JPH0534302B2 - - Google Patents

Info

Publication number
JPH0534302B2
JPH0534302B2 JP61201050A JP20105086A JPH0534302B2 JP H0534302 B2 JPH0534302 B2 JP H0534302B2 JP 61201050 A JP61201050 A JP 61201050A JP 20105086 A JP20105086 A JP 20105086A JP H0534302 B2 JPH0534302 B2 JP H0534302B2
Authority
JP
Japan
Prior art keywords
composition
main component
dielectric constant
pbtio
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61201050A
Other languages
Japanese (ja)
Other versions
JPS63185852A (en
Inventor
Susumu Saito
Masatomo Yonezawa
Kazuaki Uchiumi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP61201050A priority Critical patent/JPS63185852A/en
Publication of JPS63185852A publication Critical patent/JPS63185852A/en
Publication of JPH0534302B2 publication Critical patent/JPH0534302B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、磁器組成物、特に誘電率が高く、室
温および高温における絶縁抵抗が高く、しかも機
械的強度の高い磁器組成物に関するものである。 (従来の技術) 従来、高誘電率磁器組成物として、チタン酸バ
リウム(BaTiO3)が、またチタン酸バリウム
(BaTiO3)とチタン酸カルシウム(CaTiO3)、
チタン酸鉛(PbTiO3)などの固溶体組成物が広
く実用化されているのは周知のとおりである。し
かしながらこれら公知の誘電体磁器組成物で得ら
れる誘電率は高々8000程度にすぎず、特性改善の
ために常温での誘電率を大きくすると誘電率の温
度変化が大きくなり、一方誘電率の温度変化を小
さくすれば誘電率の最大値が減少するなど実用上
種々の問題点があつた。 また、磁器組成物の電気的特性として、誘電損
失が小さく、絶縁抵抗が高いことが要求される。
さらに絶縁抵抗の値に関しては、高信頼性の部品
を要求する米国防総省の規格であるミリタリース
ペシフイケイシヨン(Military Specification)
のMIL−C−55681Bにおいて、室温における値
のみならず、125℃における値も定められている
ように、信頼性の高い磁器コンデンサを得るため
には、室温における値のみならず、最高使用温度
における絶縁抵抗も高い値をとることが必要であ
る。 また、積層形チツプコンデンサの場合は、チツ
プコンデンサを基板に実装したとき、基板とチツ
プコンデンサを構成している磁器との熱膨張係数
の違いにより、チツプコンデンサに機械的な歪が
加わり、チツプコンデンサにクラツクが発生した
り、破損したりすることがある。また、エポキシ
系樹脂等を外装したデイツプコンデンサの場合
も、外装樹脂の応力で、デイツプコンデンサにク
ラツクが発生する場合がある。 (発明が解決しようとする問題点) いずれの場合も、コンデンサを形成している磁
器の機械的強度が低いほど、クラツクが入りやす
く、容易に破損するため、信頼性が低くなる。し
たがつて、磁器の機械的強度をできるだけ増大さ
せることは実用上極めて重要なことである。従
来、これらの条件を備えた磁器誘電体は少なく、
その実現が望まれていた。 (問題点を解決するための手段) 本発明は、上述の要請に鑑み、誘電率が高く、
誘電損失が小さく室温および高温における絶縁抵
抗の値が高い優れた電気特性を有し、更に機械的
強度も大きい信頼性の高い磁器組成物を提供しよ
うとするものであり、その要旨は、マグネシウ
ム、ニオブ酸鉛[Pb(Mg1/3Nb2/3)O3]、チ
タン酸鉛[PbTiO3]およびニツケル・ニオブ酸
鉛[Pb(Ni1/3Nb2/3)O3]からなる3成分
系組成物を、[Pb(Mg1/3Nb1/3)O3]x,
[Pb(Ni1/3Nb2/3)O3]y[PbTiO3]zと表
わしたときに(ただしz+y+z=1.00)この3
成分組成図において以下の組成点 (x=0.10,y=0.70,z=0.20) (x=0.15,y=0.60,z=0.25) (x=0.15,y=0.70,z=0.15) (x=0.40,y=0.35,z=0.25) (x=0.60,y=0.20,z=0.20) (x=0.70,y=0.20,z=0.10) (x=0.50,y=0.40,z=0.10) を結ぶ線上、およびこの7点に囲まれる組成範囲
にある主成分組成物に、副成分としてマンガン・
タンタル酸鉛[Pb(Mn1/3Ta2/3)O3]を主
成分に対して、0.01〜8mol%添加含有せしめて
なることを特徴とするものである。 (作用) すなわち、本願発明者は既にPb(Mg1/
3Nb2/3)O3−Pb(Ni1/3Nb2/3)O3
(PbTiO3)からなる3成分系の高誘電率、低誘
電損失の磁器組成物を提案しているが、本発明は
この3成分系に新たに検討した範囲を加え、機械
的強度高温での比抵抗改善を目的としてマンガ
ン・タンタル酸鉛[Pb(Mn1/3Ta2/3)O3
を添加含有せしめるもので、室温および高温にお
ける絶縁抵抗の値が高い、優れた電気的特性を有
し、更に機械的強度も大きい、信頼性の高い磁器
組成物を提供しようとするものである。 (実施例) 以下、本発明を実施例により詳細に説明する。
主成分組成物の出発原料として純度99.9%以上の
酸化鉛(PbO)、酸化マグネシウム(MgO)、酸
化ニオブ(Nb2O5)、酸化ニツケル(NiO)、及び
酸化チタン(TiO2)を使用し、副成分の出発原
料として酸化鉛(PbO)、炭酸マンガン
(MnCO3)、及び酸化タンタル(Ta2O5)を使用
し、表に示した配合比となるように各々秤量す
る。次に秤量した各材料をボールミル中で湿式混
合した後750〜800℃で予焼を行ない、この粉末を
ボールミルで粉砕し、濾過、乾燥後、有機バイン
ダーを入れ整粒後プレスし、直径16mm、厚さ約2
mmの円板4枚と、直径16mm、厚さ約10mmの円柱を
作成した。次に本発明の組成範囲の試料は空気中
1000〜1080℃の温度で1時間焼結した。焼結した
円板4枚の上下面に600℃で銀電極を焼付け、デ
ジタルLCRメーターで周波数1KHz、電圧1Vr.m.
s.温度20℃で容量と誘電損失を測定し、誘電率を
算出した。 次に超絶縁抵抗計で50Vの電圧を1分間印加し
て、絶縁抵抗を温度20℃と125℃で測定し、比抵
抗を算出した。 機械的性質を抗折強度で評価するため、焼結し
た円柱から厚さ0.5mm、幅2mm、長さ約13mmの矩
形板を10枚切り出した。支点間距離を9mmとり、
二点法で破壊荷重Pm[Kg]を測定、τ=3/2 Pm/Wt2[Kg/cm2]なる式に従い、抗折強度τ [Kg/cm2]を求めた。ただし、lは支点間距離、
tは試料の厚み、Wは試料の幅である。電気的特
性は円板試料4点の平均値、抗折強度は矩形板試
料10点の平均値より求めた。このようにして得ら
れた磁器の主成分[Pb(Mg1/3Nb2/3)O3
x [Pb(Ni1/3Nb2/3)O3]y[PbTiO3
zの配合比x,y,zおよび副成分添加量と誘電
率、誘電損失、20℃および125℃における比抵抗、
および抗折強度の関係を次表に示す。
(Industrial Application Field) The present invention relates to a ceramic composition, particularly a ceramic composition having a high dielectric constant, high insulation resistance at room temperature and high temperature, and high mechanical strength. (Prior Art) Conventionally, barium titanate (BaTiO 3 ), barium titanate (BaTiO 3 ), calcium titanate (CaTiO 3 ),
It is well known that solid solution compositions such as lead titanate (PbTiO 3 ) are widely put into practical use. However, the dielectric constant obtained with these known dielectric ceramic compositions is only about 8000 at most, and increasing the dielectric constant at room temperature in order to improve the characteristics results in a large temperature change in the dielectric constant; There were various problems in practical use, such as decreasing the maximum value of the dielectric constant. Furthermore, the electrical properties of the ceramic composition are required to be low dielectric loss and high insulation resistance.
Furthermore, the value of insulation resistance is determined by the Military Specification, a US Department of Defense standard that requires highly reliable components.
MIL-C-55681B stipulates not only the value at room temperature but also the value at 125℃, so in order to obtain a highly reliable ceramic capacitor, it is necessary to set not only the value at room temperature but also the value at the maximum operating temperature. It is also necessary to have a high insulation resistance. In addition, in the case of multilayer chip capacitors, when the chip capacitor is mounted on a board, mechanical strain is applied to the chip capacitor due to the difference in thermal expansion coefficient between the board and the porcelain that makes up the chip capacitor. This may cause cracks or damage. Furthermore, even in the case of dip capacitors coated with epoxy resin or the like, cracks may occur in the dip capacitor due to the stress of the coating resin. (Problems to be Solved by the Invention) In either case, the lower the mechanical strength of the porcelain forming the capacitor, the easier it is to crack and break, resulting in lower reliability. Therefore, it is of practical importance to increase the mechanical strength of porcelain as much as possible. Conventionally, there were few porcelain dielectrics that met these conditions;
It was hoped that this would come true. (Means for solving the problems) In view of the above-mentioned requirements, the present invention has a high dielectric constant,
The aim is to provide a highly reliable porcelain composition that has excellent electrical properties such as low dielectric loss and high insulation resistance at room and high temperatures, and also has high mechanical strength. A three-component composition consisting of lead niobate [Pb(Mg1/3Nb2/3)O 3 ], lead titanate [PbTiO 3 ] and lead nickel niobate [Pb(Ni1/3Nb2/3)O 3 ], [Pb(Mg1/3Nb1/3)O 3 ]x,
When expressed as [Pb(Ni1/3Nb2/3)O 3 ]y[PbTiO 3 ]z (however, z+y+z=1.00), these 3
The following composition points in the composition diagram (x=0.10, y=0.70, z=0.20) (x=0.15, y=0.60, z=0.25) (x=0.15, y=0.70, z=0.15) (x= 0.40, y=0.35, z=0.25) (x=0.60, y=0.20, z=0.20) (x=0.70, y=0.20, z=0.10) (x=0.50, y=0.40, z=0.10) Manganese and manganese are added to the main component composition on the connecting line and in the composition range surrounded by these seven points as a subcomponent.
It is characterized by containing lead tantalate [Pb(Mn1/3Ta2/3)O 3 ] in an amount of 0.01 to 8 mol % based on the main component. (Function) In other words, the inventor of the present application has already obtained Pb(Mg1/
3Nb2/3)O 3 −Pb(Ni1/3Nb2/3)O 3
We have proposed a 3-component ceramic composition with high dielectric constant and low dielectric loss consisting of (PbTiO 3 ), but the present invention adds a newly studied range to this 3-component system, and improves mechanical strength and high temperature. Manganese/lead tantalate [Pb(Mn1/3Ta2/3)O 3 ] for the purpose of improving specific resistance.
The purpose is to provide a highly reliable porcelain composition that has high insulation resistance values at room temperature and high temperature, excellent electrical properties, and also high mechanical strength. (Example) Hereinafter, the present invention will be explained in detail with reference to Examples.
Lead oxide (PbO), magnesium oxide (MgO), niobium oxide (Nb 2 O 5 ), nickel oxide (NiO), and titanium oxide (TiO 2 ) with a purity of 99.9% or higher are used as the starting materials for the main component composition. Lead oxide (PbO), manganese carbonate (MnCO 3 ), and tantalum oxide (Ta 2 O 5 ) are used as starting materials for the subcomponents, and each is weighed so as to achieve the mixing ratio shown in the table. Next, the weighed materials were wet-mixed in a ball mill and pre-baked at 750-800°C. This powder was pulverized in a ball mill, filtered and dried, then an organic binder was added and the particles were sized and pressed. Thickness approx. 2
We created four disks with a diameter of 16 mm and a cylinder with a thickness of about 10 mm. Next, a sample having the composition range of the present invention was placed in air.
Sintering was carried out at a temperature of 1000-1080°C for 1 hour. Silver electrodes were baked on the top and bottom surfaces of four sintered disks at 600℃, and the frequency was 1KHz and the voltage was 1Vr.m using a digital LCR meter.
s. The capacitance and dielectric loss were measured at a temperature of 20°C, and the dielectric constant was calculated. Next, a voltage of 50V was applied for 1 minute using a super insulation resistance meter, insulation resistance was measured at temperatures of 20°C and 125°C, and specific resistance was calculated. To evaluate the mechanical properties in terms of bending strength, 10 rectangular plates with a thickness of 0.5 mm, a width of 2 mm, and a length of about 13 mm were cut out from the sintered cylinder. The distance between the fulcrums is 9mm,
The fracture load Pm [Kg] was measured by a two-point method, and the bending strength τ [Kg/cm 2 ] was determined according to the formula: τ=3/2 Pm/Wt 2 [Kg/cm 2 ]. However, l is the distance between the fulcrums,
t is the thickness of the sample, and W is the width of the sample. The electrical properties were determined from the average value of 4 disk samples, and the bending strength was determined from the average value of 10 rectangular plate samples. The main component of the porcelain thus obtained [Pb(Mg1/3Nb2/3)O 3 ]
x [Pb(Ni1/3Nb2/3)O 3 ]y[PbTiO 3 ]
Mixing ratio x, y, z of z, additive amount of subcomponents, dielectric constant, dielectric loss, specific resistance at 20℃ and 125℃,
The relationship between flexural strength and bending strength is shown in the table below.

【表】【table】

【表】 試料番号に*印を付したものは本発明の範囲に含まれ
ない。
表からも明らかなように、Pb(Mg1/3Nb1/
3)O3−Pb(Ni1/3Nb2/3)O3−PbTiO3三成
分組成物に副成分であるPb(Mn1/3Ta2/3)
O3を主成分に対して0.01〜8mol%添加含有せし
めた本発明は高い誘電率を保持しながら、誘電損
失や比抵抗を良好かつ実用的なレベルにまで高め
ており、積層コンデンサ用磁器組成物として優れ
た材料を提供するものである。 なお、本発明の主成分組成範囲外では焼結温度
が高くなつたり、誘電率が低下し実用的でないた
め、前述のように限定される。また、副成分であ
る、Pb(Mn1/3Ta2/3)O3の添加量が0.01mol
%未満では抗折強度の改善効果が小さく、8mol
%を越えると逆に抗折強度が小さくなるため、実
用的ではない。 なお、第1図に本発明の主成分組成範囲を示
す、図に示した番号は、表に示した主成分配合比
の番号に対応する。 (発明の効果) 以上のように本発明により高い機械的強度が高
く、高誘電率、低誘電損失な磁器組成物が得られ
る。
[Table] Sample numbers marked with * are not included in the scope of the present invention.
As is clear from the table, Pb(Mg1/3Nb1/
3) O 3 -Pb (Ni1/3Nb2/3) O 3 -PbTiO 3 Pb (Mn1/3Ta2/3) which is a subcomponent in the ternary composition
The present invention, in which O 3 is added in an amount of 0.01 to 8 mol% relative to the main component, maintains a high dielectric constant while increasing dielectric loss and resistivity to a favorable and practical level. It provides excellent materials. It should be noted that outside the main component composition range of the present invention, the sintering temperature will be high and the dielectric constant will be low, making it impractical, and therefore, it is limited as described above. In addition, the added amount of Pb(Mn1/3Ta2/3)O 3 , which is a subcomponent, is 0.01mol.
If it is less than 8 mol, the effect of improving bending strength is small.
%, the bending strength decreases and is not practical. Note that FIG. 1 shows the main component composition range of the present invention, and the numbers shown in the figure correspond to the numbers of the main component blending ratios shown in the table. (Effects of the Invention) As described above, according to the present invention, a ceramic composition having high mechanical strength, high dielectric constant, and low dielectric loss can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の主成分組成範囲と実施例に
示した組成点を示す図である。
FIG. 1 is a diagram showing the main component composition range of the present invention and the composition points shown in Examples.

Claims (1)

【特許請求の範囲】 1 Pb(Mg1/3Nb2/3)O3−Pb(Ni1/
3Nb2/3)O3−PbTiO3の3成分系固溶体組成
物を[Pb(Mg1/3Nb2/3)O3]x[Pb(Ni1/
3Nb2/3)O3]y[PbTiO3]z(ただしx+y
+z=1.0)と表現したとき (x=0.10,y=0.70,z=0.20) (x=0.15,y=0.60,z=0.25) (x=0.15,y=0.70,z=0.15) (x=0.40,y=0.35,z=0.25) (x=0.60,y=0.20,z=0.20) (x=0.70,y=0.20,z=0.10) (x=0.50,y=0.40,z=0.10) を結ぶ線上およびこの7点に囲まれる組成範囲に
ある主成分組成物に副成分としてマンガン・タン
タル酸鉛[Pb(Mn1/3Ta2/3)O3]を主成分
に対して0.01〜8mol%添加含有せしめてなるこ
とを特徴とする磁器組成物。
[Claims] 1 Pb(Mg1/3Nb2/3)O 3 −Pb(Ni1/
A ternary solid solution composition of 3Nb2/3)O 3 -PbTiO 3 was prepared as [Pb(Mg1/3Nb2/3)O 3 ]
3Nb2/3)O 3 ]y[PbTiO 3 ]z (x+y
+z=1.0) When expressed as (x=0.10, y=0.70, z=0.20) (x=0.15, y=0.60, z=0.25) (x=0.15, y=0.70, z=0.15) (x= 0.40, y=0.35, z=0.25) (x=0.60, y=0.20, z=0.20) (x=0.70, y=0.20, z=0.10) (x=0.50, y=0.40, z=0.10) Manganese/lead tantalate [Pb(Mn1/3Ta2/3)O 3 ] is added as a subcomponent to the main component composition on the connecting line and within the composition range surrounded by these 7 points in an amount of 0.01 to 8 mol% based on the main component. A porcelain composition characterized in that it has the following characteristics:
JP61201050A 1986-08-26 1986-08-26 Ceramic composition Granted JPS63185852A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61201050A JPS63185852A (en) 1986-08-26 1986-08-26 Ceramic composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61201050A JPS63185852A (en) 1986-08-26 1986-08-26 Ceramic composition

Publications (2)

Publication Number Publication Date
JPS63185852A JPS63185852A (en) 1988-08-01
JPH0534302B2 true JPH0534302B2 (en) 1993-05-21

Family

ID=16434567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61201050A Granted JPS63185852A (en) 1986-08-26 1986-08-26 Ceramic composition

Country Status (1)

Country Link
JP (1) JPS63185852A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0354144A (en) * 1989-07-20 1991-03-08 Nec Corp Dielectric ceramic composition
JPH08188467A (en) * 1995-01-10 1996-07-23 Nec Corp Production of ceramic composition

Also Published As

Publication number Publication date
JPS63185852A (en) 1988-08-01

Similar Documents

Publication Publication Date Title
JPH0449503B2 (en)
JPS6227026B2 (en)
JPH0534302B2 (en)
JPS6227029B2 (en)
JPH0534301B2 (en)
JPS6033257A (en) Ceramic composition
JPS6227028B2 (en)
JPS6230151B2 (en)
JPH0534303B2 (en)
JPS6256605B2 (en)
JPS6234707B2 (en)
JP2926827B2 (en) Dielectric porcelain composition
JP2803320B2 (en) Dielectric porcelain composition
JPH0457631B2 (en)
JPS6149269B2 (en)
JPS6224382B2 (en)
JPS6224381B2 (en)
JPS6227025B2 (en)
JPS6227027B2 (en)
JPH0566332B2 (en)
JPS6149268B2 (en)
JPH0449504B2 (en)
JPS6046966A (en) Ceramic composition
JPH0419646B2 (en)
JPH0457630B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term