JPH05343026A - Ion implantation device - Google Patents

Ion implantation device

Info

Publication number
JPH05343026A
JPH05343026A JP4173651A JP17365192A JPH05343026A JP H05343026 A JPH05343026 A JP H05343026A JP 4173651 A JP4173651 A JP 4173651A JP 17365192 A JP17365192 A JP 17365192A JP H05343026 A JPH05343026 A JP H05343026A
Authority
JP
Japan
Prior art keywords
wafer
beam current
characteristic
ion beam
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4173651A
Other languages
Japanese (ja)
Inventor
Mitsuyoshi Omura
三好 大村
Kunihiko Takeyama
邦彦 武山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin High Voltage Co Ltd
Original Assignee
Nissin High Voltage Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin High Voltage Co Ltd filed Critical Nissin High Voltage Co Ltd
Priority to JP4173651A priority Critical patent/JPH05343026A/en
Publication of JPH05343026A publication Critical patent/JPH05343026A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve measurement accuracy of ultra minute beam current. CONSTITUTION:A detector 7 for back scattering particle or for characteristic X-ray is provided, which is opposed to the ion beam irradiation point of a wafer disc 1, and a heavy metal piece 8 of large atomic number, functioning as a sampler, is arranged in the middle of a point where each wafer 2 of the wafer disc is to be installed. At the time of ion beam irradiation, the output of a detector for detecting back scattering particle or characteristic X-ray, is guided to a wave height analyzer 10, and the wave height signal in the range of a specified energy range relating to the element of the heavy metal piece, is picked, and is counted by a counter 11. The counting ratio of the counter is proportional to the beam current.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、放射線計測手段を用い
てイオンビ−ム電流を計測するイオン注入装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ion implanter for measuring an ion beam current using radiation measuring means.

【0002】[0002]

【従来の技術】イオン注入装置にあっては、注入ウエフ
ァの高品質化に伴い、イオン注入量の正確な管理が要求
されており、図2は、イオン注入用ウエファディスクを
有するバッチ処理型イオン注入装置に適用されているイ
オンビ−ム電流測定方式の原理構成図である。ウエファ
ディスク1には複数のウエファ2が装着されており、イ
オンビ−ム3は、ウエファ面に垂直に入射し、ウエファ
ディスク1を回転及び並進させるメカニカルスキャン方
式により、イオンをウエファ全面に注入する。図示しな
いイオンビ−ム発生装置の電源の一端は接地されてお
り、イオンビ−ム電流はウエファ2、ウエファディスク
1を介して接地部へと流れるから、ウエファディスク回
転軸4に接触する電極5と接地間に電流計6を接続し、
イオンビ−ム電流を測定することにより、ウエファ2に
対するイオン注入量が判る。
2. Description of the Related Art In an ion implantation apparatus, as the quality of an implantation wafer is improved, it is required to accurately control the amount of ion implantation. FIG. 2 shows a batch processing type ion having a wafer disk for ion implantation. It is a principle block diagram of the ion beam current measuring system applied to the implanter. A plurality of wafers 2 are mounted on the wafer disk 1, and the ion beam 3 is vertically incident on the wafer surface to inject ions onto the entire surface of the wafer by a mechanical scanning method of rotating and translating the wafer disk 1. One end of the power source of the ion beam generator (not shown) is grounded, and the ion beam current flows to the grounding portion through the wafer 2 and the wafer disk 1. Therefore, the electrode 5 that contacts the wafer disk rotating shaft 4 is grounded. Connect an ammeter 6 between them,
By measuring the ion beam current, the amount of ion implantation into the wafer 2 can be known.

【0003】[0003]

【発明が解決しようとする課題】しかし、上述のビーム
電流測定方式にあっては、ウエファディスク1の回転駆
動系の軸受部に摩擦電気が発生し、その電荷による電流
が電流計6に流入すると共に、イオン注入時のウエファ
2の温度上昇を防止するためにウエファディスク1の内
部に冷却媒体を流しているが、この媒体のウエファディ
スク内部での流動、冷却媒体をウエファディスクに導
入、排出する機構部での流動に伴いやはり摩擦電気が発
生し、その電荷が電流計6に入り込む。かかる摩擦電気
による流入電流は、ビーム電流が大きく、mA(ミリア
ンペア)以上の場合には無視することができるが、高エ
ネルギ(MeV)イオン注入装置による低ドーズ(微小
ビーム電流)注入の場合には、ビーム電流はμAのオー
ダのものであるから、かかる摩擦電気による電流を無視
することができず、このノイズ、誤差分の存在により、
充分な精度で微小ビーム電流を測定することができな
い。また、ウエファディスク1は一般にかなり大きなも
の(〜1mφ)であり、周囲からノイズを拾いやすく、
このノイズが電流計6に混入することになる。だからと
言ってウエファディスクを電磁シールドすることは困難
である。
However, in the beam current measuring method described above, triboelectricity is generated in the bearing portion of the rotary drive system of the wafer disk 1, and the electric current due to the electric charge flows into the ammeter 6. At the same time, a cooling medium is caused to flow inside the wafer disk 1 in order to prevent the temperature rise of the wafer 2 at the time of ion implantation. The flow of this medium inside the wafer disk, and the cooling medium is introduced into and discharged from the wafer disk. Triboelectricity is also generated with the flow in the mechanical section, and the electric charge enters the ammeter 6. Such an inflow current due to triboelectricity can be ignored when the beam current is large and is equal to or higher than mA (milliampere), but in the case of low dose (small beam current) implantation by a high energy (MeV) ion implanter. Since the beam current is of the order of μA, the current due to such triboelectricity cannot be ignored, and the presence of this noise and error causes
The minute beam current cannot be measured with sufficient accuracy. In addition, the wafer disc 1 is generally quite large (up to 1 mφ), and it is easy to pick up noise from the surroundings.
This noise is mixed in the ammeter 6. However, it is difficult to electromagnetically shield the wafer disk.

【0004】本発明は、極低ドーズ、したがって極微小
ビーム電流によるイオン注入に際し、ドーズ量及びその
均一性を精密に制御するために、極微小ビ−ム電流を測
定することができるイオン注入装置の提供を目的とする
ものである。
The present invention is an ion implantation apparatus capable of measuring an extremely small beam current in order to precisely control the dose amount and its uniformity in ion implantation by an extremely low dose, that is, an extremely small beam current. The purpose is to provide.

【0005】[0005]

【課題を解決するための手段】本発明は、イオン注入装
置において、イオンビ−ム照射体に対向して設けられた
後方散乱粒子検出器又は特性X線検出器を有し、イオン
ビ−ム電流を計測することを主たる特徴とするものであ
る。
SUMMARY OF THE INVENTION The present invention provides an ion implanter having a backscattering particle detector or a characteristic X-ray detector which is provided so as to face an ion beam irradiator, and the ion beam current is detected. The main feature is to measure.

【0006】更に本発明は、イオン注入装置において、
イオンが注入されるウエファを装着し、回転するウエフ
ァディスクと、このディスクに取り付けられた重金属片
と、前記ウエファディスクに対向して設けられた後方散
乱粒子検出器又は特性X線検出器とを有し、イオンビ−
ム電流を計測することを特徴とするものである。
Further, the present invention provides an ion implantation apparatus,
It has a rotating wafer disk on which a wafer into which ions are implanted is mounted, a heavy metal piece attached to the disk, and a backscattering particle detector or a characteristic X-ray detector provided facing the wafer disk. AEON Bee
It is characterized by measuring the column current.

【0007】[0007]

【作用】照射体にイオンビ−ムが当ると、後方散乱粒
子、特性X線が発生する。この粒子、X線を検出するこ
とにより、摩擦電気等の影響を受けずにビーム電流、ビ
ーム量を正確に測定することができる。
When the ion beam hits the irradiated body, backscattering particles and characteristic X-rays are generated. By detecting these particles and X-rays, the beam current and the beam amount can be accurately measured without being affected by triboelectricity.

【0008】また、ウエファディスクに重金属片を取り
付けることにより、重金属元素に係る特定の後方散乱粒
子、特性X線を効果的に発生させることができ、ビーム
電流、イオンビーム量がより正確に測定できる。
By attaching a heavy metal piece to the wafer disk, specific backscattering particles and characteristic X-rays related to the heavy metal element can be effectively generated, and the beam current and the ion beam amount can be measured more accurately. ..

【0009】[0009]

【実施例】図1は本発明の一実施例を示す構成図であ
り、図2と同一符号は同等部分を示す。本発明は、ビー
ム電流、ビーム量の計測手段として、ラザフォード後方
散乱(RBS;Rutherford Back−Sc
attering)、粒子励起X線放射(PIXE;P
article Induced X−ray Emi
ssion)等による放射線計測装置を用いたものであ
り、ウエファディスク1におけるイオンビ−ム3の照射
箇所に対向させて後方散乱粒子または特性X線検出器7
を設ける。ウエファディスク1における各ウエファ2の
装着箇所の中間にサンプラとして機能する、例えばT
a、W、Mo等の原子番号Zの大きい重金属片8を配置
する。
1 is a block diagram showing an embodiment of the present invention, in which the same reference numerals as those in FIG. 2 denote the same parts. The present invention uses Rutherford backscattering (RBS; Rutherford Back-Sc) as means for measuring beam current and beam quantity.
X-ray emission (PIXE; P)
article Induced X-ray Emi
The radiation measuring device according to the present invention is used for the backscattering particles or the characteristic X-ray detector 7 facing the irradiation position of the ion beam 3 on the wafer disk 1.
To provide. The wafer disk 1 functions as a sampler in the middle of the mounting position of each wafer 2, for example, T
A heavy metal piece 8 having a large atomic number Z such as a, W, and Mo is arranged.

【0010】ウエファディスク1を回転させ、イオンビ
−ム3を照射すると、照射箇所から後方散乱粒子、特性
X線9が発生し、検出器7に入る。イオンビ−ムの照射
箇所に伴い、ウエファディスク1、ウエファ3、ウエフ
ァの装着部材及びサンプラ8から後方散乱粒子、特性X
線9が発生するが、検出器7の出力信号を波高分析器1
0に導入し、重金属片8の重金属元素に係る特定エネル
ギ範囲の波高信号を取り出し、計数器11で計数する。
この計数器で得られた計数率はビーム電流に比例するか
ら、ビーム電流、ビーム量を計測することができる。
When the wafer disk 1 is rotated and irradiated with the ion beam 3, backscattered particles and characteristic X-rays 9 are generated from the irradiation position and enter the detector 7. The backscattering particles from the wafer disk 1, the wafer 3, the mounting member of the wafer, and the sampler 8 and the characteristic X according to the irradiation position of the ion beam.
Although the line 9 is generated, the output signal of the detector 7 is changed to the pulse height analyzer 1
Introduced into 0, the peak signal in the specific energy range related to the heavy metal element of the heavy metal piece 8 is taken out and counted by the counter 11.
Since the count rate obtained by this counter is proportional to the beam current, the beam current and the beam amount can be measured.

【0011】[0011]

【発明の効果】本発明は、以上説明したように、イオン
注入に伴い発生する後方散乱粒子、特性X線の検出によ
りビーム電流を計測するようにしたから、ウエファディ
スク回転系における摩擦電気、電磁ノイズに影響されず
に、極低ドーズ注入時における極微小電流を計測するこ
とができ、ドーズ量及びその均一性を精密に制御するこ
とができる。
As described above, according to the present invention, the beam current is measured by detecting the backscattering particles and the characteristic X-rays generated by the ion implantation. It is possible to measure a very small current at the time of extremely low dose injection without being affected by noise, and it is possible to precisely control the dose amount and its uniformity.

【0012】またウエファディスクに後方散乱粒子、特
性X線発生用のサンプラとして機能する重金属片を設け
たから、後方散乱粒子、特性X線の発生量が増大し、重
金属元素に係る特定エネルギ範囲の波高信号を用いるこ
とにより、極微小ビーム電流計測精度が一層向上する。
Further, since the backscattering particles and the heavy metal piece functioning as a sampler for generating the characteristic X-rays are provided on the wafer disk, the amounts of the backscattering particles and the characteristic X-rays are increased, and the wave height of the heavy metal element in the specific energy range is increased. By using the signal, the precision of the extremely small beam current measurement is further improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の構成図である。FIG. 1 is a configuration diagram of an embodiment of the present invention.

【図2】従来のイオン注入装置におけるイオンビ−ム電
流測定系の構成図である。
FIG. 2 is a configuration diagram of an ion beam current measuring system in a conventional ion implanter.

【符号の説明】[Explanation of symbols]

1 ウエファディスク 2 ウエファ 6 電流計 7 後方散乱粒子または特性X線検出器 8 重金属片 10 波高分析器 11 計数器 1 Wafer disk 2 Wafer 6 Ammeter 7 Backscattered particle or characteristic X-ray detector 8 Heavy metal piece 10 Wave height analyzer 11 Counter

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 イオンビ−ム被照射体に対向して設けら
れた後方散乱粒子検出器又は特性X線検出器を有し、イ
オンビ−ム電流を計測することを特徴とするイオン注入
装置。
1. An ion implantation apparatus, comprising a backscattering particle detector or a characteristic X-ray detector provided facing an ion beam irradiation object, and measuring an ion beam current.
【請求項2】 イオンが注入されるウエファを装着して
回転するウエファディスクと、このディスクに取り付け
られた重金属片と、前記ウエファディスクに対向して設
けられた後方散乱粒子検出器又は特性X線検出器とを有
し、イオンビ−ム電流を計測することを特徴とするイオ
ン注入装置。
2. A wafer disk that rotates by mounting a wafer into which ions are implanted, a heavy metal piece attached to the disk, a backscattering particle detector or a characteristic X-ray that is provided so as to face the wafer disk. An ion implanter having a detector and measuring an ion beam current.
JP4173651A 1992-06-09 1992-06-09 Ion implantation device Pending JPH05343026A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4173651A JPH05343026A (en) 1992-06-09 1992-06-09 Ion implantation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4173651A JPH05343026A (en) 1992-06-09 1992-06-09 Ion implantation device

Publications (1)

Publication Number Publication Date
JPH05343026A true JPH05343026A (en) 1993-12-24

Family

ID=15964570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4173651A Pending JPH05343026A (en) 1992-06-09 1992-06-09 Ion implantation device

Country Status (1)

Country Link
JP (1) JPH05343026A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08148112A (en) * 1994-11-22 1996-06-07 Nec Corp Ion implanting device
KR100681737B1 (en) * 2005-09-30 2007-02-15 샤프 가부시키가이샤 Ion injection device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08148112A (en) * 1994-11-22 1996-06-07 Nec Corp Ion implanting device
KR100681737B1 (en) * 2005-09-30 2007-02-15 샤프 가부시키가이샤 Ion injection device

Similar Documents

Publication Publication Date Title
Angloher et al. Results from 730 kg days of the CRESST-II Dark Matter Search
RU2695296C1 (en) Beam diagnostic system for a neutron capture therapy system
JP2019501737A (en) Radiation detection system and detection method used in neutron capture therapy system
US4288692A (en) Beam current normalization in an X-ray microanalysis instrument
Martin et al. Measurement of electron backscattering in the energy range of neutron β decay
US5834787A (en) Device for measuring flux and accumulated dose for an ion beam containing a radioactive element
EP0811172B1 (en) Electron beam stop analyzer
JPH05343026A (en) Ion implantation device
Yagi et al. New irradiation system for photon activation analysis by electron linear accelerator
Konecny et al. Asymmetry, Anisotropy, and Excitation Function for the Proton-Induced Fission of Ra 226
US5381003A (en) Auger electron spectroscopy
Angelone et al. Test of a resistive plate chamber under irradiation of photons and neutrons
Deasy et al. A simple magnetic spectrometer for radiotherapy electron beams
JPH06223770A (en) Ion implantation device
JP3052436B2 (en) Ion processing equipment
Singh Excitation functions for 3He induced reactions with 12C
Maughan et al. A measurement of the fast-neutron sensitivity of a Geiger-Müller detector in the pulsed neutron beam from a superconducting cyclotron
JPH11120954A (en) Ion implanting device
Szegedi et al. Possible use of low voltage accelerators in PIXE analysis
Wood A sealed-off 14 MeV neutron• source incorporating a solid state alpha-particle detector
Patterson Accelerator radiation monitoring and shielding
Lindroos et al. Measurement of the magnetic moment of 23Mg using the tilted foil polarization technique
Tan et al. A thin-film detector system for laser-fusion studies
Gihwala et al. The determination of molybdenum and tungsten by high resolution spectrometry of alpha-induced prompt photon emission
Foote Measuring MeV ions from fusion reactions in magnetic-mirror experiments