JPH05343331A - Cvd apparatus - Google Patents

Cvd apparatus

Info

Publication number
JPH05343331A
JPH05343331A JP14533592A JP14533592A JPH05343331A JP H05343331 A JPH05343331 A JP H05343331A JP 14533592 A JP14533592 A JP 14533592A JP 14533592 A JP14533592 A JP 14533592A JP H05343331 A JPH05343331 A JP H05343331A
Authority
JP
Japan
Prior art keywords
gas
supply head
gas supply
wafer
cooling jacket
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14533592A
Other languages
Japanese (ja)
Inventor
Masakazu Hoshino
正和 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP14533592A priority Critical patent/JPH05343331A/en
Publication of JPH05343331A publication Critical patent/JPH05343331A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To realize an improvement of yield and a high throughput in a semiconductor device-manufacturing process by reducing the contamination of a wafer by the dust of a reaction product through efficiently cooling a reactive gas supply head. CONSTITUTION:In a gas supply head 2, a cooling jacket 21 is provided in the manner of surrounding a gas buffer chamber 18 and a plurality of connecting rods 19 having minute holes are provided in the manner of passing through the cooling jacket 21 from the gas buffer chamber 18. These minute holes are gas ports 17 to supply a reactive gas into a CVD reactor 1. At that time, a cooling fluid is caused to flow within this cooling jacket 21.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、CVD装置、特に、真
空容器内に設けられたヒータと均熱板から成るサセプタ
上に半導体ウエハを載置し、ウエハを加熱することによ
り、ウエハ面上に薄膜を成膜するCVD装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a CVD apparatus, in particular, a semiconductor wafer is placed on a susceptor composed of a heater and a heat equalizing plate provided in a vacuum container, and the wafer is heated to be heated on the wafer surface. The present invention relates to a CVD apparatus for forming a thin film on a substrate.

【0002】[0002]

【従来の技術】従来の薄膜製造装置(以下、CVD装
置)では、ガス供給ヘッドとウエハを載置するためのサ
セプタが対向する様な構造になっている。そのため、サ
セプタによる輻射熱や、ガスによる伝導によりガス供給
ヘッドが加熱されるため、反応性ガスがガス供給ヘッド
内で熱反応する事を防止したり、塵埃によるウエハ汚染
低減の観点からガス供給ヘッドに反応成生物が付着する
事を防ぐ必要がある。この様な事を解決するために、実
開平3−109329 号公報では、ガス供給ヘッドに水冷ジャ
ケットを設け、水を循環させることにより、ガス供給ヘ
ッド部を冷却している。しかし、この様な構造では、最
も冷却する必要のあるガス噴出口部分の冷却が不十分で
ある。これは、ガス噴出口部分を構成する部材とジャケ
ットを構成する部材が別部材であり、完全に接続(熱的
に)されていないため、特に、チャンバ圧力が低い装置
では、ガス噴出口部を構成する部材からジャケットを構
成する部材への熱伝達効率が低下するためである。
2. Description of the Related Art In a conventional thin film manufacturing apparatus (hereinafter referred to as a CVD apparatus), a gas supply head and a susceptor for mounting a wafer face each other. Therefore, the gas supply head is heated by the radiant heat from the susceptor and the conduction by the gas, so that the reactive gas is prevented from thermally reacting in the gas supply head, and the gas supply head is reduced from the viewpoint of reducing wafer contamination by dust. It is necessary to prevent reaction products from attaching. In order to solve such a problem, in Japanese Utility Model Laid-Open No. 3-109329, a water cooling jacket is provided on the gas supply head and water is circulated to cool the gas supply head portion. However, with such a structure, cooling of the gas ejection port portion, which needs to be cooled most, is insufficient. This is because the member forming the gas outlet and the member forming the jacket are separate members and are not completely connected (thermally). Therefore, especially in a device with low chamber pressure, the gas outlet is This is because the heat transfer efficiency from the constituent members to the member constituting the jacket is lowered.

【0003】[0003]

【発明が解決しようとする課題】反応性ガスがガス供給
ヘッド内で熱反応する事や、ガス供給ヘッドに反応成生
物が付着する事を防止し、反応成生物の塵埃によるウエ
ハ汚染を低減するため、ガス供給ヘッドのガス噴出口部
分を効率的に冷却する。
It is possible to prevent the reactive gas from thermally reacting in the gas supply head and to prevent the reaction product from adhering to the gas supply head, and to reduce the wafer contamination due to the dust of the reaction product. Therefore, the gas ejection port portion of the gas supply head is efficiently cooled.

【0004】[0004]

【課題を解決するための手段】本発明は、ガス供給ヘッ
ド部のガス噴出口部を効率的に冷却するために、 (1)ガス供給ヘッドを囲む様に冷却ジャケットを設け、
ガス供給ヘッドのガスバッファ室から冷却ジャケットを
貫通する複数本の微小孔を有する棒を冷却ジャケットを
構成する板に固定し、この微小孔をガス噴出口として、
反応性ガスをチャンバ内に供給する様にする。
According to the present invention, in order to efficiently cool a gas ejection port of a gas supply head, (1) a cooling jacket is provided so as to surround the gas supply head,
A rod having a plurality of minute holes penetrating the cooling jacket from the gas buffer chamber of the gas supply head is fixed to a plate constituting the cooling jacket, and these minute holes are used as gas ejection ports,
Reactive gas is supplied into the chamber.

【0005】(2)また、この棒の断面形状や配置を変化
させる。
(2) Further, the cross-sectional shape and arrangement of the rod are changed.

【0006】[0006]

【作用】ガス供給ヘッドを囲む様に冷却ジャケットを設
け、ガス供給ヘッドのガスバッファ室から冷却ジャケッ
トを貫通する複数本の微小孔を有する棒を冷却ジャケッ
トを構成する板に固定し、この微小孔をガス噴出口とし
て、反応性ガスをチャンバ内に供給する様な構造にし、
このジャケット部に冷却流体を流すことにより、ガス噴
出口部分の部材を直接冷却できる。これにより、ガス供
給ヘッドのガス噴出口部を効率的に冷却できるので、反
応性ガスがガス供給ヘッド内で熱反応する事や、ガス供
給ヘッドに反応成生物が付着する事を防止し、反応生成
物の塵埃によるウエハ汚染を低減できる。このようにし
て、半導体素子製造過程の歩留まりの向上と高スループ
ット化が実現できる。
A cooling jacket is provided so as to surround the gas supply head, and a rod having a plurality of fine holes penetrating the cooling jacket from the gas buffer chamber of the gas supply head is fixed to a plate constituting the cooling jacket. As a gas ejection port, and a structure for supplying a reactive gas into the chamber,
By flowing the cooling fluid through the jacket portion, the member at the gas ejection port can be directly cooled. This allows the gas outlet of the gas supply head to be cooled efficiently, preventing the reactive gas from thermally reacting within the gas supply head and preventing reaction products from adhering to the gas supply head. Wafer contamination due to product dust can be reduced. In this way, it is possible to improve the yield and increase the throughput in the semiconductor device manufacturing process.

【0007】[0007]

【実施例】以下、本発明の実施例を図1から図7を用い
て説明する。図1は、本発明の第1実施例のCVD装置
の断面図を、図2(a)(b)及び図3は、第1実施例の
ガス供給ヘッドの断面を、図4は、第2実施例のガス供
給ヘッドの断面を、図5は、第3実施例のガス供給ヘッ
ドの断面を、図6は、第4実施例のガス供給ヘッドの断
面を、図7は、その他実施例での貫通棒の断面形状を示
したものである。
Embodiments of the present invention will be described below with reference to FIGS. 1 is a sectional view of a CVD apparatus according to a first embodiment of the present invention, FIGS. 2 (a) and 2 (b) and FIG. 3 are sectional views of a gas supply head according to the first embodiment, and FIG. 5 is a cross section of the gas supply head of the third embodiment, FIG. 6 is a cross section of the gas supply head of the fourth embodiment, and FIG. 7 is a cross section of the other embodiment. 3 shows the cross-sectional shape of the penetrating rod.

【0008】図1を用いて、第1実施例のCVD装置を
説明する。図1に示す様に、CVD装置は、CVD反応
炉1,反応性ガスを供給するためのガス供給ヘッド2,
ウエハ4を加熱するためのサセプタ3,CVD反応炉1
内に成膜前のウエハ4を持ち込んだり、成膜後のウエハ
4を持ち出すためのウエハ搬送系を装備したロードロッ
ク室を接続するためのポート5,CVD反応炉1内を必
要な圧力に設定するための真空排気系を接続するための
ポート6により構成される。
The CVD apparatus of the first embodiment will be described with reference to FIG. As shown in FIG. 1, the CVD apparatus includes a CVD reactor 1, a gas supply head 2 for supplying a reactive gas,
Susceptor 3 for heating wafer 4, CVD reactor 1
Port 5 for connecting a load lock chamber equipped with a wafer transfer system for bringing in a wafer 4 before film formation or for taking out the wafer 4 after film formation, and setting the pressure inside the CVD reaction furnace 1 to a required pressure Port 6 for connecting an evacuation system for this purpose.

【0009】サセプタ3は、ヒータ7と押上棒9,ベロ
ーズ10,シリンダ11,サポート12より成るウエハ
押上機構8及びヒータ7に電力を供給するための電力線
13により構成される。
The susceptor 3 comprises a heater 7, a push-up bar 9, a bellows 10, a wafer 11, a wafer push-up mechanism 8 including a support 12, and a power line 13 for supplying power to the heater 7.

【0010】図2(a)(b)及び図3を用いて、ガス供
給ヘッド2を説明する。図2(a)に示す様に、ガス供
給ヘッド2は、ガスバッファ室18を囲む様に冷却ジャ
ケット21が、ガスバッファ室18から冷却ジャケット
21を貫通する様に、微小孔を有する複数の連結棒19
が設けられる。また、ガス供給ヘッド2には、反応性ガ
スを導入するための反応性ガス導入口14,冷却流体を
導入,導出するための冷却流体流入口15及び冷却流体
流出口16,ガス噴出口17,流路20が付属する。図
2(b)は、図2(a)をガス噴出口17側から見た図
である。この図に示す様に、ガス噴出口17(連結棒1
9)は、格子状に配置されている。
The gas supply head 2 will be described with reference to FIGS. 2A and 2B and FIG. As shown in FIG. 2 (a), the gas supply head 2 has a plurality of connecting holes having minute holes so that the cooling jacket 21 surrounds the gas buffer chamber 18 and passes through the cooling jacket 21 from the gas buffer chamber 18. Stick 19
Is provided. Further, in the gas supply head 2, a reactive gas inlet 14 for introducing a reactive gas, a cooling fluid inlet 15 and a cooling fluid outlet 16 for introducing and discharging a cooling fluid, a gas outlet 17, The flow path 20 is attached. 2B is a view of FIG. 2A viewed from the gas ejection port 17 side. As shown in this figure, the gas ejection port 17 (connecting rod 1
9) are arranged in a grid pattern.

【0011】通常のCVD装置では、CVD反応炉1内
圧力が0.1 から数Torr程度であり、ガスバッファ室1
8の圧力が数十Torr程度であるので、ガスバッファ室1
8に導かれた反応性ガスは、ガス噴出口17の孔径が同
一であれば、それぞれの孔から、同一量のガスが噴流と
なって、サセプタ3上のウエハ4に供給される。図3
は、図2(a)のI−I断面を示したものである。冷却
流体は、パイプ22から冷却ジャケット21に流入し、
せき止め板24や連結棒19に衝突しながら、パイプ2
方向に向かって図中矢印の様に流れる。
In a normal CVD apparatus, the pressure inside the CVD reactor 1 is about 0.1 to several Torr, and the gas buffer chamber 1
Since the pressure of 8 is about several tens Torr, the gas buffer chamber 1
If the hole diameters of the gas ejection ports 17 are the same, the reactive gas guided to 8 is supplied to the wafer 4 on the susceptor 3 in the form of a jet flow of the same amount of gas from each hole. Figure 3
2 shows the II cross section of FIG. The cooling fluid flows from the pipe 22 into the cooling jacket 21,
While colliding with the dam 24 and the connecting rod 19, the pipe 2
Flows in the direction as shown by the arrow in the figure.

【0012】この様な装置構成で、ロードロック室(図
示せず)からCVD反応炉1内のサセプタ3の真上にウ
エハ4を持込み、ウエハ押上機構8を用いて、予め決め
られた温度に設定されたサセプタ3上にウエハ4を設置
する。そして、ガス供給ヘッド2の反応性ガス導入口1
4からガスバッファ室18に導かれた反応性ガスは、複
数の連結棒19の微小孔がガス噴出口17となり、この
ガス噴出口17からCVD反応炉1内に噴出する。
With such an apparatus structure, the wafer 4 is loaded from the load lock chamber (not shown) directly above the susceptor 3 in the CVD reaction furnace 1, and the wafer pushing mechanism 8 is used to bring it to a predetermined temperature. The wafer 4 is placed on the set susceptor 3. Then, the reactive gas inlet 1 of the gas supply head 2
The reactive gas introduced into the gas buffer chamber 18 from No. 4 is ejected into the CVD reactor 1 from the gas ejection ports 17 by the micro holes of the plurality of connecting rods 19 serving as the gas ejection ports 17.

【0013】ガス供給ヘッド2は、高温のサセプタ3か
らの輻射熱とCVD反応炉1内のガスの伝導熱により温
度上昇する。この温度上昇を、冷却流体流入口15から
導入した冷却流体を、流路20を経て冷却流体流出口1
6から導出することにより冷却する。この際、冷却流体
が、直接、冷却ジャケット21を構成する部材を冷却す
る事ができるので、効果的な冷却が実現できる。
The temperature of the gas supply head 2 rises due to the radiation heat from the high temperature susceptor 3 and the conduction heat of the gas in the CVD reaction furnace 1. The cooling fluid introduced from the cooling fluid inlet port 15 through this temperature rise is passed through the flow path 20 and the cooling fluid outlet port 1
It is cooled by deriving from 6. At this time, the cooling fluid can directly cool the members constituting the cooling jacket 21, so that effective cooling can be realized.

【0014】この様に、ガス供給ヘッド2を効率的に冷
却することにより、反応性ガスがガス供給ヘッド2内で
熱反応する事や、ガス供給ヘッド2に反応成生物が付着
する事を防止し、反応生成物の塵埃によるウエハ汚染を
低減できる。こうして、半導体素子製造過程の歩留まり
の向上と高スループット化が実現できる。
As described above, by efficiently cooling the gas supply head 2, it is possible to prevent the reactive gas from thermally reacting in the gas supply head 2 and to prevent the reaction product from adhering to the gas supply head 2. In addition, it is possible to reduce wafer contamination due to dust of reaction products. In this way, it is possible to improve the yield and increase the throughput in the semiconductor device manufacturing process.

【0015】図4は、第2実施例について、図2に示し
た様にガス供給ヘッド2のI−I断面を示した図であ
る。図4に示す様に、この実施例では、直径の異なる2
種類の連結棒19を用いて、適当に配置し、冷却流体
を、パイプ22から冷却ジャケット21に流入させ、せ
き止め板24や連結棒19に衝突させながら、パイプ2
方向に向かって、水冷ジャケット21内を均等に図中矢
印の様に流すことにより、ガス供給ヘッド2を均一に、
効率的に冷却することが出来る。
FIG. 4 is a view showing a II cross section of the gas supply head 2 as shown in FIG. 2 in the second embodiment. As shown in FIG. 4, in this embodiment, two different diameters are used.
The pipe 2 is appropriately arranged by using a connecting rod 19 of a kind, the cooling fluid is made to flow from the pipe 22 into the cooling jacket 21, and is made to collide with the dam plate 24 and the connecting rod 19 while
In the same direction, the water cooling jacket 21 is made to flow evenly as shown by the arrow in the figure, so that the gas supply head 2 can be made uniform.
It can be cooled efficiently.

【0016】この様に、ガス供給ヘッド2を効率的に冷
却することにより、反応性ガスがガス供給ヘッド2内で
熱反応する事や、ガス供給ヘッド2に反応成生物が付着
する事を防止し、反応生成物の塵埃によるウエハ汚染を
低減できる。こうして、半導体素子製造過程の歩留まり
の向上と高スループット化が実現できる。
As described above, by efficiently cooling the gas supply head 2, it is possible to prevent the reactive gas from thermally reacting in the gas supply head 2 and to prevent the reaction product from adhering to the gas supply head 2. In addition, it is possible to reduce wafer contamination due to dust of reaction products. In this way, it is possible to improve the yield and increase the throughput in the semiconductor device manufacturing process.

【0017】図5は、第3実施例について、図2に示し
た様にガス供給ヘッド2のI−I断面を示した図であ
る。図5に示す様に、この実施例では、円形断面と長円
形断面の異なる2種類の連結棒19を用いて、適当に配
置し、冷却流体を、パイプ22から冷却ジャケット21
に流入させ、せき止め板24や連結棒19に衝突させな
がら、パイプ2方向に向かって、水冷ジャケット21内
を均等に図中矢印の様に流すことにより、ガス供給ヘッ
ド2を均一に、効率的に冷却することが出来る。
FIG. 5 is a view showing the I-I cross section of the gas supply head 2 as shown in FIG. 2 for the third embodiment. As shown in FIG. 5, in this embodiment, two kinds of connecting rods 19 having different circular cross-sections and oval cross-sections are used to appropriately arrange the cooling fluid, and the cooling fluid is supplied from the pipe 22 to the cooling jacket 21.
To the pipe 2 while allowing the gas supply head 2 to flow evenly in the direction of the pipe 2 in the direction of the pipe 2 as shown by the arrow in the figure, while making the gas supply head 2 uniformly and efficiently. Can be cooled to

【0018】この様に、ガス供給ヘッド2を効率的に冷
却することにより、反応性ガスがガス供給ヘッド2内で
熱反応する事や、ガス供給ヘッド2に反応成生物が付着
する事を防止し、反応生成物の塵埃によるウエハ汚染を
低減できる。こうして、半導体素子製造過程の歩留まり
の向上と高スループット化が実現できる。
As described above, by efficiently cooling the gas supply head 2, it is possible to prevent the reactive gas from thermally reacting in the gas supply head 2 and to prevent the reaction product from adhering to the gas supply head 2. In addition, it is possible to reduce wafer contamination due to dust of reaction products. In this way, it is possible to improve the yield and increase the throughput in the semiconductor device manufacturing process.

【0019】図6は、第4実施例について、図2に示し
た様にガス供給ヘッド2のI−I断面を示した図であ
る。図6に示す様に、この実施例では、矩形断面の連結
棒19を用いて、適当に配置し、冷却流体を、パイプ2
2から冷却ジャケット21に流入させ、せき止め板24
や連結棒19に衝突させながら、パイプ2方向に向かっ
て、水冷ジャケット21内を均等に図中矢印の様に流す
ことにより、ガス供給ヘッド2を均一に、効率的に冷却
することが出来る。
FIG. 6 is a view showing a cross section taken along the line II of the gas supply head 2 as shown in FIG. 2 for the fourth embodiment. As shown in FIG. 6, in this embodiment, a connecting rod 19 having a rectangular cross section is used to appropriately arrange the cooling fluid and to connect the cooling fluid to the pipe 2.
2 to the cooling jacket 21, and the weir plate 24
The gas supply head 2 can be cooled uniformly and efficiently by causing the water cooling jacket 21 to flow evenly in the direction of the pipe 2 as shown by the arrow while colliding with the connecting rod 19 or the connecting rod 19.

【0020】この様に、ガス供給ヘッド2を効率的に冷
却することにより、反応性ガスがガス供給ヘッド2内で
熱反応する事や、ガス供給ヘッド2に反応成生物が付着
する事を防止し、反応生成物の塵埃によるウエハ汚染を
低減できる。このようにして、半導体素子製造過程の歩
留まりの向上と高スループット化が実現できる。
As described above, by efficiently cooling the gas supply head 2, it is possible to prevent the reactive gas from thermally reacting in the gas supply head 2 and to prevent the reaction product from adhering to the gas supply head 2. In addition, it is possible to reduce wafer contamination due to dust of reaction products. In this way, it is possible to improve the yield and increase the throughput in the semiconductor device manufacturing process.

【0021】[0021]

【発明の効果】本発明によれば、ガス供給ヘッドのガス
噴出口部を効率的に冷却できるので、反応性ガスがガス
供給ヘッド内で熱反応する事や、ガス供給ヘッドに反応
成生物が付着する事を防止し、反応生成物の塵埃による
ウエハ汚染を低減できるので、半導体素子製造過程の歩
留まりの向上と高スループット化が実現できる。
According to the present invention, the gas ejection port of the gas supply head can be efficiently cooled, so that the reactive gas thermally reacts in the gas supply head and the reaction product is generated in the gas supply head. Since the adherence can be prevented and the wafer contamination due to the dust of the reaction product can be reduced, the yield and the throughput in the semiconductor device manufacturing process can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例のCVD装置の構造を示す
断面図。
FIG. 1 is a sectional view showing the structure of a CVD apparatus according to a first embodiment of the present invention.

【図2】本発明の第1実施例のガス供給ヘッドの構造を
示す断面図。
FIG. 2 is a sectional view showing the structure of the gas supply head of the first embodiment of the present invention.

【図3】図2のガス供給ヘッドのI−I矢視断面図。3 is a cross-sectional view of the gas supply head of FIG. 2 taken along the line I-I.

【図4】本発明の第2実施例のガス供給ヘッドの構造を
示す断面図。
FIG. 4 is a sectional view showing a structure of a gas supply head according to a second embodiment of the present invention.

【図5】本発明の第3実施例のガス供給ヘッドの構造を
示す断面図。
FIG. 5 is a sectional view showing the structure of a gas supply head according to a third embodiment of the present invention.

【図6】本発明の第4実施例のガス供給ヘッドの構造を
示す断面図。
FIG. 6 is a sectional view showing the structure of a gas supply head according to a fourth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…CVD反応炉、2…ガス供給ヘッド、3…サセプ
タ、4…ウエハ、5,6…ポート、7…ヒータ、8…ウ
エハ押上機構、9…押上棒、10…ベローズ、11…シ
リンダ、12…サポート、13…電力線、14…反応性
ガス導入口、15…冷却流体流入口、16…冷却流体流
出口、17…ガス噴出口、18…ガスバッファ室、19
…連結棒、20…流路、21…冷却ジャケット。
DESCRIPTION OF SYMBOLS 1 ... CVD reaction furnace, 2 ... Gas supply head, 3 ... Susceptor, 4 ... Wafer, 5, 6 ... Port, 7 ... Heater, 8 ... Wafer pushing mechanism, 9 ... Push rod, 10 ... Bellows, 11 ... Cylinder, 12 ... Support, 13 ... Power line, 14 ... Reactive gas inlet, 15 ... Cooling fluid inlet, 16 ... Cooling fluid outlet, 17 ... Gas jet, 18 ... Gas buffer chamber, 19
... connecting rod, 20 ... flow path, 21 ... cooling jacket.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】CVD反応炉内に設けられたサセプタ上に
ウエハを設置し、前記ウエハを加熱すると同時に、反応
性ガスを水等の冷却流体により冷却されるガス供給ヘッ
ドのガス噴出口より前記CVD反応炉内に供給し、排気
口より真空ポンプでガス排気して、前記ウエハ上に薄膜
を生成するCVD装置において、ガスバッファ室を囲む
様に冷却ジャケットが、前記ガスバッファ室から前記冷
却ジャケットを貫通する様に微小孔を有する複数本の棒
が設けられた構造のガス供給ヘッドを用いて、前記微小
孔を前記ガス噴出口として、前記反応性ガスを前記CV
D反応炉内に供給することを特徴とするCVD装置。
1. A wafer is placed on a susceptor provided in a CVD reaction furnace, and at the same time the wafer is heated, the reactive gas is cooled from a gas injection port of a gas supply head which is cooled by a cooling fluid such as water. In a CVD apparatus in which a thin film is formed on the wafer by supplying gas into a CVD reaction furnace and evacuating a gas from an exhaust port with a vacuum pump, a cooling jacket is provided so as to surround a gas buffer chamber, and the cooling jacket extends from the gas buffer chamber to the cooling jacket. By using a gas supply head having a structure in which a plurality of rods having fine holes are formed so as to penetrate through, the fine holes are used as the gas ejection ports and the reactive gas is used as the CV.
A CVD apparatus characterized by being supplied into a D reactor.
JP14533592A 1992-06-05 1992-06-05 Cvd apparatus Pending JPH05343331A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14533592A JPH05343331A (en) 1992-06-05 1992-06-05 Cvd apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14533592A JPH05343331A (en) 1992-06-05 1992-06-05 Cvd apparatus

Publications (1)

Publication Number Publication Date
JPH05343331A true JPH05343331A (en) 1993-12-24

Family

ID=15382796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14533592A Pending JPH05343331A (en) 1992-06-05 1992-06-05 Cvd apparatus

Country Status (1)

Country Link
JP (1) JPH05343331A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003012165A1 (en) * 2001-08-01 2003-02-13 Tokyo Electron Limited Gas treating device and gas treating method
JP2009141343A (en) * 2007-11-12 2009-06-25 Sharp Corp Vapor phase growth apparatus and method
JP2010027675A (en) * 2008-07-15 2010-02-04 Sharp Corp Vapor deposition apparatus
US20110023782A1 (en) * 2009-07-28 2011-02-03 Ligadp Co., Ltd. Gas injection unit for chemical vapor desposition apparatus
JP4778655B2 (en) * 2000-02-04 2011-09-21 アイクストロン、アーゲー Method and apparatus for depositing one or more coatings on a substrate
US10745824B2 (en) 2016-11-16 2020-08-18 Nuflare Technology, Inc. Film forming apparatus

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4778655B2 (en) * 2000-02-04 2011-09-21 アイクストロン、アーゲー Method and apparatus for depositing one or more coatings on a substrate
WO2003012165A1 (en) * 2001-08-01 2003-02-13 Tokyo Electron Limited Gas treating device and gas treating method
JP2004076023A (en) * 2001-08-01 2004-03-11 Tokyo Electron Ltd Gas treatment device and gas treatment method
JP2009013504A (en) * 2001-08-01 2009-01-22 Tokyo Electron Ltd Gas treating device and gas treating method
JP2009141343A (en) * 2007-11-12 2009-06-25 Sharp Corp Vapor phase growth apparatus and method
JP2010027675A (en) * 2008-07-15 2010-02-04 Sharp Corp Vapor deposition apparatus
US20110023782A1 (en) * 2009-07-28 2011-02-03 Ligadp Co., Ltd. Gas injection unit for chemical vapor desposition apparatus
US8808454B2 (en) 2009-07-28 2014-08-19 Ligadp Co., Ltd. Gas injection unit for chemical vapor desposition apparatus
US10745824B2 (en) 2016-11-16 2020-08-18 Nuflare Technology, Inc. Film forming apparatus

Similar Documents

Publication Publication Date Title
US4468283A (en) Method for etching and controlled chemical vapor deposition
US4640223A (en) Chemical vapor deposition reactor
JPS61194179A (en) Housing for forming vapor deposition reaction chamber
JPH0727895B2 (en) Semiconductor wafer processing method and apparatus
JPH03224217A (en) Heat-treating device
JP2009536460A (en) Batch processing chamber with diffusion plate and spray assembly
JP2005277442A (en) Plasma etching apparatus
US4834022A (en) CVD reactor and gas injection system
JPH05343331A (en) Cvd apparatus
JP4058364B2 (en) Semiconductor manufacturing equipment
JP2003100579A (en) Substrate treatment apparatus
JP4287918B2 (en) Substrate surface treatment equipment
JP3163343B2 (en) Semiconductor manufacturing equipment
JPH0461117A (en) Single-wafer cvd device
KR20230161774A (en) Substrate supporting apparatus and substrate processing apparatus including the same
JPH03173419A (en) Manufacture of semiconductor device
JPH11251305A (en) Vertical low pressure chemical vapor deposition system
KR0134671Y1 (en) Heater cooling apparatus of semiconductor diffusion system
KR100443857B1 (en) Cooling system of wafer heating apparatus
JP2522402B2 (en) Wafer heating device
JP2001284258A (en) Semiconductor production system
JPH0496330A (en) Vapor growth apparatus
JPH097966A (en) Reaction pipe of longitudinal reaction furnace
JP3117238B2 (en) Semiconductor manufacturing apparatus and semiconductor device manufacturing method.
JPH0294626A (en) Heat treatment apparatus