JPH05343083A - Fuel cell power generation device - Google Patents

Fuel cell power generation device

Info

Publication number
JPH05343083A
JPH05343083A JP4152525A JP15252592A JPH05343083A JP H05343083 A JPH05343083 A JP H05343083A JP 4152525 A JP4152525 A JP 4152525A JP 15252592 A JP15252592 A JP 15252592A JP H05343083 A JPH05343083 A JP H05343083A
Authority
JP
Japan
Prior art keywords
fuel cell
reformer
gas
anode
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4152525A
Other languages
Japanese (ja)
Inventor
Hajime Saito
一 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP4152525A priority Critical patent/JPH05343083A/en
Publication of JPH05343083A publication Critical patent/JPH05343083A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

PURPOSE:To downsize a power generation equipment, reduce a heat radiation loss, heighten plant efficiency, and simplify pressure control. CONSTITUTION:A fuel cell power generation device is provided with a reformer 10 to reform fuel gas into hydrogen contained anode gas, a fuel cell 20 to generate an electric power from anode the gas and oxygen contained cathode gas, a catalytic combustor 30 to burn up anode exhaust gas coming out from the fuel cell and a heat exchanger 40 to exchange heat between the high temperature anode gas coming out from the reformer and the low temperature fuel gas to be supplied to the reformer. The reformer, the fuel cell, the generation device are housed all in a common pressure container. The fuel cell 20 is a fused carbonate type fuel cell, and the reformer 10 is a plate type reformer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、燃料電池発電設備の温
度制御方法及び装置に関し、更に詳しくは、溶融炭酸塩
型燃料電池に供給されるアノードガスの温度を制御する
方法及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for controlling temperature of fuel cell power generation equipment, and more particularly to a method and apparatus for controlling the temperature of anode gas supplied to a molten carbonate fuel cell.

【0002】[0002]

【従来の技術】溶融炭酸塩型燃料電池は、高効率、かつ
環境への影響が少ないなど、従来の発電装置にはない特
徴を有しており、水力・火力・原子力に続く発電システ
ムとして注目を集め、現在世界各国で鋭意研究開発が行
われている。特に天然ガスを燃料とする溶融炭酸塩型燃
料電池を用いた発電設備では、図3に示すように天然ガ
ス等の燃料ガスを水素を含むアノードガスに改質する改
質器10と、アノードガスと酸素を含むカソードガスと
から発電する燃料電池20とを一般的に備えており、改
質器で作られたアノードガスは燃料電池に供給され、燃
料電池内でその大部分(例えば80%)を消費した後、
アノード排ガスとして改質器の燃焼室に供給される。改
質器ではアノード排ガス中の可燃成分(水素、一酸化炭
素、メタン等)を燃焼室で燃焼し、高温の燃焼ガスによ
り改質室で改質管を加熱し改質管内を通る燃料を改質す
る。改質室を出た燃焼排ガスは燃料電池用のカソードガ
スに合流され、燃料電池のカソード側に必要な二酸化炭
素を供給する。カソードガスは燃料電池内でその一部が
反応した後、系外に排出される。
2. Description of the Related Art Molten carbonate fuel cells have characteristics that conventional power generators do not have, such as high efficiency and little impact on the environment, and they are attracting attention as a power generation system following hydropower, thermal power, and nuclear power. Is currently being researched and developed all over the world. Particularly in a power generation facility using a molten carbonate fuel cell using natural gas as a fuel, a reformer 10 for reforming a fuel gas such as natural gas into an anode gas containing hydrogen as shown in FIG. And a fuel cell 20 for generating power from a cathode gas containing oxygen, and the anode gas produced by the reformer is supplied to the fuel cell, and most of the fuel gas (for example, 80%) is supplied in the fuel cell. After consuming
It is supplied to the combustion chamber of the reformer as anode exhaust gas. In the reformer, combustible components (hydrogen, carbon monoxide, methane, etc.) in the anode exhaust gas are burned in the combustion chamber, and the high temperature combustion gas heats the reforming pipe in the reforming chamber to improve the fuel passing through the reforming pipe. To quality. The flue gas discharged from the reforming chamber is combined with the cathode gas for the fuel cell to supply the required carbon dioxide to the cathode side of the fuel cell. The cathode gas is discharged to the outside of the system after a part of it reacts in the fuel cell.

【0003】[0003]

【発明が解決しようとする課題】上述した発電設備にお
いて、燃料電池はアノード側とカソード側の間に比較的
小さい圧力(例えば0.1atm)の差圧が生じると、
アノード電極とカソード電極の間にある電解質板にガス
通路が形成され、アノードガスとカソードガスとがクロ
スリークして電池性能が大幅に低下する。従って、加圧
下(例えば1〜10atm)で電池を運転するには、電
池を圧力容器内に収納し、この圧力容器の内部、アノー
ドガス、及びカソードガスの間に圧力差が生じないよう
に精密に制御する必要がある。
In the above-described power generation equipment, when a relatively small pressure difference (for example, 0.1 atm) is generated between the anode side and the cathode side in the fuel cell,
A gas passage is formed in the electrolyte plate between the anode electrode and the cathode electrode, and the anode gas and the cathode gas are cross-leaked, so that the battery performance is significantly reduced. Therefore, in order to operate the battery under pressure (for example, 1 to 10 atm), the battery is housed in a pressure vessel, and the pressure inside the pressure vessel is controlled so that there is no pressure difference between the anode gas and the cathode gas. Need to control.

【0004】一方、改質器の燃焼室と改質室を平面状に
し、これを複数積層させたプレート型改質器が燃料電池
に適したものとして開発されているが、このプレート型
改質器もクロスリークを回避するため圧力容器内に収容
し、電池と同様の制御をする必要がある。従来のかかる
発電設備では、燃料電池、プレート型改質器を別々に圧
力容器に格納し、その間を高温用の配管で連結していた
ため、発電設備全体が大型化し、かつ放熱損失が大きい
問題があった。また、従来の設備では燃料電池と改質器
の圧力制御をそれぞれの圧力容器毎に別々に行っていた
ため、制御が複雑である問題があった。
On the other hand, a plate type reformer in which the combustion chamber and the reforming chamber of the reformer are made flat and a plurality of these are stacked has been developed as suitable for a fuel cell. In order to avoid cross leak, it is necessary to store the container in a pressure vessel and perform the same control as the battery. In such a conventional power generation facility, the fuel cell and the plate type reformer are separately stored in the pressure vessel, and the space between them is connected by the pipe for high temperature. there were. Further, in the conventional equipment, since the pressure control of the fuel cell and the reformer is separately performed for each pressure vessel, there is a problem that the control is complicated.

【0005】本発明は、かかる問題を解決するために創
案されたものである。すなわち、本発明は、発電設備を
小型にし、放熱損失を低減させてプラント効率を高め、
かつ圧力制御が簡単な燃料電池発電装置を提供すること
を目的とする。
The present invention was created to solve such a problem. That is, the present invention, downsizing the power generation equipment, reducing heat dissipation loss to improve plant efficiency,
Moreover, it is an object of the present invention to provide a fuel cell power generator in which pressure control is easy.

【0006】[0006]

【課題を解決するための手段】本発明によれば、燃料ガ
スを水素を含むアノードガスに改質する改質器と、前記
アノードガスと酸素を含むカソードガスとから発電する
燃料電池と、アノード排ガスを燃焼させる触媒燃焼器
と、改質器を出た高温のアノードガスと改質器に供給す
る低温の燃料ガスとの間で熱を交換する熱交換器とを備
える燃料電池発電装置であって、前記改質器、燃料電
池、触媒燃焼器、及び熱交換器のすべてが、共通の圧力
容器に格納されることを特徴とする、燃料電池発電装置
が提供される。
According to the present invention, a reformer for reforming a fuel gas into an anode gas containing hydrogen, a fuel cell for generating electricity from the anode gas and a cathode gas containing oxygen, and an anode A fuel cell power generator comprising a catalytic combustor for burning exhaust gas, and a heat exchanger for exchanging heat between a high-temperature anode gas discharged from a reformer and a low-temperature fuel gas supplied to the reformer. Thus, there is provided a fuel cell power generation device characterized in that the reformer, fuel cell, catalytic combustor, and heat exchanger are all housed in a common pressure vessel.

【0007】本発明の好ましい実施例によれば、前記燃
料電池は溶融炭酸塩型燃料電池であり、前記改質器はプ
レート型改質器である。更に、前記燃料電池のアノード
ガスとカソードガスは、前記共通の圧力容器内の圧力と
差圧が生じないように制御され、かつ、前記改質器の改
質室と燃焼室の圧力が前記共通の圧力容器内の圧力と差
圧が生じないように制御される、ことが好ましい。
According to a preferred embodiment of the present invention, the fuel cell is a molten carbonate fuel cell and the reformer is a plate reformer. Further, the anode gas and the cathode gas of the fuel cell are controlled so as not to generate a pressure difference from the pressure in the common pressure vessel, and the pressures of the reforming chamber and the combustion chamber of the reformer are the same. It is preferable that the pressure is controlled so that a pressure difference between the pressure inside the pressure vessel and the pressure inside the pressure vessel does not occur.

【0008】[0008]

【作用】溶融炭酸塩型燃料電池及びプレート型改質器は
共に平板を積層したほぼ箱型の形状をしている。従っ
て、かかる燃料電池と改質器を積層させて共通の圧力容
器に格納し、圧力容器内に必要なその他の機器も収容
し、機器間の配管も圧力容器内に収容すれば、全体が小
型になり、放熱損失も大幅に低減することができる。本
発明はかかる点に着目したものである。
The molten carbonate fuel cell and the plate reformer both have a substantially box-like shape in which flat plates are laminated. Therefore, if such a fuel cell and a reformer are stacked and stored in a common pressure vessel, other necessary equipment is also accommodated in the pressure vessel, and the piping between the equipment is also accommodated in the pressure vessel, the overall size is reduced. Therefore, the heat dissipation loss can be greatly reduced. The present invention focuses on this point.

【0009】すなわち、本発明の構成よれば、改質器、
燃料電池、触媒燃焼器、及び熱交換器のすべてが、共通
の圧力容器に格納されるので、機器間の配管も圧力容器
内に収容することができ、装置全体が小型になり、放熱
損失も大幅に低減することができる。また、前記燃料電
池のアノードガスとカソードガスを、前記共通の圧力容
器内の圧力と差圧が生じないように制御し、かつ、前記
改質器の改質室と燃焼室の圧力を前記共通の圧力容器内
の圧力と差圧が生じないように制御することにより、従
来の設備で燃料電池と改質器の圧力制御を別々に行って
いた場合と比較して制御が簡単になる。
That is, according to the configuration of the present invention, the reformer,
Since the fuel cell, catalytic combustor, and heat exchanger are all housed in a common pressure vessel, the piping between the equipment can also be accommodated in the pressure vessel, the overall size of the device is reduced, and heat dissipation loss is also reduced. It can be significantly reduced. Further, the anode gas and the cathode gas of the fuel cell are controlled so as not to generate a pressure difference from the pressure in the common pressure vessel, and the pressures of the reforming chamber and the combustion chamber of the reformer are set to the common pressure. By controlling so that a pressure difference between the pressure inside the pressure vessel and the pressure inside the pressure vessel does not occur, the control becomes easier compared to the case where the pressure control of the fuel cell and the reformer is separately performed in the conventional equipment.

【0010】[0010]

【実施例】以下に本発明の好ましい実施例を図面を参照
して説明する。図1は、本発明による方法を実施するた
めの発電設備を示す全体構成図である。この図におい
て、発電設備は、燃料ガスを水素を含むアノードガスに
改質する改質器10と、前記アノードガスと酸素を含む
カソードガスとから発電する燃料電池20と、アノード
排ガスを燃焼させる触媒燃焼器30と、改質器10を出
た高温のアノードガスと改質器10に供給する低温の燃
料ガスとの間で熱を交換する熱交換器すなわち燃料予熱
器40とを備える。更に、本発電設備は、燃料ガス中に
含まれる硫黄分を除去する脱硫器12と、空気を予熱す
る空気予熱器14と、排ガス中の水分を凝縮し分離する
凝縮器16及び凝縮水分離器18とを備えている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A preferred embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is an overall configuration diagram showing a power generation facility for carrying out the method according to the present invention. In this figure, a power generation facility includes a reformer 10 for reforming a fuel gas into an anode gas containing hydrogen, a fuel cell 20 for generating power from the anode gas and a cathode gas containing oxygen, and a catalyst for burning the anode exhaust gas. A combustor 30 and a heat exchanger or fuel preheater 40 for exchanging heat between the high temperature anode gas exiting the reformer 10 and the low temperature fuel gas supplied to the reformer 10 are provided. Further, the present power generation equipment includes a desulfurizer 12 that removes sulfur contained in fuel gas, an air preheater 14 that preheats air, a condenser 16 that condenses and separates moisture in exhaust gas, and a condensed water separator. 18 and 18.

【0011】天然ガス等の燃料ガスは脱硫器12により
脱硫された後、ライン1を通って燃料加熱器40に供給
され、この燃料予熱器40で加熱されて改質器10に供
給される。
The fuel gas such as natural gas is desulfurized by the desulfurizer 12 and is then supplied to the fuel heater 40 through the line 1, heated by the fuel preheater 40 and supplied to the reformer 10.

【0012】改質器10は、触媒燃焼器30から燃焼ガ
スライン6を介して供給される高温の燃焼ガスが完全燃
焼する燃焼室Coと、燃焼室からの伝熱により燃料ガス
を改質する改質室Reとからなる。改質器10は、燃焼
室Coと改質室Reを平面状にし、これを複数積層させ
たプレート型改質器であるのが良い。改質室Re内には
改質触媒が充填され、燃焼室Coで発生した高温の燃焼
ガスにより燃料ガスを水素を含む高温のアノードガスに
改質する。放熱により温度が下がった燃焼排ガスは、燃
焼排ガスライン7を介して空気予熱器14に供給されて
空気を加熱し、次いで、凝縮器16及び凝縮水ドラム1
8により水分が除去される。一方、改質器10を出た高
温のアノードガスは、アノードガスライン2を介して燃
料予熱器40に供給され、この燃料予熱器40で冷却さ
れ、燃料電池20に供給される。
The reformer 10 reforms the fuel gas by the combustion chamber Co in which the high-temperature combustion gas supplied from the catalytic combustor 30 via the combustion gas line 6 is completely burned and the heat transfer from the combustion chamber. And a reforming chamber Re. The reformer 10 is preferably a plate-type reformer in which the combustion chamber Co and the reforming chamber Re are made flat and a plurality of these are stacked. The reforming chamber Re is filled with a reforming catalyst, and the high temperature combustion gas generated in the combustion chamber Co reforms the fuel gas into a high temperature anode gas containing hydrogen. The combustion exhaust gas whose temperature has dropped due to heat radiation is supplied to the air preheater 14 via the combustion exhaust gas line 7 to heat the air, and then the condenser 16 and the condensed water drum 1
8 removes water. On the other hand, the high temperature anode gas exiting the reformer 10 is supplied to the fuel preheater 40 via the anode gas line 2, cooled by the fuel preheater 40, and supplied to the fuel cell 20.

【0013】燃料電池20は、アノードガスが通過する
アノード側Aと、カソードガスが通過するカソード側C
とからなり、アノードガス中の水素、一酸化炭素と、カ
ソードガス中の酸素、二酸化炭素とから化学反応により
電気を発生するようになっている。燃料電池20は、溶
融炭酸塩型燃料電池であるのが良い。
The fuel cell 20 has an anode side A through which the anode gas passes and a cathode side C through which the cathode gas passes.
And hydrogen and carbon monoxide in the anode gas and oxygen and carbon dioxide in the cathode gas to generate electricity by a chemical reaction. The fuel cell 20 may be a molten carbonate fuel cell.

【0014】燃料電池20を出たアノード排ガスとカソ
ード排ガスはアノード排ガスライン4及びカソード排ガ
スライン5を介して触媒燃焼器30に供給される。この
触媒燃焼器30内には、ハニカム状のニッケルを主成分
とする燃焼触媒が充填されており、アノード排ガスに含
まれる未燃分をカソード排ガスに含まれる酸素により燃
焼させるようになっている。この触媒燃焼器30で発生
した高温の燃焼ガスはライン6を介して改質器10の燃
焼室Coに供給される。
The anode exhaust gas and cathode exhaust gas from the fuel cell 20 are supplied to the catalytic combustor 30 via the anode exhaust gas line 4 and the cathode exhaust gas line 5. The catalytic combustor 30 is filled with a honeycomb-shaped combustion catalyst containing nickel as a main component, and the unburned components contained in the anode exhaust gas are burned by the oxygen contained in the cathode exhaust gas. The high temperature combustion gas generated in the catalytic combustor 30 is supplied to the combustion chamber Co of the reformer 10 via the line 6.

【0015】燃料電池20のカソードガスライン3には
空気源(図示せず)から空気ライン8、空気予熱器14
を介して空気が供給される。この空気ライン8には凝縮
器16及び凝縮水ドラム18により水分が除去された燃
焼排ガスが供給され、電池の反応に必要な二酸化炭素を
供給するようになっている。
In the cathode gas line 3 of the fuel cell 20, an air source (not shown), an air line 8 and an air preheater 14 are provided.
Air is supplied through the. Combustion exhaust gas from which moisture has been removed by a condenser 16 and a condensed water drum 18 is supplied to the air line 8 to supply carbon dioxide necessary for the reaction of the battery.

【0016】更に、燃料電池のカソード側Cを通過した
カソード排ガスの一部はカソード循環ライン9を介して
カソードライン3に循環される。このカソード循環ライ
ン9には通常、熱交換器(図示せず)、ブロア22が設
けられ、循環するカソードガスの温度、流量を制御でき
るようになっている。
Further, a part of the cathode exhaust gas passing through the cathode side C of the fuel cell is circulated to the cathode line 3 via the cathode circulation line 9. A heat exchanger (not shown) and a blower 22 are usually provided in the cathode circulation line 9 so that the temperature and flow rate of the circulating cathode gas can be controlled.

【0017】本発明による発電装置は、改質器10、燃
料電池20、触媒燃焼器30、及び燃料予熱器40のす
べてが、共通の圧力容器50に格納されている。すなわ
ち、例えば図1において、一点鎖線で囲んだ機器及び配
管のすべてを1つの圧力容器50内に格納するのが良
い。これにより、機器間の配管のほとんどを圧力容器内
に収容することができ、装置全体が小型になり、放熱損
失も大幅に低減することができる。
In the power generator according to the present invention, the reformer 10, the fuel cell 20, the catalytic combustor 30, and the fuel preheater 40 are all housed in a common pressure vessel 50. That is, for example, in FIG. 1, it is preferable to store all the equipment and piping surrounded by the one-dot chain line in one pressure container 50. As a result, most of the piping between the devices can be housed in the pressure vessel, the overall size of the device can be reduced, and heat dissipation loss can be greatly reduced.

【0018】また、前記燃料電池のアノードガスとカソ
ードガスを、前記共通の圧力容器内の圧力と差圧が生じ
ないように制御し、かつ、前記改質器の改質室と燃焼室
の圧力を前記共通の圧力容器内の圧力と差圧が生じない
ように制御することにより、従来の設備で燃料電池とプ
レート型改質器の圧力制御を別々に行っていた場合と比
較して制御が簡単になる。この圧力制御は従来周知の方
法、例えば、差圧計により差圧を計測し、この計測信号
により、圧力制御弁、又は圧力に直接影響する流量制御
弁を制御することにより、行うことができる。
Further, the anode gas and the cathode gas of the fuel cell are controlled so as not to generate a pressure difference from the pressure in the common pressure vessel, and the pressures of the reforming chamber and the combustion chamber of the reformer are controlled. By controlling so that a pressure difference between the pressure inside the common pressure vessel and the pressure inside the common pressure vessel does not occur, the control is performed in comparison with the case where the pressure control of the fuel cell and the plate reformer is separately performed in the conventional equipment. It will be easy. This pressure control can be performed by a conventionally known method, for example, by measuring the differential pressure with a differential pressure gauge and controlling the pressure control valve or the flow control valve that directly affects the pressure by this measurement signal.

【0019】図2は図1で一点鎖線で囲んだ機器及び配
管を共通の圧力容器50に格納した発電装置の部分断面
図である。この図において、改質器10の上に燃料電池
20が配置されている。図から明らかなように、装置全
体は燃料電池20のみを圧力容器に格納した場合(図示
せず)とほぼ同じ大きさにすることができ、機器間の配
管のほとんどを圧力容器内に収容することができ、装置
全体が小型になり、放熱損失も大幅に低減することがで
きる。
FIG. 2 is a partial cross-sectional view of a power generator in which the equipment and piping surrounded by the one-dot chain line in FIG. 1 are housed in a common pressure vessel 50. In this figure, a fuel cell 20 is arranged above the reformer 10. As is clear from the figure, the entire apparatus can be made to have substantially the same size as when only the fuel cell 20 is stored in the pressure container (not shown), and most of the piping between the devices is housed in the pressure container. It is possible to reduce the size of the entire device and significantly reduce heat dissipation loss.

【0020】[0020]

【発明の効果】従って、上述した本発明によれば、発電
設備を小型にし、放熱損失を低減させてプラント効率を
高め、かつ圧力制御が簡単となる燃料電池発電装置を提
供することができる。
Therefore, according to the present invention described above, it is possible to provide a fuel cell power generator in which the power generation equipment is downsized, the heat radiation loss is reduced to improve the plant efficiency, and the pressure control is simplified.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による発電装置を示す全体構成図であ
る。
FIG. 1 is an overall configuration diagram showing a power generator according to the present invention.

【図2】本発明による圧力容器内の配置を示す部分断面
図である。
FIG. 2 is a partial sectional view showing an arrangement in a pressure vessel according to the present invention.

【図3】従来の発電設備を示す全体構成図である。FIG. 3 is an overall configuration diagram showing a conventional power generation facility.

【符号の説明】[Explanation of symbols]

1 燃料ガスライン 2 アノードガスライン 3 カソードガスライン 4 アノード排ガスライン 5 カソード排ガスライン 6 燃焼ガスライン 7 燃焼排ガスライン 8 カソードガスライン 9 カソード循環ライン 10 改質器 12 脱硫器 14 空気予熱器 16 凝縮器 18 凝縮水分離器 20 燃料電池 30 触媒燃焼器 40 燃料予熱器 50 圧力容器 1 Fuel gas line 2 Anode gas line 3 Cathode gas line 4 Anode exhaust gas line 5 Cathode exhaust gas line 6 Combustion gas line 7 Combustion exhaust gas line 8 Cathode gas line 9 Cathode circulation line 10 Reformer 12 Air preheater 16 Condenser 18 Condensate Separator 20 Fuel Cell 30 Catalytic Combustor 40 Fuel Preheater 50 Pressure Vessel

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 燃料ガスを水素を含むアノードガスに改
質する改質器と、 前記アノードガスと酸素を含むカソードガスとから発電
する燃料電池と、 燃料電池を出たアノード排ガスを燃焼させる触媒燃焼器
と、 改質器を出た高温のアノードガスと改質器に供給する低
温の燃料ガスとの間で熱を交換する熱交換器とを備える
燃料電池発電装置であって、 前記改質器、燃料電池、触媒燃焼器、及び熱交換器のす
べてが、共通の圧力容器に格納されることを特徴とす
る、燃料電池発電装置。
1. A reformer for reforming a fuel gas into an anode gas containing hydrogen, a fuel cell for generating power from the anode gas and a cathode gas containing oxygen, and a catalyst for burning the anode exhaust gas discharged from the fuel cell. A fuel cell power generator comprising: a combustor; and a heat exchanger that exchanges heat between a high temperature anode gas that exits the reformer and a low temperature fuel gas that is supplied to the reformer. A fuel cell power plant characterized in that the reactor, the fuel cell, the catalytic combustor, and the heat exchanger are all housed in a common pressure vessel.
【請求項2】 前記燃料電池は溶融炭酸塩型燃料電池で
あり、前記改質器はプレート型改質器である、ことを特
徴とする請求項1に記載の燃料電池発電装置。
2. The fuel cell power generator according to claim 1, wherein the fuel cell is a molten carbonate fuel cell, and the reformer is a plate reformer.
【請求項3】 前記燃料電池のアノードガスとカソード
ガスは、前記共通の圧力容器内の圧力と差圧が生じない
ように制御され、かつ、前記改質器の改質室と燃焼室の
圧力が前記共通の圧力容器内の圧力と差圧が生じないよ
うに制御される、ことを特徴とする請求項2に記載の燃
料電池発電装置。
3. The anode gas and the cathode gas of the fuel cell are controlled so as not to generate a pressure difference from the pressure in the common pressure vessel, and the pressures in the reforming chamber and the combustion chamber of the reformer. Is controlled so that a pressure difference between the pressure in the common pressure vessel and the pressure in the common pressure vessel does not occur.
JP4152525A 1992-06-12 1992-06-12 Fuel cell power generation device Pending JPH05343083A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4152525A JPH05343083A (en) 1992-06-12 1992-06-12 Fuel cell power generation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4152525A JPH05343083A (en) 1992-06-12 1992-06-12 Fuel cell power generation device

Publications (1)

Publication Number Publication Date
JPH05343083A true JPH05343083A (en) 1993-12-24

Family

ID=15542346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4152525A Pending JPH05343083A (en) 1992-06-12 1992-06-12 Fuel cell power generation device

Country Status (1)

Country Link
JP (1) JPH05343083A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998029918A1 (en) * 1996-12-31 1998-07-09 Ztek Corporation Pressurized, integrated electrochemical converter energy system
US6841277B2 (en) 1999-03-10 2005-01-11 Siemens Aktiengesellschaft Method for operating a fuel cell plant and fuel cell plant
US20110027678A1 (en) * 2008-04-01 2011-02-03 Daimler Ag Fuel cell system and method for operating a fuel cell system
US8227126B2 (en) 2006-04-14 2012-07-24 Honda Motor Co., Ltd. Fuel cell system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5948221A (en) * 1994-08-08 1999-09-07 Ztek Corporation Pressurized, integrated electrochemical converter energy system
US6024859A (en) * 1994-08-08 2000-02-15 Ztek Corporation Pressurized integrated electrochemical converter energy system and method
WO1998029918A1 (en) * 1996-12-31 1998-07-09 Ztek Corporation Pressurized, integrated electrochemical converter energy system
US6841277B2 (en) 1999-03-10 2005-01-11 Siemens Aktiengesellschaft Method for operating a fuel cell plant and fuel cell plant
US8227126B2 (en) 2006-04-14 2012-07-24 Honda Motor Co., Ltd. Fuel cell system
US20110027678A1 (en) * 2008-04-01 2011-02-03 Daimler Ag Fuel cell system and method for operating a fuel cell system

Similar Documents

Publication Publication Date Title
JP4161612B2 (en) Starting method of fuel reformer
JPS5823169A (en) Fuel cell power generating equipment and its operation
JP2002124289A (en) Solid electrolyte fuel cell system
JP2006309982A (en) Solid oxide fuel cell system
US10381665B2 (en) Device and method for heating fuel cell stack and fuel cell system having the device
JP2007128716A (en) Fuel cell
JPH0845523A (en) Fuel cell/gas turbine combined generation system
JP3407747B2 (en) Fuel cell power generator with moisture separator
JP3611065B2 (en) Integrated fuel cell power generator
JP3700162B2 (en) Integrated fuel cell power generator
JPH05343083A (en) Fuel cell power generation device
JP3139574B2 (en) Fuel cell generator
JPH11126628A (en) Fuel cell power generating device fitted with carbon deposition preventing device
JPH1012258A (en) Internal reforming type solid electrolyte fuel cell module
JP3147498B2 (en) Thermal insulation construction method for fuel cell power generation equipment
JP3257604B2 (en) Fuel cell generator
JP3239540B2 (en) Temperature control method of reformer
JP3110158B2 (en) Solid electrolyte fuel cell power generator
JP3240785B2 (en) Internal reforming fuel cell
JPH08339815A (en) Fuel cell power generation device
JP3582132B2 (en) Plate type reformer
JP3137143B2 (en) Temperature control method for fuel cell power plant and fuel cell power plant equipped with temperature control device
JP3671406B2 (en) Fuel cell power generator
JP3263936B2 (en) Fuel cell generator
JP3509948B2 (en) Fuel cell power generator