JPH05343576A - Heat transfer cooler - Google Patents

Heat transfer cooler

Info

Publication number
JPH05343576A
JPH05343576A JP14395692A JP14395692A JPH05343576A JP H05343576 A JPH05343576 A JP H05343576A JP 14395692 A JP14395692 A JP 14395692A JP 14395692 A JP14395692 A JP 14395692A JP H05343576 A JPH05343576 A JP H05343576A
Authority
JP
Japan
Prior art keywords
fins
flow
fin
fluid
cooling device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14395692A
Other languages
Japanese (ja)
Inventor
Nobuo Kawasaki
伸夫 川崎
Takahiro Oguro
崇弘 大黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP14395692A priority Critical patent/JPH05343576A/en
Publication of JPH05343576A publication Critical patent/JPH05343576A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PURPOSE:To regulate a fluid pressure loss in a channel between fins and to make a temperature distribution of a cooling surface uniform by providing fluid inlets/outlets at a plurality of corners on one flat surface, and providing fins in a diagonal line direction of a rectangular parallelepiped in a heat transfer cooler having fins at channels formed in the parallelepiped. CONSTITUTION:A cooler 1 for an electronic integrated circuit, etc., comprises a cavity 3 surrounded by inner walls 2 and formed into a rectangular parallelepiped having fins 4 in the cavity 3, and fluid inlets 5 and outlets 6 communicating with the cavity 3 provided at opposed corners 7. Conducting channels 9 (9a, 9b) from the inlet 5 (outlet 6) provided at the corner 7 to fin ends 8 (8a, 8b) of the fins 4 are provided in the cavity 3. The fins 4 are provided in parallel in a diagonal line of the cooler 1, fin intervals 10 (10a, 10b) between the fins 4 are reduced for long fins 4 and increased for short fins 4 to regulate a pressure loss of the channels between the fins.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電子集積回路等の冷却装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooling device for electronic integrated circuits and the like.

【0002】[0002]

【従来の技術】従来の熱伝達冷却装置における流体の流
路は、特開昭55−153359号公報に代表される。すなわ
ち、冷却装置の内部の壁面に平行にフィンを設け、しか
も、各フィンの長さやフィン相互の間隙を全体にわたっ
て同一に構成するものである。しかし、この方法では、
フィンを設けられない流路部分が冷却面に偏って存在す
るため、伝熱性能に分布が発生しやすいこと。また、流
体の流れが直交する部分があるため、お互いの流れが干
渉しあって流れを乱し、流れの抵抗を生じて全体的に圧
力損失が大きくなるということへの考慮が充分になされ
ていない。この構造において、伝熱面の温度分布を均一
化させ、しかも、伝熱性能を向上させるために流量を増
加させると、圧力損失が増大して、高い送水ポンプ動力
を要求されるなどの問題が生じてくる。さらに、フィン
間隙が均一で流れの抵抗が同じであると、各フィン間の
流量に分布ができることが知られている。この流量の分
布に関しては、例えば、日本機械学会技術資料「管路・
ダクトの流体抵抗」の中の分配・集合管の項で解説され
ている。
2. Description of the Related Art A fluid passage in a conventional heat transfer cooling device is represented by JP-A-55-153359. That is, fins are provided in parallel to the inner wall surface of the cooling device, and the lengths of the fins and the gaps between the fins are the same throughout. But with this method,
The heat transfer performance tends to have a distribution because the flow passages where no fins are provided are unevenly distributed on the cooling surface. In addition, due to the fact that there are portions where the fluid flows intersect at right angles, mutual consideration interferes with each other and disturbs the flow, causing flow resistance and increasing the overall pressure loss. Absent. In this structure, if the temperature distribution on the heat transfer surface is made uniform and the flow rate is increased to improve the heat transfer performance, the pressure loss increases and a high water pump power is required. Will occur. Further, it is known that if the fin gap is uniform and the flow resistance is the same, the flow rate between the fins can be distributed. Regarding the distribution of this flow rate, for example, refer to the technical data of the Japan Society of Mechanical Engineers
It is described in the section on distribution / collection pipes in "Fluid resistance of ducts".

【0003】[0003]

【発明が解決しようとする課題】本発明は伝熱面の温度
分布を小さく、かつ、冷却性能を高めること、及び、冷
却装置内に多量の流体を流しても流体の圧力損失が小さ
いことの3点の問題を同時に解決することを目的とす
る。
SUMMARY OF THE INVENTION According to the present invention, the temperature distribution on the heat transfer surface is small and the cooling performance is improved, and the pressure loss of the fluid is small even if a large amount of fluid is flowed into the cooling device. The purpose is to solve three problems at the same time.

【0004】[0004]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明はフィンを直方体の対角線の方向と平行に
並べて設置し、直方体の角部に設けた流体の入口から出
口へ至る流路の曲折が小さくなるようにして、流体が各
フィン間を同時に平行して通過すると共に、流体の出口
部へ集まりやすくした。また、流体の入出口部から、各
フィンのフィン端部に到るまでの間に断面積が漸減(入
口側)、漸増(出口側)する導流路を設け、各フィン間
への流量配分が充分にできるようにした。さらに、直方
体の対角線方向と平行に設けたフィン間のフィン間隙を
冷却装置中央部は小さく、冷却装置角部は比較的に大き
くなるように構成し、フィン間の圧力損失配分のバラン
スを図り、流量配分調整を可能にした。実際の流量配分
は、発熱体側の発熱配分等によって決められるものであ
るが、基本的には、各流路の圧力損失を接近させて構成
させる。
In order to achieve the above object, the present invention has fins arranged parallel to the direction of the diagonal of a rectangular parallelepiped, and the flow from the inlet to the outlet of the fluid provided at the corners of the rectangular parallelepiped. The bend in the path was reduced so that the fluid could pass between the fins in parallel at the same time and could easily collect at the outlet of the fluid. In addition, a flow passage is provided between the inlet and outlet of the fluid to the fin end of each fin, where the cross-sectional area gradually decreases (inlet side) and gradually increases (outlet side) to distribute the flow between the fins. I was able to do enough. Further, the fin gap between the fins provided parallel to the diagonal direction of the rectangular parallelepiped is configured so that the central part of the cooling device is small and the corner part of the cooling device is relatively large, thereby balancing pressure loss distribution between the fins. The flow rate distribution can be adjusted. The actual flow rate distribution is determined by the heat generation distribution on the heating element side, etc., but basically, the pressure loss in each flow path is made close to each other.

【0005】[0005]

【作用】直方体の対角線方向と平行にフィンを設け、流
体が各フィン間を同時に多量に通過できるよう、冷却装
置の流路断面積を最大限に大きくした。また、流路の曲
折角度が小さくなり、流路内直交流れが生じないため、
流路の圧力損失を増大させることができて、冷却装置の
伝熱性能が向上し、冷却装置の入口と出口との温度差を
小さく、伝熱面の温度分布を均一化できる。流体の入口
部から各フィンのフィン端部へ到る導流路は、その断面
積が漸減する構造としたため、従来構造ではフィンを構
成できなかった部分までフィン長さを延長できて、フィ
ンの伝熱面積を増加できる。また、従来構造では、この
導流路が冷却面の中の2ヵ所に構成されていたため、フ
ィン伝熱面積の不足するところが偏って存在していたの
に対し、本構造では導流路が4ヵ所に分散されるため、
1ヵ所当たりの導流路の断面積が小さくなって、その分
フィンの長さを延長できるようになる。さらに、冷却面
からみればフィンを構成できない部分が小さくなって、
しかも、4ヵ所に分散されるため、冷却面の温度分布が
均一化されるという効果が得られる。次に、フィンの長
いところはフィン相互の間隙を小さく、フィンの短いと
ころは、相対的に大きくすることによって、各フィン間
流路の圧力損失を調整し、流路内の流体流量分布を調整
して、冷却面の温度分布が均一化できる。
The fins are provided parallel to the diagonal direction of the rectangular parallelepiped, and the flow passage cross-sectional area of the cooling device is maximized so that a large amount of fluid can simultaneously pass between the fins. In addition, since the bending angle of the flow path becomes small and no cross flow in the flow path occurs,
The pressure loss in the flow path can be increased, the heat transfer performance of the cooling device can be improved, the temperature difference between the inlet and the outlet of the cooling device can be reduced, and the temperature distribution on the heat transfer surface can be made uniform. Since the flow passage from the fluid inlet to the fin end of each fin has a structure in which the cross-sectional area is gradually reduced, the fin length can be extended to the part where the fin could not be constructed in the conventional structure, The heat transfer area can be increased. Further, in the conventional structure, since the conducting passages were formed in two places on the cooling surface, the areas where the fin heat transfer area was insufficient were unevenly distributed. Because it is distributed in several places,
The cross-sectional area of the conducting channel per location becomes smaller, and the fin length can be extended accordingly. Furthermore, when viewed from the cooling surface, the area where the fins cannot be configured becomes smaller,
Moreover, since it is dispersed in four places, the effect of uniforming the temperature distribution on the cooling surface can be obtained. Next, by adjusting the pressure loss in the flow passages between the fins by adjusting the gap between the fins to be small at the long fins and making the gap between the fins relatively large, the fluid flow rate distribution in the flow passages can be adjusted. As a result, the temperature distribution on the cooling surface can be made uniform.

【0006】[0006]

【実施例】以下、本発明の実施例を図1及び図2により
説明する。冷却装置1の構造及び作用はつぎのとおりで
ある。冷却装置1は内壁2によって囲まれた空洞3を有
し、その空洞3内にフィン4を構成する直方体である。
さらに、空洞3内に通じる流体の入口部5と出口部6を
相対する角部7へ設ける。本発明の特徴は次の3点であ
る。まず、第1点は、角部7に設けた流体の入口部5
(出口部6)から各フィン4のフィン端部8(8a,8
b)へ到る導流路9(9a,9b)を設けたこと。第2
点はフィン4を直方体である冷却装置1の対角線方向と
平行に設けたこと。第3点はフィン4間のフィン間隙1
0(10a,10b)について、冷却装置1の中央部の
フィン4が長い部分(例えばフィン4aの部分)は相対
的に小さなフィン間隙10aとし、フィン4が短い部分
(例えばフィン4bの部分)は相対的に大きなフィン間隙
10bとするように配設したことである。次に、各特徴
によって得られる作用効果について述べる。第1点の導
流路9aは流体の入口部5から空洞3内に導入された流
体を各フィン4間へ導くものである。入口部5から導流
路9aへ流れた導入流体11は、入口部5の近くのフィ
ン4間から次々と各フィン4間へと供給される。この
時、導入流体11は各フィン4間の全流量を供給するに
足るだけの容量を満足させなければならない。そこで、
本発明のように、入口部5の導流路9aの断面積を大き
くすることにより、入口部5の付近のフィン間流12a
を供給しつつ、さらに、先への導入流体11を充分に供
給し、角部7b付近のフィン間流12bも充分に供給で
きる。導入流体11の容量は角部7bに近いほど少なく
てよいため、入口部5の付近に比べて小さい断面積の導
流路9aでよいことになる。各フィン4のフィン端部8
bから流体の出口部6への導流路9bは、各フィン間流
12(12a,12b)を集めた導出流13を出口部6へ
導くもので、出口部6に近いほど、集まるフィン間流1
2(12a,12b)の量が多くなるため、導流路9bの
断面積を大きくする必要がある。また、角部7bに近い
部分は集まるフィン間流12bの量が少ないため、出口
部6の付近に比べて小さい断面積の導流路9bでよい。
このように、断面積の大きさを変えた導流路9を設ける
ことにより、各フィン間流12(12a,12b)の入
口側(フィン端部8a側)では、各フィン間へ充分な流
体を供給しうる流体を流すことができ、また、出口側
(フィン端部8b側)では、各フィン間流12(12
a,12b)を集めた導出流13の量が増加するにつれ
て、導流路9bの断面積を大きく与えるため、出口部6
へ摩擦抵抗が小さい状態で流体を流すことができる。第
2点のフィン4の方向は、冷却装置1の対角線方向と平
行に設けることにより、次の三つの作用効果が得られ
る。すなわち、一つとして、冷却装置1の中央部におい
て、対角線方向に最も大きな流路断面積(従来の約1.
4倍 )を構成できる構造であるため、多量の流体を摩
擦抵抗の小さい状態で流すことができる。二つめは、入
口部5の1点から導入された流体を冷却装置1の空洞3
内に均一に流すことが容易であるということである。こ
れは、流体の流れ方向の曲折が小さい状態で、入口部5
の一点から、出口部6の一点へ導くことができるためで
ある。三つめは、流れの曲折が小さいため直交流がな
く、流体の壁面への衝突流や2次流れの発生を防止で
き、流体の摩擦抵抗を小さくできることである。第3点
のフィン間隙に大小の分布を与えることは、冷却装置の
中央部は、温度が上昇しやすくなるため、フィン間隙を
小さくしてフィンの数を増し、伝熱面積を拡大するため
である。さらに、摩擦抵抗の異なる流路が並列にある場
合、その抵抗の大きさの比によって、流体の流れる割合
が異なる。すなわち、抵抗の小さいところは多く流れ、
抵抗の大きいところは少なく流れる。本発明の場合、各
フィン間のフィン間隙10を同じにすると、フィン4a
の部分は入口部5から出口部6への流路が短く、抵抗が
比較的に小さくなるため流量が多く流れやすく、フィン
が短い4bの部分は入口部5から出口部6への流路が長
くなってしまうため、抵抗が比較的に大きくなるため流
量が少なくなる傾向を示す。そこで、フィン4が長い部
分のフィン間隙10aをフィン4が短い部分のフィン間
隙10bに比べて小さくして、摩擦抵抗を調整する。こ
の結果、空洞3内の流量分布が均一化され、冷却装置1
の温度分布が均一化される。図2は電子集積回路装置1
4の冷却に、本発明の冷却装置1を使って冷却した例を
示したものである。電子集積回路装置14の発熱を接触
面15を介して冷却装置1へ伝え、冷却装置1の空洞3
内を流れる流体へフィン4を介して熱伝達によって伝え
て、外部へ放出するシステムである。この場合、接触面
15の温度分布が、電子集積回路装置14の性能に影響
を与えるため、接触面15の温度分布を均一化すること
が重要である。本発明の構造により、多量の流体を流す
ことができるため、流体の入口と出口の温度差を小さく
し、接触面の温度分布を均一化することができる。図3
は本発明の第2の実施例を示す冷却装置1の断面図、図
4は、図3のB−B´断面図を示す。この構造が図1と
異なるところは、フィン間隙10aと10bとに変化を
与えず、空洞3内に分布するフィン4相互間の全フィン
間隙10を均一にしたことである。これはフィン4の加
工し易さを目的としたものである。
Embodiments of the present invention will be described below with reference to FIGS. The structure and operation of the cooling device 1 are as follows. The cooling device 1 is a rectangular parallelepiped having a cavity 3 surrounded by an inner wall 2 and having fins 4 in the cavity 3.
Further, an inlet portion 5 and an outlet portion 6 for the fluid communicating with the inside of the cavity 3 are provided at the opposite corner portions 7. The features of the present invention are the following three points. First, the first point is that the fluid inlet 5 provided at the corner 7
From the (exit portion 6) to the fin end portion 8 (8a, 8a) of each fin 4
Providing the flow passage 9 (9a, 9b) leading to b). Second
The point is that the fins 4 are provided parallel to the diagonal direction of the cooling device 1 which is a rectangular parallelepiped. The third point is the fin gap 1 between the fins 4
0 (10a, 10b), the central portion of the cooling device 1 where the fin 4 is long (for example, the portion of the fin 4a) is a relatively small fin gap 10a, and the fin 4 is short.
(For example, the portion of the fin 4b) is arranged so that the fin gap 10b is relatively large. Next, the action and effect obtained by each feature will be described. The first flow passage 9a guides the fluid introduced from the fluid inlet portion 5 into the cavity 3 between the fins 4. The introduced fluid 11 that has flowed from the inlet portion 5 to the guide passage 9 a is supplied from between the fins 4 near the inlet portion 5 to between the fins 4 one after another. At this time, the introduced fluid 11 must satisfy a capacity sufficient to supply the total flow rate between the fins 4. Therefore,
As in the present invention, by increasing the cross-sectional area of the guide passage 9a of the inlet part 5, the inter-fin flow 12a near the inlet part 5 is increased.
In addition, the introduction fluid 11 can be sufficiently supplied, and the inter-fin flow 12b near the corner 7b can also be sufficiently supplied. Since the volume of the introduced fluid 11 may be smaller as it is closer to the corner portion 7b, the guiding channel 9a having a smaller cross-sectional area than the vicinity of the inlet portion 5 is sufficient. Fin end 8 of each fin 4
The flow passage 9b from b to the fluid outlet 6 guides the outflow 13 that collects the inter-fin flows 12 (12a, 12b) to the outlet 6. Flow 1
Since the amount of 2 (12a, 12b) is large, it is necessary to increase the cross-sectional area of the guide passage 9b. In addition, since the amount of the inter-fin flow 12b that gathers in the portion near the corner 7b is small, the flow passage 9b having a smaller cross-sectional area than the vicinity of the outlet 6 may be used.
In this way, by providing the flow passages 9 having different cross-sectional areas, a sufficient fluid is provided between the fins on the inlet side (fin end 8a side) of the inter-fin flow 12 (12a, 12b). Can flow a fluid that can supply the inter-fin flow 12 (12) on the outlet side (fin end 8b side).
a, 12b) is increased, the cross-sectional area of the flow passage 9b is increased, so that the outlet portion 6
The fluid can be made to flow with a low frictional resistance. By providing the fin 4 at the second point in parallel with the diagonal direction of the cooling device 1, the following three effects can be obtained. That is, as one example, in the central portion of the cooling device 1, the largest flow passage cross-sectional area in the diagonal direction (about 1.
Since it is a structure that can be configured 4 times), a large amount of fluid can be flowed with a small frictional resistance. The second is to introduce the fluid introduced from one point of the inlet part 5 into the cavity 3 of the cooling device 1.
That is, it is easy to flow it evenly inside. This is a state in which the bend in the fluid flow direction is small and the inlet portion 5
This is because it is possible to guide from one point to one point of the outlet section 6. Third, there is no cross flow because the flow bend is small, and it is possible to prevent the generation of collision flow and secondary flow of the fluid on the wall surface, and to reduce the frictional resistance of the fluid. Providing a large and small distribution to the fin gaps at the third point is to increase the number of fins by increasing the number of fins by expanding the heat transfer area in the central part of the cooling device because the temperature easily rises. is there. Further, when the flow paths having different frictional resistances are arranged in parallel, the flow rate of the fluid varies depending on the ratio of the magnitudes of the resistances. That is, a lot of low resistance flows,
Where the resistance is high, the flow is low. In the case of the present invention, if the fin gaps 10 between the fins are the same, the fins 4a
In the portion of 4b, the flow path from the inlet portion 5 to the outlet portion 6 is short, and the resistance is relatively small, so that a large flow rate easily flows. Since it becomes longer, the resistance becomes relatively large and the flow rate tends to decrease. Therefore, the frictional resistance is adjusted by making the fin gap 10a where the fin 4 is long smaller than the fin gap 10b where the fin 4 is short. As a result, the flow rate distribution in the cavity 3 is made uniform, and the cooling device 1
The temperature distribution of is uniformed. FIG. 2 shows an electronic integrated circuit device 1
4 shows an example in which the cooling device 1 of the present invention is used for cooling of No. 4. The heat generated by the electronic integrated circuit device 14 is transmitted to the cooling device 1 through the contact surface 15 and the cavity 3 of the cooling device 1 is transmitted.
In this system, heat is transferred to the fluid flowing inside through the fins 4 and discharged to the outside. In this case, since the temperature distribution of the contact surface 15 affects the performance of the electronic integrated circuit device 14, it is important to make the temperature distribution of the contact surface 15 uniform. Since the structure of the present invention allows a large amount of fluid to flow, the temperature difference between the fluid inlet and the fluid outlet can be reduced and the temperature distribution on the contact surface can be made uniform. Figure 3
Shows a sectional view of a cooling device 1 showing a second embodiment of the present invention, and FIG. 4 shows a sectional view taken along the line BB ′ of FIG. This structure is different from FIG. 1 in that the fin gaps 10a and 10b are not changed and all the fin gaps 10 among the fins 4 distributed in the cavity 3 are made uniform. This is intended to facilitate processing of the fin 4.

【0007】なお、本発明の効果をさらに明確にするた
めに、以下に従来例との比較を行う。
In order to further clarify the effect of the present invention, a comparison with the conventional example will be made below.

【0008】まず、流体の流れを中心にして、従来構造
との比較をしながら、本発明の作用効果について述べ
る。まず、図5と図6で本発明の構造における流体の流
れと従来構造の流れとを比較説明する。本発明の構造に
よれば図5に示したように、流体の入口部5から導入さ
れた流体は、入口部5の全方位にわたって、入口流21
を形成する。このため、入口部5付近のフィン間隙10
への流入は、流れ方向の曲折を必要としない。また、二
つの導流路9に向かって2方向に分かれた導入流体11
は、フィン端部8aより各フィン間隙10の中へ45度
の曲折をして流入する。フィン間隙10内のフィン間流
12は反対側のフィン端部8bで45度の曲折をして導
出流13に合流する。フィン間流12及び導出流13が
流体の出口部6の中心に向かって集合し、出口流22を
形成して、流体の出口部6より外部へ流出する。これに
対し、図6の従来構造では、入口流21の一部が冷却装
置1の側方部23において、曲折をしない流れがフィン
間隙10内へ流入するが、それ以外は、ほとんどの流体
が導入流体11として流れ、90度の曲折をしてフィン
間隙10内へ流入して行く。ここで、曲折による圧力損
失の大きさは、曲折角度が大きいほど増加する。故に、
従来構造の曲折角度90度に対し、本発明の曲折角度は
45度であり、曲折による圧力損失を小さくできる(約
1/2)。
First, the operation and effect of the present invention will be described, focusing on the flow of fluid and comparing with the conventional structure. First, the flow of fluid in the structure of the present invention and the flow of the conventional structure will be compared and described with reference to FIGS. 5 and 6. According to the structure of the present invention, as shown in FIG. 5, the fluid introduced from the fluid inlet portion 5 has the inlet flow 21 over the entire direction of the inlet portion 5.
To form. Therefore, the fin gap 10 near the inlet portion 5
Inflow into does not require a bend in the flow direction. In addition, the introduction fluid 11 divided into two directions toward the two guide channels 9
From the fin end portion 8a flows into each fin gap 10 with a bend of 45 degrees. The inter-fin flow 12 in the fin gap 10 bends at an angle of 45 degrees at the fin end 8b on the opposite side and joins the outflow 13. The fin-to-fin flow 12 and the outflow 13 gather toward the center of the fluid outlet 6 to form an outlet flow 22 and flow out from the fluid outlet 6. On the other hand, in the conventional structure of FIG. 6, a part of the inlet flow 21 flows into the fin gap 10 in the lateral portion 23 of the cooling device 1, but a flow that does not bend flows into the fin gap 10. It flows as the introduced fluid 11, bends 90 degrees, and flows into the fin gap 10. Here, the magnitude of pressure loss due to bending increases as the bending angle increases. Therefore,
The bending angle of the present invention is 45 degrees as compared with the bending angle of 90 degrees of the conventional structure, and the pressure loss due to bending can be reduced (about 1/2).

【0009】次に、流路断面積について従来構造との比
較を行うと、次のとおりである。本発明の流路断面積は
図5のC−C´断面で代表できる。これに対して従来構
造の流路断面積は図6のD−D´断面で代表できる。両
者を比較すると、三角形の一辺と斜辺の長さとの関係が
あり、本発明の流路断面積は、従来の約1.4 倍とな
る。故に、従来構造に比べてより多くの流量を流すこと
が可能となり、伝熱性能を向上できる。
Next, the flow channel cross-sectional area is compared with the conventional structure as follows. The flow path cross-sectional area of the present invention can be represented by the CC ′ cross section of FIG. On the other hand, the flow path cross-sectional area of the conventional structure can be represented by the DD ′ cross section of FIG. Comparing the two, there is a relationship between the length of one side of the triangle and the length of the hypotenuse, and the flow path cross-sectional area of the present invention is about 1.4 times that of the conventional one. Therefore, it becomes possible to flow a larger flow rate as compared with the conventional structure, and the heat transfer performance can be improved.

【0010】さらに、導流路9の大きさとフィンの伝熱
面積について、従来構造との比較を行うと、次のとおり
である。従来構造では、図6に示したように、導流路9
の断面積は流体の入口部5から、その導流路終端部24
に到るまで同じであり、終端部に近付く程、導流路9の
断面積が余ってくる。この不必要な断面積を構成してい
る導流路相当分のフィンが短くなってしまう。これに対
して本発明の構造では図5に示したように、導流路終端
部24部の導流路9の断面積は、フィン間流12を満た
せる大きさに漸減させてあるため、導流路9が狭くなっ
た分だけフィン4を長く取ることができる。この結果、
本発明の構造によればフィンの伝熱面積が大きく取れる
ため、伝熱性能を向上できる。また、導流路9の位置に
ついて従来例と比較すると、従来構造の場合は、図6に
示したように、導流路9は冷却装置1のE面とF面の2
側面にのみ存在するため、この両側面部のフィン4の伝
熱面積が相対的に小さくなってしまい、冷却装置1の伝
熱性能が不均一となってしまう。これに対し、本発明の
構造によれば図5に示したように、導入流11の導流路
9が冷却装置1のE面とG面に存在し、導出流13の導
流路9がF面とH面に存在する。このため、本発明の構
造によれば、従来構造に比べて、比較的に小さい導流路
9が冷却装置1の4面に分散されるため、伝熱性能の分
布が均一化され、温度分布が均一化される。
Further, the size of the flow passage 9 and the heat transfer area of the fin are compared with the conventional structure as follows. In the conventional structure, as shown in FIG.
The cross-sectional area of the fluid is from the fluid inlet portion 5 to the conduit end portion 24.
It is the same until reaching the end, and the cross-sectional area of the guide passage 9 becomes larger as it approaches the terminal end. The fins corresponding to the conducting passages forming this unnecessary cross-sectional area are shortened. On the other hand, in the structure of the present invention, as shown in FIG. 5, the cross-sectional area of the guiding passage 9 at the guiding passage terminating portion 24 is gradually reduced to a size that can satisfy the inter-fin flow 12. The fins 4 can be made longer as the flow path 9 becomes narrower. As a result,
According to the structure of the present invention, since the heat transfer area of the fin can be made large, the heat transfer performance can be improved. Further, when the position of the guide passage 9 is compared with the conventional example, in the case of the conventional structure, as shown in FIG. 6, the guide passage 9 has two surfaces, E surface and F surface of the cooling device 1.
Since it exists only on the side surface, the heat transfer area of the fins 4 on both side surfaces becomes relatively small, and the heat transfer performance of the cooling device 1 becomes uneven. On the other hand, according to the structure of the present invention, as shown in FIG. 5, the guiding passage 9 of the introduction flow 11 exists on the E surface and the G surface of the cooling device 1, and the guiding passage 9 of the discharge flow 13 is formed. It exists on the F and H planes. Therefore, according to the structure of the present invention, since the relatively small guide passages 9 are dispersed on the four surfaces of the cooling device 1 as compared with the conventional structure, the distribution of the heat transfer performance is made uniform and the temperature distribution is uniform. Are made uniform.

【0011】このように、本実施例によれば、圧力損失
が小さく、多量の流体を流すことができるため、伝熱性
能が大きく、温度分布の均一な冷却装置が得られる。
As described above, according to the present embodiment, since the pressure loss is small and a large amount of fluid can flow, a cooling device having a large heat transfer performance and a uniform temperature distribution can be obtained.

【0012】[0012]

【発明の効果】本発明によれば、断面積の大きな流路が
構成できること、また、曲折の少ない流路を構成できる
ため、流路の摩擦抵抗を減少し、多量の流体を流して伝
熱性能を向上させることができる。
According to the present invention, since a flow path having a large cross-sectional area can be formed and a flow path with little bending can be formed, frictional resistance of the flow path can be reduced and a large amount of fluid can be flowed to transfer heat. The performance can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例を示す冷却装置の断面
図。
FIG. 1 is a cross-sectional view of a cooling device showing a first embodiment of the present invention.

【図2】図1のA−A´矢視断面図。FIG. 2 is a sectional view taken along the line AA ′ of FIG.

【図3】本発明の第2の実施例を示す冷却装置の断面
図。
FIG. 3 is a sectional view of a cooling device showing a second embodiment of the present invention.

【図4】図3のB−B´矢視断面図。FIG. 4 is a sectional view taken along the line BB ′ of FIG.

【図5】本発明の構造の流体の流れを示す冷却装置の断
面図。
FIG. 5 is a cross-sectional view of a cooling device showing a fluid flow of the structure of the present invention.

【図6】従来の構造の流体の流れを示す冷却装置の断面
図。
FIG. 6 is a sectional view of a cooling device showing a fluid flow of a conventional structure.

【符号の説明】[Explanation of symbols]

1…冷却装置、2…内壁、3…空洞、4…フィン、5…
入口部、6…出口部、7…角部、8…フィン端部、9…
導流路、10…フィン間隙、14…電子集積回路装置、
15…接触面、23…側方部、24…導流路終端部。
1 ... Cooling device, 2 ... Inner wall, 3 ... Cavity, 4 ... Fin, 5 ...
Inlet, 6 ... Outlet, 7 ... Corner, 8 ... Fin end, 9 ...
Conducting channel, 10 ... Fin gap, 14 ... Electronic integrated circuit device,
15 ... Contact surface, 23 ... Lateral part, 24 ... Guide channel end part.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】直方体の内部に流路を構成し、前記流路に
フィンを設けたものにおいて、1平面上の複数の角部に
流体の入出口を設け、前記直方体の対角線方向に平行に
並ぶフィンを設けたことを特徴とする熱伝達冷却装置。
1. A rectangular parallelepiped in which a flow path is formed and fins are provided in the flow path, fluid inlets and outlets are provided at a plurality of corners on one plane, and the flow path is parallel to the diagonal direction of the rectangular parallelepiped. A heat transfer cooling device, which is provided with lined up fins.
JP14395692A 1992-06-04 1992-06-04 Heat transfer cooler Pending JPH05343576A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14395692A JPH05343576A (en) 1992-06-04 1992-06-04 Heat transfer cooler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14395692A JPH05343576A (en) 1992-06-04 1992-06-04 Heat transfer cooler

Publications (1)

Publication Number Publication Date
JPH05343576A true JPH05343576A (en) 1993-12-24

Family

ID=15350966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14395692A Pending JPH05343576A (en) 1992-06-04 1992-06-04 Heat transfer cooler

Country Status (1)

Country Link
JP (1) JPH05343576A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008251932A (en) * 2007-03-30 2008-10-16 Nichicon Corp Power semiconductor module and power semiconductor device mounted with module
JP2011071386A (en) * 2009-09-28 2011-04-07 Furukawa Electric Co Ltd:The Cooling apparatus
DE102008016960B4 (en) * 2007-03-30 2021-05-06 Nichicon Corp. Power semiconductor device with a module attached therein

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008251932A (en) * 2007-03-30 2008-10-16 Nichicon Corp Power semiconductor module and power semiconductor device mounted with module
DE102008016960B4 (en) * 2007-03-30 2021-05-06 Nichicon Corp. Power semiconductor device with a module attached therein
JP2011071386A (en) * 2009-09-28 2011-04-07 Furukawa Electric Co Ltd:The Cooling apparatus

Similar Documents

Publication Publication Date Title
US4884630A (en) End fed liquid heat exchanger for an electronic component
US7568519B2 (en) Cooling device for heat source
MXPA04012515A (en) Forced fluid heat sink.
JP2005083733A (en) Flat tube type heat exchanger
JPH05299549A (en) Heat transfer cooling device
US12004322B2 (en) Cold plate with uniform plenum flow
US9068780B2 (en) Twist vane counter-parallel flow heat exchanger apparatus and method
JPH05343576A (en) Heat transfer cooler
US5067562A (en) Heat exchanger having fins which are different from one another in fin thickness
CN208847004U (en) The non-circular heat exchanger in the section of heat exchanger tube
JPS633153A (en) Refrigerant evaporator
CN109714940B (en) Runner structure and water knockout drum
CN213519929U (en) Novel cooling plate and device using same
CN112219083B (en) Heat exchanger
JP3210199B2 (en) Cooling body for flat semiconductor devices
TWI755078B (en) Water cooling device and manifold thereof
CN114269117B (en) Water cooling plate
KR20200065779A (en) Heat exchanger plate and plate heat exchanger including the same
KR101426052B1 (en) Radiator for transformer
KR20200064788A (en) Printed circuit heat exchanging plate and printed circuit heat exchanger including the same
KR102662283B1 (en) Air cooled antenna of active Electronically Scanned Array
JPH02171591A (en) Laminated type heat exchanger
CN218627901U (en) Single-side high heat flow heat exchanger
EP4390293A1 (en) Manifold for a cold plate cooling system
WO2024104319A1 (en) Cooling structure of cooler, cooler, battery pack and vehicle