JPH05343057A - Hydrogen storage alloy electrode - Google Patents

Hydrogen storage alloy electrode

Info

Publication number
JPH05343057A
JPH05343057A JP4143979A JP14397992A JPH05343057A JP H05343057 A JPH05343057 A JP H05343057A JP 4143979 A JP4143979 A JP 4143979A JP 14397992 A JP14397992 A JP 14397992A JP H05343057 A JPH05343057 A JP H05343057A
Authority
JP
Japan
Prior art keywords
alloy
hydrogen storage
electrode
hydrogen
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4143979A
Other languages
Japanese (ja)
Inventor
Koji Yamamura
康治 山村
Hajime Seri
肇 世利
Yoichiro Tsuji
庸一郎 辻
Tsutomu Iwaki
勉 岩城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4143979A priority Critical patent/JPH05343057A/en
Priority to DE69326374T priority patent/DE69326374T2/en
Priority to EP93105939A priority patent/EP0566055B1/en
Publication of JPH05343057A publication Critical patent/JPH05343057A/en
Priority to US08/384,809 priority patent/US5541018A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To improve a preserving characteristic at high temperature without detracting high capacity and an excellent initial stage discharge characteristic, by improving hydrogen storage alloy. CONSTITUTION:In this electrode, hydrogen storage alloy or its hydride is used, of which a general formula is shown by ZrMnwVxAlyNiz (provided that, 0.4<=w<=0.8, 0.1<=x<=0.3, 0<y<=0.2, 1.0<=z<=1.5, and 2.0<=w+x+y+z<=2.4), and in which the main component of an alloy phase is a C15 (MgCu2) type Laves phase. This improves a preservation characteristic at 65 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電気化学的な水素の吸
蔵・放出を可逆的に行える水素吸蔵合金電極に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen storage alloy electrode capable of reversibly electrochemically storing and releasing hydrogen.

【0002】[0002]

【従来の技術】各種の電源として広く使われている蓄電
池として鉛電池とアルカリ電池がある。このうちアルカ
リ蓄電池は高信頼性が期待でき、小形軽量化も可能など
の理由で小型電池は各種ポータブル機器用に、大型は産
業用として使われてきた。
2. Description of the Related Art Lead batteries and alkaline batteries are widely used as storage batteries for various power sources. Of these, alkaline storage batteries can be expected to have high reliability and can be made compact and lightweight. For these reasons, small batteries have been used for various portable devices and large batteries for industrial use.

【0003】このアルカリ蓄電池において、正極として
は一部空気極や酸化銀極なども取り上げられているが、
ほとんどの場合ニッケル極である。ポケット式から焼結
式に代わって特性が向上し、さらに密閉化が可能になる
とともに用途も広がった。
In this alkaline storage battery, an air electrode, a silver oxide electrode, etc. are also taken up as a positive electrode,
In most cases it is a nickel pole. The characteristics have been improved from the pocket type to the sintered type, and it has become possible to further seal and expand the applications.

【0004】一方、負極としてはカドミウムの他に亜
鉛、鉄、水素などが対象となっているが、現在のところ
カドミウム極が主体である。ところが、一層の高エネル
ギー密度を達成するために金属水素化物つまり水素吸蔵
合金極を使ったニッケル−水素蓄電池が注目され、製法
などに多くの提案がされている。
On the other hand, as the negative electrode, zinc, iron, hydrogen, etc. are targeted in addition to cadmium, but at present, the main component is a cadmium electrode. However, a nickel-hydrogen storage battery using a metal hydride, that is, a hydrogen storage alloy electrode, has attracted attention in order to achieve a higher energy density, and many proposals have been made for a manufacturing method and the like.

【0005】水素を可逆的に吸収・放出しうる水素吸蔵
合金を負極に使用するアルカリ蓄電池の水素吸蔵合金電
極は、理論容量密度がカドミウム極より大きく、亜鉛極
のような変形やデンドライトの形成などもないことか
ら、長寿命・無公害であり、しかも高エネルギー密度を
有するアルカリ蓄電池用負極として期待されている。
The hydrogen storage alloy electrode of an alkaline storage battery, which uses a hydrogen storage alloy capable of reversibly absorbing and releasing hydrogen as a negative electrode, has a theoretical capacity density larger than that of a cadmium electrode and causes deformation such as a zinc electrode and formation of dendrite. Therefore, it is expected as a negative electrode for alkaline storage batteries that has a long life, is pollution-free, and has a high energy density.

【0006】このような水素吸蔵合金電極に用いられる
合金として、一般的にはTi−Ni系およびLa(また
はMm)−Ni系の多元系合金がよく知られている。T
i−Ni系の多元系合金は、ABタイプとして分類でき
るが、この特徴として充放電サイクルの初期には比較的
大きな放電容量を示すが、充放電を繰り返すと、その容
量を長く維持することが困難であるという問題がある。
また、AB5タイプのLa(またはMm)−Ni系の多
元系合金は、近年電極材料として多くの開発が進められ
ており、これまでは比較的有力な合金材料とされてい
た。しかし、この合金系も比較的放電容量が小さいこ
と、電池電極としての寿命性能が不十分であること、材
料コストが高いなどの問題を有している。したがって、
さらに高容量化が可能で長寿命である新規水素吸蔵合金
材料が望まれていた。
As alloys used for such hydrogen storage alloy electrodes, generally, Ti-Ni-based and La (or Mm) -Ni-based multi-component alloys are well known. T
The i-Ni-based multi-component alloy can be classified as an AB type. As a characteristic of this, it has a relatively large discharge capacity at the beginning of the charge / discharge cycle, but when the charge / discharge is repeated, the capacity can be maintained for a long time. There is a problem of being difficult.
Further, the AB 5 type La (or Mm) -Ni-based multi-component alloys have been extensively developed in recent years as electrode materials, and have been regarded as a relatively powerful alloy material until now. However, this alloy system also has problems such as a relatively small discharge capacity, insufficient life performance as a battery electrode, and high material cost. Therefore,
There has been a demand for a new hydrogen storage alloy material that can have a higher capacity and a longer life.

【0007】これに対して、AB2タイプのLaves
相合金は水素吸蔵能が比較的高く、高容量かつ長寿命の
電極として有望である。すでにこの合金系については、
例えばZrαVβNiγMδ系合金(特開昭64−60
961号公報)やAxByNiz系合金(特開平1−1
02855号公報)などを提案している。また、充放電
サイクル初期の放電特性を改善した合金(特願平3−6
6354,3−66355,3−66358,3−66
359)などを提案している。
On the other hand, AB 2 type Laves
The phase alloy has a relatively high hydrogen storage capacity and is promising as an electrode having a high capacity and a long life. Already for this alloy system,
For example, ZrαVβNiγMδ type alloy (Japanese Patent Laid-Open No. 64-60)
961) and AxByNiz alloys (JP-A-1-1-1).
No. 02855) is proposed. Also, an alloy with improved discharge characteristics at the beginning of the charge / discharge cycle (Japanese Patent Application No. 3-6
6354, 3-66355, 3-66358, 3-66
359) and so on.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、AB2
タイプのLaves相合金を電極に用いた場合、Ti−
Ni系やLa(またはMm)−Ni系の多元系合金に比
べて放電容量は大きいが、充放電サイクルの初期での放
電特性が非常に悪いという問題があった。そこで、Zr
−Mn−V−M−Ni系合金(MはFe,Coの中から
選ばれた1種以上の元素)で組成を調整することによ
り、高容量を維持したまま初期放電特性を改善すること
ができた。しかし、密閉電池にした場合、アルカリ電解
液への合金組成の溶出が激しく、溶出した元素が導電性
の酸化物などの形で析出して短絡の原因となり、65℃
中で放置するとすぐに電池電圧が低下した。
However, AB 2
When a type Laves phase alloy is used for the electrode, Ti-
Although the discharge capacity is larger than that of the Ni-based or La (or Mm) -Ni-based multi-component alloy, there is a problem that the discharge characteristics at the beginning of the charge / discharge cycle are very poor. So Zr
By adjusting the composition with a -Mn-VM-Ni-based alloy (M is one or more elements selected from Fe and Co), it is possible to improve the initial discharge characteristics while maintaining a high capacity. did it. However, in the case of a sealed battery, the alloy composition is severely eluted into the alkaline electrolyte, and the eluted element is deposited in the form of a conductive oxide to cause a short circuit.
The battery voltage immediately dropped when left inside.

【0009】本発明は、さらに水素吸蔵合金を改善する
ことにより、高容量および優れた初期放電特性を損なう
ことなく高温保存特性を向上させることを目的とする。
It is an object of the present invention to further improve the hydrogen storage alloy to improve the high temperature storage characteristics without impairing the high capacity and the excellent initial discharge characteristics.

【0010】[0010]

【課題を解決するための手段】本発明は、一般式が、Z
rMnwxAlyNiz(ただし、0.4≦w≦0.8,
0.1≦x≦0.3,0<y≦0.2,1.0≦z≦
1.5であり、かつ2.0≦w+x+y+z≦2.4)
で示され、合金相の主成分がC15(MgCu2)型L
aves相である水素吸蔵合金またはその水素化物を用
いることを特徴とする水素吸蔵合金電極である。
The present invention has a general formula of Z
rMn w V x Al y Ni z ( however, 0.4 ≦ w ≦ 0.8,
0.1 ≦ x ≦ 0.3, 0 <y ≦ 0.2, 1.0 ≦ z ≦
1.5 and 2.0 ≦ w + x + y + z ≦ 2.4)
, The main component of the alloy phase is C15 (MgCu 2 ) type L
It is a hydrogen storage alloy electrode characterized by using a hydrogen storage alloy which is an aves phase or a hydride thereof.

【0011】[0011]

【作用】本発明の水素吸蔵合金電極は、従来のZr−M
n−V−M−Ni系Laves相合金(MはFe,Co
の中から選ばれた1種以上の元素)を改善したものであ
り、従来合金のM元素をAlに置き換えることよりアル
カリ電解液への合金組成、特に、Mn,V成分の溶出を
抑制することができ、しかも電気化学的な充放電特性に
おいて初期から効率よく多量の水素を吸蔵−放出させる
ことができる。
The hydrogen storage alloy electrode of the present invention is the same as the conventional Zr-M
n-V-M-Ni-based Laves phase alloy (M is Fe, Co
One or more elements selected from the above), and suppressing the elution of the alloy composition, particularly Mn and V components, into the alkaline electrolyte by replacing the M element of the conventional alloy with Al. In addition, it is possible to efficiently occlude and release a large amount of hydrogen from the beginning in the electrochemical charge / discharge characteristics.

【0012】したがって、本発明の電極を用いて構成し
たアルカリ蓄電池、例えばニッケル−水素蓄電池は、従
来のこの電池に比べて高容量および優れた初期放電特性
を損なわずに高温保存特性を改善することが可能にな
る。
Therefore, an alkaline storage battery constructed by using the electrode of the present invention, for example, a nickel-hydrogen storage battery, has improved high temperature storage characteristics without impairing high capacity and excellent initial discharge characteristics as compared with the conventional battery. Will be possible.

【0013】[0013]

【実施例】以下に本発明の実施例について具体的に説明
する。
EXAMPLES Examples of the present invention will be specifically described below.

【0014】(実施例1)市販のZr,Mn,V,A
l,Ni金属を原料として、アルゴン雰囲気中、アーク
溶解炉で加熱溶解することにより、(表1)に示したZ
rMn0.60.2Al yNi1.3合金(yは0.05〜0.
4)を作製した。次いで、真空中、1100℃で12時
間熱処理し、合金試料とした。
Example 1 Commercially available Zr, Mn, V, A
l, Ni metal as raw material, arc in argon atmosphere
By heating and melting in a melting furnace, Z shown in (Table 1)
rMn0.6V0.2Al yNi1.3Alloy (y is 0.05 to 0.
4) was produced. Then, in vacuum at 1100 ° C for 12:00
It heat-processed for the time and it was set as the alloy sample.

【0015】[0015]

【表1】 [Table 1]

【0016】この合金試料の一部はX線回折などの合金
分析および水素ガス雰囲気における水素吸収−放出量測
定(通常のP(水素圧力)−C(組成)−T(温度)測
定)に使用し、残りは電極特性評価に用いた。
A part of this alloy sample is used for alloy analysis such as X-ray diffraction and hydrogen absorption-desorption amount measurement (normal P (hydrogen pressure) -C (composition) -T (temperature) measurement) in a hydrogen gas atmosphere. The rest was used for electrode characteristic evaluation.

【0017】試料No.1は従来合金であり、Alが添加
されていない比較例である。試料No.5,6は本実施例
よりAl量yが大きい比較例であり、試料No.2〜4は
本発明の水素吸蔵合金のいくつかの実施例である。ま
ず、各合金試料について、X線回折測定を行った。その
結果、いずれの合金試料についても合金相の主成分はC
15型Laves相(MgCu2型fcc構造)である
ことを確認した。また、真空熱処理後のものは熱処理前
と比べるとfccのピークがより大きく鋭くなったの
で、熱処理することによりC15型Laves相の割合
が増大し、合金の均質性および結晶性も向上したことが
わかった。結晶格子定数についてはAl量yが増加する
につれて小さくなったが、いずれも7.04〜7.07
Åであった。
Sample No. 1 is a conventional alloy and is a comparative example in which Al is not added. Sample Nos. 5 and 6 are comparative examples in which the amount of Al y is larger than that of this example, and sample Nos. 2 to 4 are some examples of the hydrogen storage alloy of the present invention. First, X-ray diffraction measurement was performed on each alloy sample. As a result, the main component of the alloy phase was C for all alloy samples.
It was confirmed to be a 15-type Laves phase (MgCu 2 -type fcc structure). Further, after the vacuum heat treatment, the fcc peak was larger and sharper than that before the heat treatment, so that the heat treatment increased the proportion of the C15-type Laves phase and improved the homogeneity and crystallinity of the alloy. all right. The crystal lattice constant decreased as the Al amount y increased, but in all cases, 7.04 to 7.07.
It was Å.

【0018】次に、各合金試料について、70℃におい
てPCT測定を行った。いずれの合金試料についても水
素化特性はほぼ同じであるが、Al量yが0.2を越え
る合金ではAl量yの増加による水素吸蔵量の低下率が
大きくなった。また、真空熱処理することにより熱処理
前と比べてプラトー領域の平坦性が良くなっており、水
素吸蔵量も増大した。
Next, PCT measurement was carried out at 70 ° C. for each alloy sample. The hydrogenation characteristics were almost the same for all the alloy samples, but in the alloys in which the Al amount y exceeded 0.2, the rate of decrease in the hydrogen storage amount increased due to the increase in the Al amount y. Further, the vacuum heat treatment improved the flatness of the plateau region as compared with that before the heat treatment and increased the hydrogen storage amount.

【0019】以上のような合金試料について、電気化学
的な充放電反応によるアルカリ蓄電池用負極としての電
極特性、特に、初期の放電特性を評価するために単電池
試験を行った。
The above alloy samples were subjected to a single cell test in order to evaluate the electrode characteristics as a negative electrode for an alkaline storage battery by an electrochemical charge / discharge reaction, particularly the initial discharge characteristics.

【0020】試料No.1〜6の合金を350メッシュ以
下の粒径になるように粉砕し、この合金粉末1gと導電
剤としてのカーボニルニッケル粉末3gおよび結着剤と
してのポリエチレン微粉末0.12gを十分混合撹拌
し、プレス加工により24.5Φ×2.5mmHの円板状
に成形した。これを真空中、130℃で1時間加熱し、
結着剤を溶融させて水素吸蔵合金電極とした。
The alloys of Sample Nos. 1 to 6 were pulverized to a particle size of 350 mesh or less, 1 g of this alloy powder, 3 g of carbonyl nickel powder as a conductive agent, and 0.12 g of polyethylene fine powder as a binder. Was thoroughly mixed and stirred, and pressed into a disk shape of 24.5Φ × 2.5 mmH. This is heated in vacuum at 130 ° C for 1 hour,
The binder was melted to form a hydrogen storage alloy electrode.

【0021】この水素吸蔵合金電極にニッケル線のリー
ドを取り付けて負極とし、正極として過剰の容量を有す
る焼結式ニッケル極を、セパレータとしてポリアミド不
織布を用い、比重1.30の水酸化カリウム水溶液を電
解液として、25℃において、一定電流で充電と放電を
繰り返し、各サイクルでの放電容量を測定した。なお、
充電電気量は水素吸蔵合金1gあたり100mA×5.
5時間であり、放電は同様に1gあたり50mAで行
い、0.8Vでカットした。その結果を図1に示す。図
1は横軸に充放電サイクル数を、縦軸に合金1gあたり
の放電容量を示したものであり、図中の番号は(表1)
の試料No.と一致している。図1からAl量yが増加す
るにつれて合金の飽和放電が低下することがわかった。
しかし、Alを添加した合金の1サイクル目の放電容量
はAlを添加しない合金(試料No.1)に比べ若干大き
な値、あるいは高い初期の放電特性(1サイクル目放電
容量/飽和放電容量)を示した。
A nickel wire lead was attached to the hydrogen storage alloy electrode to serve as a negative electrode, a sintered nickel electrode having an excessive capacity as a positive electrode, a polyamide nonwoven fabric as a separator, and an aqueous potassium hydroxide solution having a specific gravity of 1.30. As an electrolyte, charging and discharging were repeated at a constant current at 25 ° C., and the discharge capacity in each cycle was measured. In addition,
The amount of electricity charged is 100 mA x 5 per gram of hydrogen storage alloy.
It was 5 hours, and the discharge was similarly performed at 50 mA / g, and cut at 0.8V. The result is shown in FIG. FIG. 1 shows the number of charge / discharge cycles on the horizontal axis and the discharge capacity per 1 g of alloy on the vertical axis. The numbers in the figure are (Table 1).
It corresponds to the sample No. of. From FIG. 1, it was found that the saturation discharge of the alloy decreased as the Al amount y increased.
However, the discharge capacity at the 1st cycle of the alloy with Al added was slightly larger than that of the alloy without addition of Al (Sample No. 1), or had a higher initial discharge characteristic (1st cycle discharge capacity / saturated discharge capacity). Indicated.

【0022】さらに、これらの水素吸蔵合金電極を用い
て以下に示したような方法で密閉形ニッケル−水素蓄電
池を作製した。
Further, a sealed nickel-metal hydride storage battery was manufactured by using the above hydrogen storage alloy electrodes by the following method.

【0023】350メッシュ以下の粉末にした各水素吸
蔵合金をそれぞれカルボキシメチルセルローズ(CM
C)の希水溶液と混合撹拌してペースト状にし、電極支
持体として平均ポアサイズ150ミクロン、多孔度95
%、厚さ1.0mmの発泡状ニッケルシートに充填した。
これを130℃で真空乾燥してローラープレスで加圧
し、さらにその表面にフッ素樹脂粉末をコーティングし
て水素吸蔵合金電極とした。
Each hydrogen storage alloy made into powder of 350 mesh or less is carboxymethyl cellulose (CM).
The mixture was mixed with the dilute aqueous solution of C) and stirred to form a paste, and the electrode support had an average pore size of 150 μm and a porosity of 95.
%, And a foamed nickel sheet having a thickness of 1.0 mm was filled.
This was vacuum dried at 130 ° C., pressed by a roller press, and the surface thereof was coated with fluororesin powder to obtain a hydrogen storage alloy electrode.

【0024】この電極をそれぞれ幅3.3cm、長さ21
cm、厚さ0.40mmに調整し、リード板を所定の2カ所
に取り付けた。そして、正極およびセパレータと組み合
わせて円筒状に3層を渦巻き状にしてSCサイズの電槽
に収納した。このときの正極は公知の発泡式ニッケル極
を選び、幅3.3cm、長さ18cmとして用いた。この場
合もリード板を2カ所に取り付けた。また、セパレータ
は親水性を付与したポリプロピレン不織布を使用し、電
解液としては、比重1.25の水酸化カリウム水溶液に
水酸化リチウムを30g/l溶解したものを用いた。こ
れを封口して密閉形電池とした。この電池は正極容量規
制であり理論容量は3.0Ahにした。
Each of these electrodes has a width of 3.3 cm and a length of 21
The thickness was adjusted to cm and the thickness was 0.40 mm, and the lead plates were attached at two predetermined places. Then, in combination with the positive electrode and the separator, the three layers were made into a cylindrical shape and housed in an SC size battery case. As the positive electrode at this time, a known foaming nickel electrode was selected and used with a width of 3.3 cm and a length of 18 cm. Also in this case, the lead plates were attached at two places. Further, a polypropylene non-woven fabric imparted with hydrophilicity was used as the separator, and an electrolytic solution was prepared by dissolving 30 g / l of lithium hydroxide in a potassium hydroxide aqueous solution having a specific gravity of 1.25. This was sealed to form a sealed battery. This battery has a positive electrode capacity regulation and a theoretical capacity of 3.0 Ah.

【0025】このようにして作製した電池を、20℃に
おいて、充電は0.5C(2時間率)で120%まで、
放電は0.2C(5時間率)で終止電圧0.8Vとして
充放電を20サイクル行い、その後65℃中に放置し
た。図2に保存日数に対する各電池電圧を示す。図中の
番号は(表1)の試料No.と一致している。従来合金で
ある試料No.1では保存日数が20日程度を過ぎると電
池電圧が急激に低下したのに対して、Alを添加した試
料No.2〜6では30日の保存でも電池電圧の低下が小
さいことがわかった。
The battery thus produced was charged at 20 ° C. to 120% at 0.5 C (2 hour rate).
Discharging was performed at 0.2 C (5 hour rate) with a final voltage of 0.8 V, 20 cycles of charging and discharging were performed, and then left at 65 ° C. FIG. 2 shows each battery voltage with respect to the number of storage days. The numbers in the figure match the sample numbers in (Table 1). In the conventional alloy sample No. 1, the battery voltage drastically decreased after about 20 days of storage, whereas in the sample Nos. 2 to 6 containing Al, the battery voltage decreased even after storage for 30 days. Turned out to be small.

【0026】これらの結果よりAl量yを0.05〜
0.2とすれば、添加前の水素吸蔵合金電極とほぼ同程
度の放電容量を維持しつつ、初期放電特性および高温保
存特性にも優れた水素吸蔵合金電極が得られることがわ
かった。
From these results, the Al amount y is 0.05 to
It has been found that when the ratio is 0.2, a hydrogen storage alloy electrode having excellent initial discharge characteristics and high-temperature storage characteristics can be obtained while maintaining a discharge capacity almost the same as that of the hydrogen storage alloy electrode before addition.

【0027】(実施例2)市販のZr,Mn,V,A
l,Ni金属を原料として、アルゴン雰囲気中、アーク
溶解炉で加熱溶解することにより、(表2)に示した、
Al量yを0.1とした各種合金を作製した。ただし、
Mn量xが0.8以上のものはアーク炉で作製すると多
量のMnが蒸発し、目的合金を得ることが困難であるた
め、誘導加熱炉で作製した。次いで、真空中、1100
℃で12時間熱処理し、合金試料とした。
Example 2 Commercially available Zr, Mn, V, A
As shown in (Table 2), by using 1 and Ni metal as a raw material and heating and melting in an arc melting furnace in an argon atmosphere,
Various alloys were prepared with Al amount y of 0.1. However,
If the Mn amount x is 0.8 or more, a large amount of Mn evaporates when it is manufactured in an arc furnace, and it is difficult to obtain the target alloy. Therefore, it was manufactured in an induction heating furnace. Then, in vacuum, 1100
It heat-processed at 12 degreeC for 12 hours, and it was set as the alloy sample.

【0028】[0028]

【表2】 [Table 2]

【0029】この合金試料の一部はX線回折などの合金
分析および水素ガス雰囲気における水素吸収−放出量測
定(通常のP(水素圧力)−C(組成)−T(温度)測
定)に使用し、残りは電極特性評価に用いた。
A part of this alloy sample is used for alloy analysis such as X-ray diffraction and hydrogen absorption-desorption amount measurement (normal P (hydrogen pressure) -C (composition) -T (temperature) measurement) in a hydrogen gas atmosphere. The rest was used for electrode characteristic evaluation.

【0030】試料No.7〜11は本実施例とは異なる比
較例であり、試料No.12〜20は本発明の水素吸蔵合
金のいくつかの実施例である。まず、各合金試料につい
て、X線回折測定を行った。その結果、いずれの合金試
料についても合金相の主成分はC15型Laves相
(MgCu2型fcc構造)であることを確認した。ま
た、真空熱処理後のものは熱処理前と比べるとfccの
ピークがより大きく鋭くなったので、熱処理することに
よりC15型Laves相の割合が増大し、合金の均質
性および結晶性も向上したことがわかった。特にMn量
xが0.8以上のものについても均一組成の目的合金が
得られたことを確認した。結晶格子定数については、試
料No.8は7.03Åより小さかったが、それを除くと
いずれも7.03〜7.10Åであった。
Sample Nos. 7 to 11 are comparative examples different from the present embodiment, and sample Nos. 12 to 20 are some examples of the hydrogen storage alloy of the present invention. First, X-ray diffraction measurement was performed on each alloy sample. As a result, it was confirmed that the main component of the alloy phase of all the alloy samples was the C15 type Laves phase (MgCu 2 type fcc structure). Further, after the vacuum heat treatment, the fcc peak was larger and sharper than that before the heat treatment, so that the heat treatment increased the proportion of the C15 type Laves phase and improved the homogeneity and crystallinity of the alloy. all right. In particular, it was confirmed that the target alloy having a uniform composition was obtained even when the Mn amount x was 0.8 or more. Regarding the crystal lattice constant, Sample No. 8 was smaller than 7.03Å, but it was 7.03 to 7.10Å in all cases except it.

【0031】次に、各合金試料について、70℃におい
てPCT測定を行った。試料No.8および9は水素平衡
圧力が大きく、試料No.11はプラトー領域の平坦性が
非常に悪かった。これらを除くといずれの合金試料につ
いても水素化特性はそれほど大きな違いはなく、水素吸
蔵量はH/M=1.0〜1.2であり、試料No.8,
9,11に比べて15%程度大きいことがわかった。ま
た、真空熱処理することにより熱処理前と比べてプラト
ー領域の平坦性が良くなっており、水素吸蔵量も増大し
た。このようなことはAlを添加しない場合と同様の傾
向であり、Al量yを0.1にしてもAl無添加の合金
と比べて水素化特性はほぼ同じであることが確認でき
た。
Next, PCT measurement was carried out at 70 ° C. for each alloy sample. Sample Nos. 8 and 9 had a large hydrogen equilibrium pressure, and Sample No. 11 had very poor flatness in the plateau region. Except for these, the hydrogenation characteristics of all alloy samples were not so different, and the hydrogen storage capacity was H / M = 1.0 to 1.2.
It was found that it was about 15% larger than 9 and 11. Further, the vacuum heat treatment improved the flatness of the plateau region as compared with that before the heat treatment and increased the hydrogen storage amount. This has the same tendency as in the case where Al is not added, and it has been confirmed that even if the Al amount y is 0.1, the hydrogenation characteristics are almost the same as in the alloy without Al added.

【0032】以上のような合金試料について、電気化学
的な充放電反応によるアルカリ蓄電池用負極としての電
極特性を評価するために実施例1と同様の方法で単電池
試験を行った。その結果を図3に示す。図3は横軸に充
放電サイクル数を、縦軸に合金1gあたりの放電容量を
示したものであり、図中の番号は(表2)の試料No.と
一致している。いずれの試料も充放電サイクル初期の放
電特性は優れていた。しかし、試料No.8,9,11は
水素吸蔵量が少ないために飽和放電容量が小さく、試料
No.7はNi量が少ないため電気化学的な活性に乏しく
初期の放電が少なく、飽和放電容量も少なかった。ま
た、試料No.10はMn量が多いためMnのアルカリ電
解液中への溶出が激しく、充放電サイクルを繰り返すと
放電容量が大きく低下した。これに対して本実施例の水
素吸蔵合金電極はAlの添加による飽和放電容量の低下
はほとんど認められず、0.35〜0.37Ah/gの
高い飽和放電容量を示し、かつ、優れた初期の放電特性
を示した。
For the alloy samples as described above, a single cell test was conducted in the same manner as in Example 1 in order to evaluate the electrode characteristics of the negative electrode for alkaline storage batteries by the electrochemical charge / discharge reaction. The result is shown in FIG. FIG. 3 shows the number of charge / discharge cycles on the horizontal axis and the discharge capacity per 1 g of alloy on the vertical axis, and the numbers in the figure correspond to the sample numbers in (Table 2). All samples had excellent discharge characteristics at the beginning of the charge / discharge cycle. However, sample Nos. 8, 9, and 11 have a small saturated storage capacity because the hydrogen storage capacity is small,
In No. 7, the amount of Ni was small, so that the electrochemical activity was poor, the initial discharge was small, and the saturated discharge capacity was also small. Further, since the sample No. 10 had a large amount of Mn, Mn was strongly eluted into the alkaline electrolyte, and the discharge capacity was significantly reduced when the charge / discharge cycle was repeated. On the other hand, in the hydrogen storage alloy electrode of the present example, almost no decrease in the saturation discharge capacity due to the addition of Al was observed, it showed a high saturation discharge capacity of 0.35 to 0.37 Ah / g, and the excellent initial stage was obtained. The discharge characteristics of

【0033】さらに、これらの水素吸蔵合金電極を用い
て実施例1と同様の方法で密閉形ニッケル−水素蓄電池
を作製し、65℃保存試験を行った。その結果を図4に
示す。図4は保存日数に対する各電池電圧を示したもの
であり、図中の番号は(表2)の試料No.と一致してい
る。試料No.7,10,11は保存日数20〜25日で
電池電圧が急激に低下した。これはそれぞれMn量、V
量が多いのでAlを添加してもアルカリ電解液中への溶
出を抑えきれないためと思われる。しかし、それら以外
はいずれも30日の保存でも電池電圧の低下が小さいこ
とがわかった。
Further, a sealed nickel-hydrogen storage battery was prepared by using these hydrogen storage alloy electrodes in the same manner as in Example 1, and a storage test at 65 ° C. was conducted. The result is shown in FIG. FIG. 4 shows each battery voltage with respect to the number of days of storage, and the numbers in the figure match the sample numbers in (Table 2). In sample Nos. 7, 10, and 11, the battery voltage dropped sharply after 20 to 25 days of storage. This is the Mn content, V
Since the amount is large, it seems that even if Al is added, the elution into the alkaline electrolyte cannot be suppressed. However, it was found that the battery voltage drop was small even after storage for 30 days except the above.

【0034】以上のような単電池試験結果と65℃保存
試験結果より本実施例の合金組成を有する水素吸蔵合金
が高容量であり、かつ初期の放電特性に優れていること
がわかった。
From the above single cell test results and 65 ° C. storage test results, it was found that the hydrogen storage alloy having the alloy composition of this example has a high capacity and excellent initial discharge characteristics.

【0035】ここで、本実施例の水素吸蔵合金電極の水
素吸蔵合金の合金組成の作用について説明する。この合
金組成は高容量かつ優れた初期の放電特性を確保するた
めのものである。
Here, the function of the alloy composition of the hydrogen storage alloy of the hydrogen storage alloy electrode of this embodiment will be described. This alloy composition is for ensuring high capacity and excellent initial discharge characteristics.

【0036】Vは水素吸蔵−放出量の増加に寄与し、N
iは吸蔵−放出量の低下を引き起こすが電気化学的な水
素の吸蔵−放出に対する活性の向上に寄与する。しか
し、V量xが0.1より小さいとVの効果が現れず、
0.3を越えると合金の均質性が悪くなり逆に吸蔵−放
出量は減少する。また、Ni量zが1.0より小さいと
電気化学的な活性に乏しく放電容量が小さくなり、1.
5より大きいと水素平衡圧力が高くなり水素吸蔵−放出
量が減少する。したがって、V量xおよびNi量zはそ
れぞれ0.1≦x≦0.3,1.0≦z≦1.5が適当
である。
V contributes to an increase in hydrogen absorption-desorption amount, and N
i causes a decrease in the amount of occlusion and release, but contributes to the improvement of the electrochemical activity for occlusion and release of hydrogen. However, if the V amount x is smaller than 0.1, the effect of V does not appear,
When it exceeds 0.3, the homogeneity of the alloy is deteriorated, and conversely the amount of occlusion-release is decreased. Further, when the Ni content z is less than 1.0, the electrochemical activity is poor and the discharge capacity becomes small.
When it is larger than 5, the hydrogen equilibrium pressure becomes high and the hydrogen storage-release amount decreases. Therefore, it is suitable that the V amount x and the Ni amount z are 0.1 ≦ x ≦ 0.3 and 1.0 ≦ z ≦ 1.5, respectively.

【0037】MnはPCT曲線における水素平衡圧力の
平坦性に影響を及ぼし、Mn量が0.4以上でその平坦
性が非常に良くなり、放電容量が増加する。しかし、M
n量が0.8を越えると、Mnの電解液への溶出が激し
くなり寿命特性が悪くなる。したがって、Mn量は0.
4≦w≦0.8が適当である。
Mn affects the flatness of the hydrogen equilibrium pressure in the PCT curve, and when the Mn amount is 0.4 or more, the flatness becomes very good and the discharge capacity increases. But M
If the amount of n exceeds 0.8, Mn will be much eluted into the electrolytic solution and the life characteristics will be deteriorated. Therefore, the Mn content is 0.
4 ≦ w ≦ 0.8 is suitable.

【0038】以上のように、実施例1と実施例2の結果
から、高容量および優れた初期の放電特性を損なわずに
良好な高温保存特性を有するためには水素吸蔵合金が本
実施例の合金組成の条件を満たすことが必要であること
がわかった。
As described above, from the results of Example 1 and Example 2, the hydrogen storage alloy is the same as that of Example 1 in order to have good high temperature storage characteristics without impairing high capacity and excellent initial discharge characteristics. It has been found that it is necessary to meet the alloy composition requirements.

【0039】[0039]

【発明の効果】本発明の水素吸蔵合金電極は、従来のZ
r−Mn−V−M−Ni系Laves相合金(MはF
e,Coの中から選ばれた1種以上の元素)のM元素に
代えてAlを添加することにより、アルカリ電解液への
合金組成の溶出を抑制することができ、しかも電気化学
的な充放電特性において初期から効率よく多量の水素を
吸蔵−放出させることができるため、これを電極とする
アルカリ蓄電池は、従来のこの電池に比べて高容量およ
び優れた初期放電特性を損なわずに良好な高温保存特性
を有する。
The hydrogen storage alloy electrode of the present invention has a conventional Z
r-Mn-VM-Ni-based Laves phase alloy (M is F
By adding Al in place of the M element (one or more elements selected from e and Co), the elution of the alloy composition into the alkaline electrolyte can be suppressed, and the electrochemical charging can be suppressed. Since it is possible to efficiently store and release a large amount of hydrogen from the initial stage in discharge characteristics, an alkaline storage battery using this as an electrode has a high capacity and excellent initial discharge characteristics without being deteriorated as compared with the conventional battery. Has high temperature storage characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例および従来技術による比較例の
単電池試験による充放電サイクル特性を示す図
FIG. 1 is a diagram showing charge / discharge cycle characteristics in a unit cell test of an example of the present invention and a comparative example according to the related art.

【図2】本発明の実施例および従来技術による比較例の
65℃保存試験による高温保存特性を示す図
FIG. 2 is a diagram showing high-temperature storage characteristics of an example of the present invention and a comparative example according to the prior art in a 65 ° C storage test.

【図3】本発明の実施例および従来技術による比較例の
単電池試験による充放電サイクル特性を示す図
FIG. 3 is a diagram showing charge / discharge cycle characteristics in a unit cell test of an example of the present invention and a comparative example of the prior art.

【図4】本発明の実施例および従来技術による比較例の
65℃保存試験による高温保存特性を示す図
FIG. 4 is a diagram showing high-temperature storage characteristics of an example of the present invention and a comparative example according to the prior art in a 65 ° C storage test.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岩城 勉 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tsutomu Iwaki, 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】一般式が、ZrMnwxAlyNiz(ただ
し、0.4≦w≦0.8,0.1≦x≦0.3,0<y
≦0.2,1.0≦z≦1.5であり、かつ2.0≦w
+x+y+z≦2.4)で示され、合金相の主成分がC
15(MgCu 2)型Laves相である水素吸蔵合金
またはその水素化物を用いたことを特徴とする水素吸蔵
合金電極。
1. The general formula is ZrMn.wVxAlyNiz(However
, 0.4 ≦ w ≦ 0.8, 0.1 ≦ x ≦ 0.3, 0 <y
≦ 0.2, 1.0 ≦ z ≦ 1.5, and 2.0 ≦ w
+ X + y + z ≦ 2.4), and the main component of the alloy phase is C
15 (MgCu 2) Type Laves phase hydrogen storage alloy
Or hydrogen storage characterized by using its hydride
Alloy electrode.
【請求項2】合金調製後、特に1000〜1300℃の
真空中もしくは不活性ガス雰囲気中で均質化熱処理を行
った合金を用いたことを特徴とする請求項1記載の水素
吸蔵合金電極。
2. The hydrogen storage alloy electrode according to claim 1, wherein an alloy which has been subjected to homogenizing heat treatment in a vacuum at 1000 to 1300 ° C. or in an inert gas atmosphere after preparation of the alloy is used.
JP4143979A 1992-04-13 1992-06-04 Hydrogen storage alloy electrode Pending JPH05343057A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP4143979A JPH05343057A (en) 1992-06-04 1992-06-04 Hydrogen storage alloy electrode
DE69326374T DE69326374T2 (en) 1992-04-13 1993-04-13 Hydrogen storage alloy electrode
EP93105939A EP0566055B1 (en) 1992-04-13 1993-04-13 A hydrogen storage alloy electrode
US08/384,809 US5541018A (en) 1992-04-13 1995-02-06 Hydrogen storing alloy electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4143979A JPH05343057A (en) 1992-06-04 1992-06-04 Hydrogen storage alloy electrode

Publications (1)

Publication Number Publication Date
JPH05343057A true JPH05343057A (en) 1993-12-24

Family

ID=15351501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4143979A Pending JPH05343057A (en) 1992-04-13 1992-06-04 Hydrogen storage alloy electrode

Country Status (1)

Country Link
JP (1) JPH05343057A (en)

Similar Documents

Publication Publication Date Title
JP2771592B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
JPH1064537A (en) Nickel positive electrode for alkaline storage battery and nickel hydrogen storage battery using this electrode
EP0506084B1 (en) A hydrogen storage alloy and an electrode using the same
JPH0953136A (en) Hydrogen storage alloy and hydrogen storage alloy electrode
JPH05287422A (en) Hydrogen occluding alloy electrode
JPH0765833A (en) Hydrogen storage alloy electrode
JP2579072B2 (en) Hydrogen storage alloy electrode
JP3248762B2 (en) Hydrogen storage alloy electrode and method for producing the same
JP2563638B2 (en) Hydrogen storage alloy electrode
JPH0650634B2 (en) Hydrogen storage electrode
JPH073365A (en) Hydrogen storage alloy and hydrogen storage alloy electrode
JPH05343057A (en) Hydrogen storage alloy electrode
JPH0582125A (en) Hydrogen occluding alloy electrode
JP3065713B2 (en) Hydrogen storage electrode and nickel-hydrogen battery
JP3352479B2 (en) Hydrogen storage alloy electrode and method for producing the same
JPH05343056A (en) Hydrogen storage alloy electrode
JPH05343055A (en) Hydrogen storage alloy electrode
JPH0463240A (en) Hydrogen storage alloy electrode and battery using it
JPH05343054A (en) Hydrogen storage alloy electrode
US5541018A (en) Hydrogen storing alloy electrode
JP2715434B2 (en) Hydrogen storage alloy electrode
JPH05347156A (en) Hydrogen storage alloy electrode
JP2586752B2 (en) Hydrogen storage alloy electrode
JPH06150918A (en) Hydrogen storage alloy electrode and manufacture thereof
JPH06145849A (en) Hydrogen storage alloy electrode