JPH0534337Y2 - - Google Patents

Info

Publication number
JPH0534337Y2
JPH0534337Y2 JP1988059975U JP5997588U JPH0534337Y2 JP H0534337 Y2 JPH0534337 Y2 JP H0534337Y2 JP 1988059975 U JP1988059975 U JP 1988059975U JP 5997588 U JP5997588 U JP 5997588U JP H0534337 Y2 JPH0534337 Y2 JP H0534337Y2
Authority
JP
Japan
Prior art keywords
bearing
rotating shaft
magnetic
circumferential direction
magnetic fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1988059975U
Other languages
Japanese (ja)
Other versions
JPH01163213U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1988059975U priority Critical patent/JPH0534337Y2/ja
Publication of JPH01163213U publication Critical patent/JPH01163213U/ja
Application granted granted Critical
Publication of JPH0534337Y2 publication Critical patent/JPH0534337Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/02Sliding-contact bearings for exclusively rotary movement for radial load only
    • F16C17/028Sliding-contact bearings for exclusively rotary movement for radial load only with fixed wedges to generate hydrodynamic pressure, e.g. multi-lobe bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1025Construction relative to lubrication with liquid, e.g. oil, as lubricant
    • F16C33/103Construction relative to lubrication with liquid, e.g. oil, as lubricant retained in or near the bearing
    • F16C33/1035Construction relative to lubrication with liquid, e.g. oil, as lubricant retained in or near the bearing by a magnetic field acting on a magnetic liquid

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Sliding-Contact Bearings (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Description

【考案の詳細な説明】 ・ 産業上の利用分野 本願考案は磁性流体を潤滑剤として用い、軸受
部と回転軸を磁気力によつて浮遊させる磁性流体
軸受に関する考案で、軸受の摩耗がなく、しかも
高精度で安定した高速回転運動が得られる磁性流
体軸受に関する考案である。
[Detailed description of the invention] ・Field of industrial application The invention of this application is an invention related to a magnetic fluid bearing that uses magnetic fluid as a lubricant and suspends the bearing part and the rotating shaft by magnetic force, so that there is no bearing wear. Furthermore, this invention relates to a magnetic fluid bearing that provides highly accurate and stable high-speed rotational motion.

・ 従来の技術 従来の磁性流体軸受において、回転軸を磁性流
体によつて保持する方式(例えば、実開昭62−
202526号公報:実願昭61−89347号)では、中空
円盤状の磁石と、これとほぼ同形状のポールピー
スとを積層状に重ねて軸へ挿入し、磁気力を発生
させて軸と磁石の間に挿入した磁性流体を封込め
て、回転軸を浮遊させるものであつた。
- Conventional technology In conventional magnetic fluid bearings, the rotating shaft is held by magnetic fluid (for example,
202526 Publication: Utility Model Application No. 61-89347), a hollow disc-shaped magnet and a pole piece of almost the same shape are stacked in a stacked manner and inserted into a shaft, and a magnetic force is generated to connect the shaft and the magnet. The rotating shaft was made to float by sealing in a magnetic fluid inserted between them.

・ 考案が解決しようとする問題点 この従来の方式では、円盤状の磁石の内外径面
の加工が難しいため、真円度の不良や円筒度不良
などが発生し、磁石と回転軸との円周上の隙間が
不均一に形成されることがあり、場所によつて磁
気力が変化して回転軸の芯振れが発生したり、磁
石の一部と回転軸が回転中に接触して軸受が短期
に損傷するという問題があつた。
・Problems that the invention aims to solve In this conventional method, it is difficult to process the inner and outer diameter surfaces of the disc-shaped magnet, resulting in poor roundness and cylindricity, and the circularity between the magnet and the rotating shaft. Gaps on the circumference may be formed unevenly, and the magnetic force may change depending on the location, causing center runout of the rotating shaft, or part of the magnet may come into contact with the rotating shaft during rotation, causing damage to the bearing. There was a problem that the parts were damaged in a short period of time.

本願考案は以上のような従来の軸受精度不良か
ら生じる早期損傷を防止し、安価で軸受性能の安
定した高負荷容量の磁性流体軸受を提供すること
を目的としている。
The present invention aims to prevent early damage caused by the conventional bearing precision failure as described above, and to provide a magnetic fluid bearing that is inexpensive, has stable bearing performance, and has a high load capacity.

更に本願考案は従来の軸受に比べ、軸の芯振れ
がないので高速回転用として最適である。
Furthermore, compared to conventional bearings, the present invention has no shaft run-out, making it ideal for high-speed rotation applications.

・ 問題を解決するための手段 本願考案はこれらの問題を解決するために次の
構成を有する。
- Means for solving the problems The present invention has the following configuration to solve these problems.

(1) 非磁性体で形成された回転軸と、該回転軸の
半径方向に軸心から等距離でしかも円周方向に
おいて等距離に配置され且つ前記半径方向にお
いて着磁された複数の磁石と、該磁石各々を前
記回転軸の半径方向に軸心から等距離且つ円周
方向において等間隔に配列するための軸受スペ
ーサと、前記回転軸と前記磁石各々との隙間に
封入される磁性流体とからなり、円周方向にお
いて隣接する磁石の端面に発生する磁極が互い
に反対の磁極となるように配列されていること
を特徴とする磁性流体軸受。
(1) A rotating shaft formed of a non-magnetic material, and a plurality of magnets arranged at equal distances from the axis in the radial direction of the rotating shaft and at equal distances in the circumferential direction, and magnetized in the radial direction. , a bearing spacer for arranging each of the magnets at equal distances from the axis in the radial direction of the rotating shaft and at equal intervals in the circumferential direction; and a magnetic fluid sealed in a gap between the rotating shaft and each of the magnets. 1. A magnetic fluid bearing, characterized in that the magnetic poles generated on the end faces of adjacent magnets in the circumferential direction are arranged so as to be opposite magnetic poles.

(2) 前記軸受スペーサの内周面には動圧すべり軸
受とするための複数のテーパ面が円周方向に対
して交わるように傾斜して且つ等間隔に形成さ
れていることを特徴とする請求項1記載の磁性
流体軸受。
(2) The inner peripheral surface of the bearing spacer is characterized in that a plurality of tapered surfaces for forming a hydrodynamic slide bearing are formed at equal intervals and inclined so as to intersect with the circumferential direction. The magnetic fluid bearing according to claim 1.

・ 実施例 第1図〜第6図の図面は本願考案の実施例を示
すものである。第1図は本願考案の第1の実施例
を示す動圧形磁性流体軸受の正面図、第2図は第
1図の側面図、第3図は第1の実施例の軸受スペ
ーサと柱状磁石の位置関係を示す投影図、第4図
は本願考案の第2の実施例を示す側面図、第5図
は第3の実施例を示す側面図、第6図は本願考案
の第4の実施例を示す側面図である。
- Embodiment The drawings in FIGS. 1 to 6 show embodiments of the present invention. Fig. 1 is a front view of a hydrodynamic magnetic fluid bearing showing a first embodiment of the present invention, Fig. 2 is a side view of Fig. 1, and Fig. 3 is a bearing spacer and columnar magnet of the first embodiment. FIG. 4 is a side view showing the second embodiment of the present invention, FIG. 5 is a side view showing the third embodiment, and FIG. 6 is a fourth embodiment of the present invention. It is a side view which shows an example.

第1図は本願考案の第1の実施例を示す正面図
である。第1図に示す第1の実施例は、動圧形式
の磁性流体軸受で、その構成は回転軸1、多数の
略角柱状の磁石3、この各磁石3を回転軸1の半
径方向に軸心から等距離でしかも円周方向におい
て等間隔に放射状に一方の磁極を軸心に向けて配
列すると共に動圧を得るための段差面が内周面に
等間隔に複数個形成された軸受スペーサ4、軸受
スペーサ4を固着するための外筒2、各磁石3と
回転軸1との隙間に封入される磁性流体5とから
なる。
FIG. 1 is a front view showing a first embodiment of the present invention. The first embodiment shown in FIG. 1 is a hydrodynamic type magnetic fluid bearing, which consists of a rotating shaft 1, a large number of substantially prismatic magnets 3, and each magnet 3 arranged in a radial direction of the rotating shaft 1. A bearing spacer in which one magnetic pole is arranged radially at equal distances from the center and at equal intervals in the circumferential direction, with one magnetic pole facing the axis, and a plurality of stepped surfaces for obtaining dynamic pressure are formed at equal intervals on the inner peripheral surface. 4. It consists of an outer cylinder 2 for fixing the bearing spacer 4, and a magnetic fluid 5 sealed in the gap between each magnet 3 and the rotating shaft 1.

軸受スペーサ4は、回転軸1の軸芯から等距離
の位置に放射状に略角柱状の磁石3を配列するた
めの溝4aが片側に形成されており、円周方向の
溝4a以外の内周面では動圧形軸受とするための
段差面4bが形成されている。
The bearing spacer 4 has grooves 4a formed on one side for radially arranging substantially prismatic magnets 3 at positions equidistant from the axis of the rotating shaft 1, and the inner periphery other than the circumferential grooves 4a. A stepped surface 4b is formed on the surface to form a hydrodynamic bearing.

回転軸1に放射状に配置された磁石3は、各々
半径方向において着磁され、円周方向において隣
接する磁石3の端面に発生する磁極がそれぞれ互
いに異なるように配列し、各磁石3自体において
軸方向の磁束を発生させると共に、隣接する磁石
3間において円周方向の磁束が並ぶようにして該
2種の磁束による大きな磁気力を発生させて浮揚
効果を発揮させる。
The magnets 3 arranged radially around the rotating shaft 1 are each magnetized in the radial direction, and arranged so that the magnetic poles generated on the end faces of adjacent magnets 3 in the circumferential direction are different from each other. In addition to generating magnetic flux in the circumferential direction, magnetic flux in the circumferential direction is arranged between adjacent magnets 3 to generate a large magnetic force due to the two types of magnetic flux, thereby exerting a levitation effect.

更に軸受スペーサ4の溝4a以外の内周面には
段差面4bが形成され、動圧を発生させて動圧す
べり軸受としている。段差面は平面に限定され
ず、公知な動圧軸受の形成面であればよい。
Furthermore, a step surface 4b is formed on the inner circumferential surface of the bearing spacer 4 other than the groove 4a to generate dynamic pressure, thereby forming a dynamic pressure sliding bearing. The step surface is not limited to a flat surface, and may be any known surface forming a dynamic pressure bearing.

なお、この段差面4bは、円周方向に対して交
わるように傾斜するテーパ面として形成されてい
る。かかる構成においては、このテーパに基づく
分力が磁性流体5に常に加わることとなり、大き
な動圧を得ることが出来る。
Note that this stepped surface 4b is formed as a tapered surface that is inclined so as to intersect with the circumferential direction. In this configuration, a component force based on this taper is always applied to the magnetic fluid 5, and a large dynamic pressure can be obtained.

第2図は第1図の側面図であり、本願考案の磁
性流体軸受をユニツト化したものである。
FIG. 2 is a side view of FIG. 1, showing a unitized magnetic fluid bearing of the present invention.

多数の磁石3が放射状の溝4aに嵌合された軸
受スペーサ4は、非磁性体(例えば、プラスチツ
クやセラミツクなど)で形成されており、磁石3
を固着して、片側にフランジ2aの付いた外筒2
に挿入され、挿入後、蓋6によつて軸方向の位置
が決められる。
The bearing spacer 4, in which a large number of magnets 3 are fitted into radial grooves 4a, is made of a non-magnetic material (for example, plastic or ceramic).
is fixed to the outer cylinder 2 with a flange 2a on one side.
After insertion, the axial position is determined by the lid 6.

軸方向に磁石3が二列、間隔をおいて配列さ
れ、浮揚効果を増加させたものである。二つの軸
受スペーサ4,4は同一なものを背面合わせして
組み立てることにより、内周面の段差面4bが前
列と後列で逆向きとなり、回転軸1の回転方向に
関係なく、動圧軸受としての性能を発揮すること
ができる。
Two rows of magnets 3 are arranged at intervals in the axial direction to increase the levitation effect. By assembling the two identical bearing spacers 4, 4 back to back, the stepped surfaces 4b on the inner circumferential surface are oriented in opposite directions in the front and rear rows, so that it can be used as a hydrodynamic bearing regardless of the rotation direction of the rotating shaft 1. can demonstrate the performance of

軸受スペーサ4のU字状溝4cを合わせて、外
筒2に挿入し、外筒2の対応する箇所に形成され
て孔から位置決めピン7を嵌合・固着して、軸受
スペーサ4の軸方向と円周方向の位置決めを行つ
ている。
The U-shaped groove 4c of the bearing spacer 4 is aligned and inserted into the outer tube 2, and the positioning pin 7 is fitted and fixed into the hole formed in the corresponding location of the outer tube 2, thereby positioning the bearing spacer 4 in the axial and circumferential directions.

第1の実施例は、磁性流体軸受として最小のユ
ニツトを示したもので、負荷容量を増加するため
に、このユニツトを回転軸に複数個並べて配置し
たり、軸受スペーサ4の磁石3の円周方向ピツチ
を小さくすることによつて軸受の負荷容量を増加
できる。
The first embodiment shows the smallest unit as a magnetic fluid bearing.In order to increase the load capacity, it is possible to arrange a plurality of these units side by side on the rotating shaft, or to increase the circumference of the magnet 3 of the bearing spacer 4. By reducing the directional pitch, the load capacity of the bearing can be increased.

同一軸方向に配置された二つの磁石の磁極は、
同一磁極になるように配置して、円周方向への磁
力を高めているが、必要に応じてこれを逆の磁極
(N極ならばS極)に配置させてもよい。
The magnetic poles of two magnets arranged in the same axial direction are
Although they are arranged to have the same magnetic pole to increase the magnetic force in the circumferential direction, they may be arranged to have opposite magnetic poles (if it is a north pole, then an south pole) if necessary.

第3図は軸受スペーサ4と柱状の磁石3との位
置関係を示す投影図である。軸受スペーサ4は、
中空円筒状をしており、この部材の片方の端面部
には円の中心に向かつて放射状に溝4aが偶数個
形成されている。軸4aの外周面付近の幅よりも
内周面付近の幅の方をわずかに狭く形成し、この
溝4aに挿入される磁石3もこれに対応した形状
にすることによつて、磁石3の軸心方向への脱落
を防止することもできる。
FIG. 3 is a projected view showing the positional relationship between the bearing spacer 4 and the columnar magnet 3. FIG. The bearing spacer 4 is
It has a hollow cylindrical shape, and an even number of grooves 4a are formed in one end surface of the member radially toward the center of the circle. By making the width near the inner circumferential surface of the shaft 4a slightly narrower than the width near the outer circumferential surface, and by making the magnet 3 inserted into this groove 4a a corresponding shape, It is also possible to prevent it from falling off in the axial direction.

この脱落防止方法だけでなく、それぞれに凹又
は凸を形成して行うことも可能である。
In addition to this method of preventing falling off, it is also possible to form concavities or convexities in each.

同一の二つの軸受スペーサ4,4を図示したよ
うに背面組み合わせすることによつて、内周面に
形成した段差面がそれぞれ逆向きに形成された状
態になり、回転軸1の回転方向に関係なく動圧を
作用させることができ、しかも軸方向に磁石が二
列配列されるため、浮揚効果を増加することがで
きる。
By assembling two identical bearing spacers 4, 4 back to back as shown in the figure, the step surfaces formed on the inner peripheral surfaces are formed in opposite directions, so that they are not related to the rotational direction of the rotating shaft 1. Since the magnets are arranged in two rows in the axial direction, the levitation effect can be increased.

2点鎖線で示した本願考案のU字状の磁石3a
は、第2の実施例を示すためのもので磁石の形状
が異なる以外はその構成は同一である。
U-shaped magnet 3a of the present invention shown by a two-dot chain line
This is to show the second embodiment, and the configuration is the same except for the shape of the magnet.

第4図は本願考案の第2の実施例を示す側面図
である。本願考案の第2実施例の磁石の形状は、
柱体状の磁石3aをU字状に折曲げたような形状
に形成されている。
FIG. 4 is a side view showing a second embodiment of the present invention. The shape of the magnet of the second embodiment of the invention is as follows:
It is formed in the shape of a columnar magnet 3a bent into a U-shape.

各磁石3aは、回転軸1の軸方向において着磁
され、両磁極が回転軸1の軸心へ向かうように配
列されている。そして、各磁石3aは、円周方向
において隣接する磁石3aの端面に発生する磁極
が互いに反対の磁極となるように配列されてい
る。このような構成に基づき、各磁石3a自体に
おいて軸方向の磁束が発生すると共に、隣接する
磁石3a間において円周方向の磁束が並ぶように
発生し、該2種の磁束による大きな磁気力が生じ
て大なる浮揚効果が得られる。
Each magnet 3a is magnetized in the axial direction of the rotating shaft 1, and arranged so that both magnetic poles are directed toward the axis of the rotating shaft 1. The magnets 3a are arranged so that the magnetic poles generated on the end faces of adjacent magnets 3a in the circumferential direction are opposite to each other. Based on such a configuration, magnetic flux in the axial direction is generated in each magnet 3a itself, and magnetic flux in the circumferential direction is generated in alignment between adjacent magnets 3a, and a large magnetic force is generated by these two types of magnetic flux. A great levitation effect can be obtained.

このU字状の磁石3aを背面組合せした軸受ス
ペーサ4に配列するため、一つの列内で軸方向に
も磁束が形成され、浮揚効果を更に増加させるこ
とができ、より安定的な回転運動が得られる。
Since these U-shaped magnets 3a are arranged in the bearing spacer 4 which is assembled back to back, magnetic flux is also formed in the axial direction within one row, which further increases the levitation effect and allows for more stable rotational movement. can get.

また、U字状の磁石3aは断面を低く形成する
ことができるため、軸受を小形化することができ
る。
Moreover, since the U-shaped magnet 3a can be formed to have a low cross section, the bearing can be made smaller.

第5図は第3の実施例を示すものである。ハウ
ジング9の内周面に第2図の外筒2無しのユニツ
トが軸方向に2個配列されるものと構成を同じに
して、負荷容量を増加させている。
FIG. 5 shows a third embodiment. The structure is the same as that in which two units without the outer cylinder 2 are arranged in the axial direction as shown in FIG. 2 on the inner peripheral surface of the housing 9, and the load capacity is increased.

磁性流体軸受ユニツトの両端面部には、中空円
筒状のスペーサ10を隔てて、磁性流体用のシー
ル装置8(円盤状の磁石を磁性体が挟み込んだ構
成のもの)が設けられており、磁性流体5の装置
外部への流出を防止している。
A sealing device 8 for magnetic fluid (consisting of a disk-shaped magnet sandwiched between magnetic materials) is provided on both end faces of the magnetic fluid bearing unit with a hollow cylindrical spacer 10 in between. No. 5 is prevented from leaking outside the device.

第6図は本願考案の第4の実施例を示すもので
ある。片側にフランジ2aの付いた外筒2に第1
の実施例で示した柱状の磁石3を多数配置した軸
受スペーサ4を複数個、回転軸1に挿入する構成
のものであるが、この実施例では軸受スペーサ4
を背面組合せにしておらず、4つとも同一方向を
向いている。
FIG. 6 shows a fourth embodiment of the present invention. The outer cylinder 2 with a flange 2a on one side has a first
This embodiment has a structure in which a plurality of bearing spacers 4 each having a large number of columnar magnets 3 arranged therein are inserted into the rotating shaft 1, but in this embodiment, the bearing spacers 4
They are not arranged back to back, and all four face the same direction.

このため、段差面4bの形成方向が異なる2種
類の軸受スペーサを交互に軸方向に組合せて、回
転軸1の回転方向に関係なく、軸受性能を発揮さ
せるものである。
For this reason, two types of bearing spacers whose step surfaces 4b are formed in different directions are alternately combined in the axial direction to exhibit bearing performance regardless of the direction of rotation of the rotary shaft 1.

このように本願考案はいろいろな組合せが可能
であり、本願考案の要旨である軸方向のみならず
円周方向にも磁束を形成し、この磁気力と磁性流
体によつて回転軸を保持する機能を有するもので
あれば、他の構成要件に限定されるものではな
い。
In this way, the present invention is capable of various combinations, and the gist of the present invention is to form magnetic flux not only in the axial direction but also in the circumferential direction, and to hold the rotating shaft by this magnetic force and magnetic fluid. It is not limited to other configuration requirements as long as it has the following.

・ 効果 本願考案は次の効果を有する。· effect The present invention has the following effects.

回転軸の軸方向と共に円周方向にも浮揚効果
を発生させることにより、磁性流体軸受の軸の
回転むらなどが減少し、高精度で安定的な回転
が得られる。
By generating a levitation effect not only in the axial direction of the rotating shaft but also in the circumferential direction, uneven rotation of the shaft of the magnetic fluid bearing is reduced, and highly accurate and stable rotation can be obtained.

回転軸が停止しても磁石と磁性流体により、
回転軸は非接触に保持される。
Even if the rotating shaft stops, the magnet and magnetic fluid will
The rotating shaft is held without contact.

非接触な回転なので摩耗がない。 Non-contact rotation means no wear.

安価で容易に製作することができる。 It can be manufactured easily and inexpensively.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第6図の図面は本願考案の実施例を示
すものである。第1図は本願考案の第1の実施例
を示す動圧形磁性流体軸受の正面図、第2図は第
1図の側面図、第3図は第1の実施例の軸受スペ
ーサと柱状磁石の位置関係を示す投影図、第4図
は本願考案の第2の実施例を示す側面図、第5図
は第3の実施例を示す側面図、第6図は本願考案
の第4の実施例を示す側面図である。 1……回転軸、2……外筒、2a……フラン
ジ、3……磁石、3a……U字状の磁石、4……
軸受スペーサ、4a……溝、4b……段差面、4
c……U字状溝、5……磁性流体、6……蓋、7
……位置決めピン、8……シール装置、9……ハ
ウジング、10……スペーサ。
The drawings in FIGS. 1 to 6 show an embodiment of the present invention. Fig. 1 is a front view of a hydrodynamic magnetic fluid bearing showing a first embodiment of the present invention, Fig. 2 is a side view of Fig. 1, and Fig. 3 is a bearing spacer and columnar magnet of the first embodiment. 4 is a side view showing the second embodiment of the present invention, FIG. 5 is a side view showing the third embodiment, and FIG. 6 is a fourth embodiment of the present invention. It is a side view which shows an example. 1... Rotating shaft, 2... Outer cylinder, 2a... Flange, 3... Magnet, 3a... U-shaped magnet, 4...
Bearing spacer, 4a...Groove, 4b...Step surface, 4
c... U-shaped groove, 5... Magnetic fluid, 6... Lid, 7
...Positioning pin, 8...Sealing device, 9...Housing, 10...Spacer.

Claims (1)

【実用新案登録請求の範囲】 (1) 非磁性体で形成された回転軸と、該回転軸の
半径方向に軸心から等距離でしかも円周方向に
おいて等間隔に配置され且つ前記半径方向にお
いて着磁された複数の磁石と、該磁石各々を前
記回転軸の半径方向に軸心から等距離且つ円周
方向において等間隔に配列するための軸受スペ
ーサと、前記回転軸と前記磁石各々との隙間に
封入される磁性流体とからなり、円周方向にお
いて隣接する磁石の端面に発生する磁極が互い
に反対の磁極となるように配列されていること
を特徴とする磁性流体軸受。 (2) 前記軸受スペーサの内周面には動圧すべり軸
受とするための複数のテーパ面が円周方向に対
して交わるように傾斜して且つ等間隔に形成さ
れていることを特徴とする請求項1記載の磁性
流体軸受。
[Claims for Utility Model Registration] (1) A rotating shaft formed of a non-magnetic material, arranged at equal distances from the axis in the radial direction of the rotating shaft and at equal intervals in the circumferential direction, and a plurality of magnetized magnets; a bearing spacer for arranging each of the magnets at equal distances from the axis in the radial direction of the rotating shaft and at equal intervals in the circumferential direction; 1. A magnetic fluid bearing comprising a magnetic fluid sealed in a gap and arranged so that magnetic poles generated on the end faces of adjacent magnets in the circumferential direction are mutually opposite magnetic poles. (2) The inner peripheral surface of the bearing spacer is characterized in that a plurality of tapered surfaces for forming a hydrodynamic slide bearing are formed at equal intervals and inclined so as to intersect with the circumferential direction. The magnetic fluid bearing according to claim 1.
JP1988059975U 1988-05-06 1988-05-06 Expired - Lifetime JPH0534337Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1988059975U JPH0534337Y2 (en) 1988-05-06 1988-05-06

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1988059975U JPH0534337Y2 (en) 1988-05-06 1988-05-06

Publications (2)

Publication Number Publication Date
JPH01163213U JPH01163213U (en) 1989-11-14
JPH0534337Y2 true JPH0534337Y2 (en) 1993-08-31

Family

ID=31285706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1988059975U Expired - Lifetime JPH0534337Y2 (en) 1988-05-06 1988-05-06

Country Status (1)

Country Link
JP (1) JPH0534337Y2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04313748A (en) * 1991-01-23 1992-11-05 Konica Corp Photographic unit
JP2599459Y2 (en) * 1991-03-15 1999-09-06 エヌオーケー株式会社 Magnetic fluid bearing
JPWO2023032812A1 (en) * 2021-08-30 2023-03-09

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS599312A (en) * 1982-07-06 1984-01-18 Nippon Telegr & Teleph Corp <Ntt> Magnetic bearing applied with magnetic fluid
JPS608523A (en) * 1983-06-27 1985-01-17 Nippon Telegr & Teleph Corp <Ntt> Magnetic fluid slide bearing structure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS599312A (en) * 1982-07-06 1984-01-18 Nippon Telegr & Teleph Corp <Ntt> Magnetic bearing applied with magnetic fluid
JPS608523A (en) * 1983-06-27 1985-01-17 Nippon Telegr & Teleph Corp <Ntt> Magnetic fluid slide bearing structure

Also Published As

Publication number Publication date
JPH01163213U (en) 1989-11-14

Similar Documents

Publication Publication Date Title
US6081057A (en) Spindel motor for a disc drive
US5783886A (en) Spindle motor having magnetic bearing
JP2002027721A (en) High-speed rotation spindle motor
US6227710B1 (en) Rolling bearing with information sensor
US6630758B2 (en) Motor with a stationary shaft with formed knurled grooves on shaft and/or housing
JPH0534337Y2 (en)
EP1167787B1 (en) Bearing apparatus
JP2002005157A (en) Composite bearing device
JP2566658Y2 (en) Motor bearing device
JPH0510823U (en) Magnetic fluid bearing
CN110762224A (en) Divergent split-tooth stepped magnetic fluid rotary sealing device
JPH0624578Y2 (en) Magnetic bearing device
JP2553864Y2 (en) Magnet roll
JP2002372039A (en) Hydrodynamic bearing device and spindle motor
JP2601386Y2 (en) Magnetic fluid bearing
JPH0213244A (en) Motor
JPH0448120Y2 (en)
JPH0518496Y2 (en)
JPH0518494Y2 (en)
JP2589522Y2 (en) Magnetic bearing
JPH0781585B2 (en) Bearing device
JPH06241229A (en) Magnetic bearing
JPH0540364Y2 (en)
JPH0610623U (en) Magnetic fluid bearing
KR100459875B1 (en) Hydrodynamic air bearings