (en) 2002-03-06 2006-07-25 Micron Technology, Inc. Nanotube semiconductor devices and methods for making the same
US6858891B2 (en) 2002-03-06 2005-02-22 Micron Technology, Inc. Nanotube semiconductor devices and methods for making the same
US6515325B1 (en) * 2002-03-06 2003-02-04 Micron Technology, Inc. Nanotube semiconductor devices and methods for making the same
JP2007201435A (en) * 2005-12-27 2007-08-09 Semiconductor Energy Lab Co Ltd Semiconductor device and method for manufacturing therefor

Also Published As

Publication number Publication date
JP3250257B2 (en) 2002-01-28

Similar Documents

Publication Publication Date Title
JP3384599B2 (en) Semiconductor device and manufacturing method thereof
US5801079A (en) Method for manufacturing a stacked capacitor type semiconductor memory device with good flatness characteristics
US6175130B1 (en) DRAM having a cup-shaped storage node electrode recessed within a semiconductor substrate
US6642100B2 (en) Semiconductor device with capacitor structure having hydrogen barrier layer and method for the manufacture thereof
JPH05343615A (en) Semiconductor device and its manufacture
US6399974B1 (en) Semiconductor memory device using an insulator film for the capacitor of the memory cell and method for manufacturing the same
JPH0951077A (en) Semiconductor memory and manufacture thereof
US5953619A (en) Semiconductor device with perovskite capacitor and its manufacture method
JPH08330545A (en) Dram cell device and manufacture of the dram cell device
JP2785766B2 (en) Method for manufacturing semiconductor device
JPH1140765A (en) Semiconductor storage device and its manufacture
US20060183252A1 (en) Ferroelectric memory devices
JP2865155B2 (en) Semiconductor device and manufacturing method thereof
US6423554B2 (en) Semiconductor device having a capacitor and method for the manufacture thereof
JP3390704B2 (en) Ferroelectric nonvolatile memory
JP2519216B2 (en) Semiconductor memory device
US6414344B1 (en) Semiconductor device for use in a memory cell and method for the manufacture thereof
JP3149930B2 (en) Semiconductor device and method of manufacturing the same
JP2004335918A (en) Semiconductor memory device and method for manufacturing the same
JP3303852B2 (en) Semiconductor device and manufacturing method thereof
JP3820952B2 (en) Semiconductor device and manufacturing method thereof
JP2000031434A (en) Semiconductor device
JP3489090B2 (en) Semiconductor device and manufacturing method thereof
JP2000031393A (en) Semiconductor device
JP2000031431A (en) Semiconductor device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071116

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081116

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091116

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091116

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111116

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111116

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121116

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121116

Year of fee payment: 11