JPH0534299B2 - - Google Patents

Info

Publication number
JPH0534299B2
JPH0534299B2 JP59067441A JP6744184A JPH0534299B2 JP H0534299 B2 JPH0534299 B2 JP H0534299B2 JP 59067441 A JP59067441 A JP 59067441A JP 6744184 A JP6744184 A JP 6744184A JP H0534299 B2 JPH0534299 B2 JP H0534299B2
Authority
JP
Japan
Prior art keywords
cement
water
weight
concrete
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59067441A
Other languages
Japanese (ja)
Other versions
JPS60215565A (en
Inventor
Haruyoshi Yamato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sato Road Co Ltd
Original Assignee
Sato Road Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=13345016&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH0534299(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Sato Road Co Ltd filed Critical Sato Road Co Ltd
Priority to JP59067441A priority Critical patent/JPS60215565A/en
Priority to CA000453846A priority patent/CA1239774A/en
Priority to DE19843417024 priority patent/DE3417024A1/en
Priority to FR8407131A priority patent/FR2545819B1/en
Priority to GB08411748A priority patent/GB2142329B/en
Priority to KR1019850001860A priority patent/KR910006894B1/en
Publication of JPS60215565A publication Critical patent/JPS60215565A/en
Publication of JPH0534299B2 publication Critical patent/JPH0534299B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/30Adapting or protecting infrastructure or their operation in transportation, e.g. on roads, waterways or railways

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Road Paving Structures (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は高い透水性を有するセメントコンクリ
ート舗装を構築する方法に関する。 近年、様々な非透水性構築物による都市化が進
むに従つて、多方面にわたり、その弊害が顕著に
なつてきている。 例えば、アスフアルト舗装、コンクリート舗装
または各種建築物によつて起こる地表面の遮水も
その弊害の一つであり、地表で覆うこれらの構築
物は、従来土の中に自然に浸透していた雨水の透
過を妨げる結果、地下水の急激な減少、それによ
る地盤の沈下、土中生物の生態の変化、樹木の順
調な発育の阻害、路面上の排水不良または集中豪
雨による河川の氾濫等を引き起こして、これらの
現象は社会的に大きな問題となつており、その解
決は急務となつている。 このようなことから、透水性を有する舗装の出
現が従来から強く望まれており、その材料として
透水性アスフアルトが知られている。しかしなが
ら、この透水性アスフアルトは元来透水性および
保水性が十分でなく、また日照によつて軟化、溶
融したアスフアルトが目詰まりを起こして、その
透水性を一層悪化させ、さらに強度の経年変化が
大きいこと等のために満足できるものではなかつ
た。一方、セメントコンクリート(以下、単にコ
ンクリートともいう)を基材とする透水性コンク
リート舗装については、従来十分な透水性と強度
の両方を兼ね備えたものを現場打設によつて造る
ことはできないとされ、十分実用に耐える透水性
コンクリート舗装はまだ知られていない。 本発明者は、セメントコンクリートを透水性の
ものとし、かつ実際に道路等の舗装として供用で
きるものを得るべく鋭意研究して、先に10-1
10-4cm/secのオーダーの透水係数を有する透水
性コンクリートの製造方法を完成した(特願昭58
−80063号)。 本発明者は、さらに研究を進めた結果、10-1
100cm/secのオーダーの一層高い透水係数を有
し、かつ大きい曲げ強度をもつ舗装用の透水性コ
ンクリートの構築方法を見い出し、本発明を完成
するに至つた。20Kg/cm2以上の高い曲げ強度をも
ち、かつ10-1〜100cm/secのオーダーの高い透水
係数を有するセメントコンクリートをフイニツシ
ヤーを用いる現場打設によつて自由な形状、寸法
を造り上げることは不可能であると従来思われて
いたことを考えると、本発明によつて、実際の舗
装に供用できる上記のような透水性セメントコン
クリートが提供できたということは実に驚くべき
ことである。 すなわち、本発明は、セメントコンクリート混
合物1m3当たり、300〜400Kgのポルトランドセメ
ント、このセメント1重量部に対して0.005〜0.1
重量部のバインダーと0.35〜0.45重量部の水およ
び残部の骨材からなる配合割合で構成されるセメ
ントコンクリート混合物であつて、前記骨材が、
5mm篩の通過重量百分率が50〜100%,2.5mm篩の
通過百分率が、水/セメント重量比が0.35〜0.43
の場合には8〜25%、水/セメント重量比が0.43
よりも大きく、かつ0.45以下の場合には0〜18
%、そして1.2mm篩の通過重量百分率が0〜6%
である粒度分布を有する前記セメントコンクリー
ト混合物を混練し、その結果生成したコンクリー
ト混練物をフイニツシヤーで被舗装面に打設する
ことによつて、高い透水性を有するセメントコン
クリート舗装を構築する方法に係わるものであ
る。 ここで“セメントコンクリート混合物1m3当た
り”という場合は、混合物中の空隙が除外されて
計算される、いわゆる論理密度を意味している。 上記の特定の配合割合を有し、かつ特定の粒度
分布をもつ骨材が配合されているセメントコンク
リート混練物をフイニツシヤーで被舗装面に打設
することによつて形成される透水性セメントコン
クリートは、非常に高い透水性と十分な曲げ強度
を有し、その透水性および曲げ強度の経年変化も
極めて小さい。 本発明においては水/セメント重量比は0.35〜
0.45でなければならず、そしてこの比が0.35〜
0.43の場合には5mm篩の通過重量百分率が50〜
100%,2.5mm篩の通過重量百分率が8〜25%,
1.2mm篩の通過重量百分率が0〜6%である粒度
分布を有し、また上記の比が0.43よりも大きく、
かつ0.45以下の場合には5mm篩の通過重量百分率
が50〜100%,2.5mm篩の通過重量百分率が0〜18
%,1.2mm篩の通過重量百分率が0〜6%である
粒度分布を有する骨材を用いなければならない。
この骨材の13mm篩通過重量百分率は通常100%で
ある。13mm篩を通過しない、より大きな骨材が混
入していてもよいが、舗装面の外観が悪くなる。
また、好ましくは0.6mm篩の通過重量百分率は0
〜3%である。ここで篩目の大きさは呼び寸法で
ある。本発明では、このように水/セメント比に
対応して骨材の粒度分布を極めて厳密に規定する
ことによつて10-1〜100cm/secという極めて高い
オーダーの透水係数と20Kg/cm2以上の大きい曲げ
強度とを同時にコンクリート舗装材に与えること
ができる。 本発明において、セメントコンクリート混合物
の材料としてそれ自体従来知られているものをそ
れぞれ用いながら、前述のように各材料の配合割
合、水/セメント重量比および骨材の粒度分布を
組み合わせることによつて、十分な曲げ強度を保
持しながら、従来予想されなかつた極めて高い透
水性を備えたコンクリート舗装が得られたことは
正に驚くべきことであり、このような成果は本発
明によつて初めて得ることができた。 本発明で規定されている骨材の粒度範囲(篩通
過重量百分率)の下限は、主として高い透水性を
得るという要請によつて決まる。でき上がつたコ
ンクリート舗装の透水性を高くするためには粒度
の細かい骨材の混入割合を厳密にコントロールす
る必要がある。通常使用されている砕石は公称の
粒度範囲に入る大きさのもの以外に、細かな砂を
かなり含んでいるので、本発明を実施するに当た
つて骨材の粒度範囲を設定する場合には、これら
の砂の量も計算に入れることが肝要である。した
がつて、骨材として砕石を用いる場合には、砕石
中に含まれている細かい砂を水洗等で分離するこ
とによつて、その中に含まれている細かい砂の割
合を予め調べておく必要がある。本発明において
細かい骨材の混入割合をこのように厳密に規定す
ることによつて、10-1〜100cm/secに達する高い
透水性を有する透水性コンクリート舗装を得るこ
とが可能となつた。 一方、本発明で用いられる骨材の粒度範囲(篩
通過重量百分率)の上限は主としてセメントコン
クリート舗装材の曲げ強度によつて決まる。本発
明では特に実用上から4週曲げ強度σ28(20℃恒温
水中養生)に着目して研究を重ね、その結果本発
明により、高い透水性と共に、20Kg/cm2以上、好
ましくは25Kg/cm2以上の大きい4週曲げ強度を有
する透水性コンクリート舗装を得ることが可能と
なつた。 ポルトランドセメントの量は、水も含めたセメ
ントコンクリート混合物1m3当たり300〜400Kg、
好ましくは320〜370Kgである。このセメントの量
が400Kgよりも多くなると、コンクリート舗装の
透水性が不十分となり、一方それが300Kgよりも
少なくなると、透水性は向上するものの、強度が
不十分となるところから、本発明ではポルトラン
ドセメントの量を上記のように定めた。 セメント1重量部に対して0.005〜0.1重量部、
好ましくは0.005〜0.04重量部添加されるバイン
ダーとしては、通常セメントモルタルに添加され
るものとして知られている全てのバインダーを用
いることができる。このバインダーとしては天然
または合成のゴム、例えばSBR、アクリル系樹
脂またはエポキシ樹脂等が挙げられ、これらのバ
インダーは通常エマルジヨンの形で用いられる。
本発明で規定された上述のバインダー添加量は、
これらのエマルジヨン中に含まれる樹脂の固形分
としての量を表している。例えば、市販のSBR
系ラテツクスバインダー(JSRトマツクスーパ
ー、日本合成ゴム株式会社製:固形分45%)を上
記範囲内の量で用いると、10〜60%程度の曲げ強
度の向上が得られるが、この添加量が上記範囲の
下限に満たないときは、この強度の向上効果が得
られず、一方それが上記範囲の上限を越えると、
透水性が大幅に低下するので、本発明ではバイン
ダーの添加量を上記のように定めた。また、アク
リル系バインダー(X−5142、エーシーアール株
式会社製)を用いると、60〜90%の曲げ強度の向
上が得られる。エポキシ系バインダーでは20〜40
%の曲げ強度の向上が得られるが、エポキシ系バ
インダーは一般に作業性に劣るという欠点があ
る。 水の量がセメント1重量部に対して0.45重量部
を越えると、コンクリート舗装の透水性が悪くな
り、一方それがセメント1重量部に対して0.35重
量部未満になると、十分な混練を遂行することが
困難になるところから、本発明では水の混合量を
セメント1重量部当たり0.35〜0.45重量部と定め
た。 以上のように材料の配合割合および水/セメン
ト比に対応した骨材の粒度分布が厳密に規定され
て用意された生コンクリートを、フイニツシヤー
を用いて被舗装面に現場打設することによつて、
舗装に十分適用できる大きな曲げ強度を有し、か
つ非常に高い透水性を有するコンクリート舗装を
初めて得ることができた。本発明で利用するフイ
ニツシヤーとは、接地圧0.1〜1.0Kg/cm2程度のス
クリードに1000〜3000r.p.m.程度の振動装置を備
えた、従来舗装に一般的に用いられている敷均し
機械である。 本発明のセメントコンクリート混合物には、以
上の必須材料の他に、従来セメントコンクリート
混合物に慣用されている添加物、例えば着色用の
ベンガラを、3〜5%添加することができる。 本発明は車道および歩道等の道路の他に、駐車
場、広場、公園または遊戯場の舗装に、また表土
の下に設けられる透水層の構築等に利用すること
ができる。 本発明によつて構築される透水性コンクリート
舗装の第一の特徴は、大きい空隙率、したがつて
高い透水性を有するところにある。本発明によれ
ば、10〜30%、好ましくは15〜25%の空隙率を有
する透水性コンクリート舗装を得ることができ
る。この高い空隙率によつて一時的な貯水および
透水が極めて速やかに進行し、そして高温または
日照による溶融、土砂等の粘着、それによる目詰
まり、およびこれらに起因する透水性の急激な低
下等を生じることがなく、また舗装の上に運ばれ
てきた細かな土砂は雨水と共に空隙を通つて流さ
れるので、清掃の手間が省かれるという点で、本
発明による舗装はアスフアルト舗装よりも有利で
ある。 本発明によつて構築される透水性コンクリート
舗装の第二の特徴は、道路等に利用されても、車
等の大きな荷重に十分耐えることができる高い曲
げ強度を備えているところにあり、本発明によつ
て得られる透水性コンクリート舗装が前述のよう
な大きい空隙率、したがつて高い透水性を有する
一方で、このように実用に耐える十分な曲げ強度
をもつことは特筆されなければならない。本発明
によつて得られる透水性コンクリート舗装は20
Kg/cm2以上(4週強度、20℃恒温水中養生)の曲
げ強度を有するので、本発明によつて構築される
舗装は、付加される荷重が比較的小さくてすむ歩
道、運動場および駐車場は勿論、その荷重が比較
的大きい道路、例えばコンクリート舗装要綱の交
通量区分に示されるB交通区分程度の道路まで十
分実用に耐えるものである。 本発明によつて、例えば道路を舗装する場合に
は、降雨量、降雨強度、舗装面にかかる荷重の大
きさ、舗装の貯水能力、路床の支持力および路床
の透水能等を考慮して舗装断面を設計する必要が
あるが、本発明の透水性コンクリート舗装は、一
般的な目安として、歩道では10cm、運動場および
駐車場では15cm、そして軽交通道路では15〜20cm
程度の厚さを有するのが適当であると考えられ
る。また、舗装を強化するために、引張強度の大
きい網(例えばメツシユ状のグラスフアイバー)
を舗装内部に設けることもできる。 透水性コンクリート舗装の施工は、例えば、一
般的な設備が備えられているコンクリートプラン
トにおいてセメント、骨材、バインダー、水およ
び必要に応じて加えられる添加物を混合し、そし
て混練した後、この混練物をトラツクミキサーま
たはダンプトラツクで現場へ搬送し、ついでこれ
を路盤または路床等の被舗装面上にフイニツシヤ
ーで所定の厚さ、品質に平坦に打設することによ
つて、遂行される。 以下、実施例を参照して本発明を説明するが、
本発明は勿論これらの実施例に限定されない。 実施例1,2および比較例1,2 第1表および添付図面の図に示される粒度分布
を有する骨材をそれぞれ実施例1,2および比較
例1,2において用い、そしてセメントコンクリ
ート混合物1m3(理論上)当たり350Kgポルトラ
ンドセメント、132.3Kgの水(バインダー中に含
まれる水分を除く)、14Kgの45%エマルジヨンの
形のバインダー(前記のJSRトマツクスーパー:
固形分6.3Kg)および残部の上記骨材からなるセ
メントコンクリート混合物をコンクリートプラン
トで混練し、その結果得られた混練物を0.8Kg/
cm2の接地圧をもつたフイニツシヤーにより1500r.
p.m.の振動をかけて砕石路盤上に打設し、そして
硬化させることによつて、本発明舗装1,2およ
び比較舗装1,2をそれぞれ構築した。したがつ
て、この場合の水/セメント重量比は0.40であつ
た。このようにして製造された各コンクリート舗
装について測定された透水係数および4週曲げ強
度の値を第1表に示す。
The present invention relates to a method of constructing cement concrete pavements with high water permeability. In recent years, as urbanization has progressed through the use of various impermeable structures, their negative effects have become more prominent in many areas. For example, one of the harmful effects is the water blocking of the ground surface caused by asphalt pavement, concrete pavement, or various buildings. As a result of impeding permeation, it causes a rapid decrease in groundwater, resulting in subsidence of the ground, changes in the ecology of subsoil organisms, inhibition of normal tree growth, poor drainage on road surfaces, and flooding of rivers due to torrential rain. These phenomena have become a major social problem, and there is an urgent need to solve them. For these reasons, there has been a strong desire for the emergence of water-permeable pavement, and water-permeable asphalt is known as a material for this. However, this water permeable asphalt originally does not have sufficient water permeability and water retention, and the asphalt that softens and melts due to sunlight causes clogging, further worsening its water permeability, and furthermore, its strength deteriorates over time. I wasn't satisfied with it because of the big things. On the other hand, regarding water-permeable concrete pavement based on cement concrete (hereinafter simply referred to as concrete), it has been thought that it is not possible to create a material with sufficient water permeability and strength by pouring it on-site. However, there is still no known water-permeable concrete pavement that can be put to practical use. The inventor of the present invention has conducted intensive research to make cement concrete water permeable and can actually be used as pavement for roads, etc.
A method for manufacturing permeable concrete with a permeability coefficient on the order of 10 -4 cm/sec was completed (patent application 1983).
−80063). As a result of further research, the inventor found that 10 -1 ~
The present inventors have discovered a method for constructing water-permeable concrete for pavements that has a higher water permeability coefficient on the order of 100 cm/sec and a large bending strength, and have completed the present invention. Creating cement concrete with a high bending strength of 20 kg/cm 2 or more and a high permeability coefficient on the order of 10 -1 to 10 0 cm/sec in any shape and size by on-site pouring using a finisher. It is truly surprising that the present invention has been able to provide water-permeable cement concrete as described above that can be used in actual pavements, considering that it was previously believed that this was impossible. That is, the present invention uses 300 to 400 kg of Portland cement per m3 of cement-concrete mixture, and 0.005 to 0.1 part by weight of this cement.
A cement-concrete mixture having a mixing ratio of 0.35 to 0.45 parts by weight of a binder, 0.35 to 0.45 parts by weight of water, and the remainder of aggregate, the aggregate comprising:
The weight percentage passing through a 5 mm sieve is 50-100%, the passing percentage through a 2.5 mm sieve is 0.35-0.43, and the water/cement weight ratio is 0.35-0.43.
8-25%, water/cement weight ratio is 0.43
0 to 18 if greater than and 0.45 or less
%, and the weight percentage passing through the 1.2mm sieve is 0-6%.
The present invention relates to a method for constructing a cement concrete pavement with high water permeability by kneading the cement concrete mixture having a particle size distribution of It is something. Here, "per 1 m 3 of cement-concrete mixture" refers to the so-called logical density, which is calculated by excluding voids in the mixture. Water-permeable cement concrete is formed by pouring a cement-concrete mixture containing the above-mentioned specific mixing ratio and aggregate with a specific particle size distribution onto the paved surface using a finisher. It has very high water permeability and sufficient bending strength, and its water permeability and bending strength change over time are also extremely small. In the present invention, the water/cement weight ratio is from 0.35 to
should be 0.45, and this ratio should be between 0.35 and
In the case of 0.43, the weight percentage passing through a 5 mm sieve is 50~
100%, weight percentage passing through 2.5mm sieve is 8~25%,
having a particle size distribution such that the weight percentage passing through a 1.2 mm sieve is 0 to 6%, and the above ratio is greater than 0.43;
And if it is 0.45 or less, the weight percentage passing through a 5 mm sieve is 50 to 100%, and the weight percentage passing through a 2.5 mm sieve is 0 to 18.
%, an aggregate having a particle size distribution with a weight percentage passing through a 1.2 mm sieve of 0 to 6% must be used.
The weight percentage of this aggregate passing through a 13 mm sieve is usually 100%. Larger aggregates that do not pass through the 13mm sieve may be mixed in, but the appearance of the paved surface will be poor.
Preferably, the weight percentage passing through the 0.6 mm sieve is 0.
~3%. Here, the size of the sieve mesh is the nominal size. In the present invention, by extremely strictly regulating the particle size distribution of the aggregate in accordance with the water/cement ratio, it is possible to achieve a hydraulic conductivity of the extremely high order of 10 -1 to 100 cm/sec and 20 kg/cm. A high bending strength of 2 or more can be simultaneously imparted to the concrete paving material. In the present invention, while using conventionally known materials for cement-concrete mixtures, by combining the mixing ratio of each material, water/cement weight ratio, and aggregate particle size distribution as described above. It is truly surprising that a concrete pavement with extremely high water permeability, which was previously unanticipated, was obtained while maintaining sufficient bending strength, and such an achievement is achieved for the first time by the present invention. I was able to do that. The lower limit of the aggregate particle size range (weight percentage passing through the sieve) defined in the present invention is determined primarily by the desire to obtain high water permeability. In order to increase the water permeability of the finished concrete pavement, it is necessary to strictly control the proportion of fine-grained aggregate mixed in. Generally used crushed stone contains a considerable amount of fine sand in addition to the size within the nominal particle size range, so when setting the particle size range of aggregate when carrying out the present invention, , it is important to also take into account the amount of sand. Therefore, when using crushed stone as aggregate, the proportion of fine sand contained in the crushed stone should be determined in advance by separating the fine sand contained in the crushed stone by washing with water, etc. There is a need. In the present invention, by strictly regulating the mixing ratio of fine aggregate in this way, it has become possible to obtain a water-permeable concrete pavement with high water permeability reaching 10 -1 to 100 cm/sec. . On the other hand, the upper limit of the particle size range (weight percentage passing through a sieve) of the aggregate used in the present invention is mainly determined by the bending strength of the cement concrete pavement material. In the present invention, we have conducted repeated research focusing on the 4-week bending strength σ 28 (cured in constant temperature water at 20°C) from a practical standpoint, and as a result, the present invention has a high water permeability as well as 20 Kg/cm 2 or more, preferably 25 Kg/cm It has become possible to obtain a permeable concrete pavement with a high 4-week bending strength of 2 or more. The amount of Portland cement is 300-400Kg per 1m3 of cement-concrete mixture including water.
Preferably it is 320-370Kg. If the amount of cement exceeds 400 kg, the water permeability of the concrete pavement will be insufficient, while if it is less than 300 kg, the water permeability will improve but the strength will be insufficient. The amount of the component was determined as above. 0.005 to 0.1 parts by weight per 1 part by weight of cement,
As the binder, which is preferably added in an amount of 0.005 to 0.04 parts by weight, all binders known as those commonly added to cement mortar can be used. Examples of the binder include natural or synthetic rubbers such as SBR, acrylic resins or epoxy resins, and these binders are usually used in the form of emulsions.
The above-mentioned binder addition amount specified in the present invention is
It represents the amount of resin contained in these emulsions as solid content. For example, commercially available SBR
If a latex binder (JSR Tomatsu Super, manufactured by Japan Synthetic Rubber Co., Ltd.: solids content: 45%) is used in an amount within the above range, an improvement in bending strength of about 10 to 60% can be obtained. If it is less than the lower limit of the above range, this strength improvement effect cannot be obtained, while if it exceeds the upper limit of the above range,
Since water permeability is significantly reduced, in the present invention, the amount of binder added is determined as described above. Furthermore, when an acrylic binder (X-5142, manufactured by ACR Corporation) is used, the bending strength can be improved by 60 to 90%. 20 to 40 for epoxy binders
% improvement in bending strength can be obtained, but epoxy binders generally have the disadvantage of poor workability. If the amount of water exceeds 0.45 parts by weight to 1 part by weight of cement, the water permeability of concrete pavement will deteriorate, while if it is less than 0.35 parts by weight to 1 part by weight of cement, sufficient mixing will not be achieved. Therefore, in the present invention, the mixing amount of water is set at 0.35 to 0.45 parts by weight per 1 part by weight of cement. As described above, ready-mixed concrete prepared with strictly defined aggregate particle size distribution corresponding to the material mixing ratio and water/cement ratio is poured on-site onto the paved surface using a finisher. ,
For the first time, we have been able to obtain concrete pavement that has sufficient bending strength to be used in pavements and has extremely high water permeability. The finisher used in the present invention is a leveling machine commonly used for conventional paving, equipped with a screed with a ground pressure of about 0.1 to 1.0 Kg/cm 2 and a vibration device of about 1000 to 3000 rpm. be. In addition to the above-mentioned essential materials, the cement-concrete mixture of the present invention may contain 3 to 5% of additives conventionally used in cement-concrete mixtures, such as red iron oxide for coloring. The present invention can be used not only for roads such as driveways and sidewalks, but also for paving parking lots, plazas, parks, and playgrounds, and for constructing water-permeable layers provided under the topsoil. The first characteristic of the permeable concrete pavement constructed according to the present invention is that it has a high porosity and therefore high water permeability. According to the invention, it is possible to obtain a water-permeable concrete pavement with a porosity of 10-30%, preferably 15-25%. Due to this high porosity, temporary water storage and water permeability proceed extremely quickly, and are susceptible to melting due to high temperatures or sunlight, adhesion of earth and sand, resulting in clogging, and rapid decreases in permeability caused by these. The pavement according to the present invention is advantageous over asphalt pavement in that the fine earth and sand carried on the pavement are washed away through the voids together with rainwater, which saves the effort of cleaning. . The second feature of the permeable concrete pavement constructed according to the present invention is that it has a high bending strength that can sufficiently withstand large loads such as cars when used for roads. It must be noted that while the water-permeable concrete pavement obtained by the invention has a large porosity as described above and therefore high water permeability, it also has sufficient bending strength to withstand practical use. The permeable concrete pavement obtained by the present invention is 20
Since it has a bending strength of Kg/cm 2 or more (4-week strength, cured in constant temperature water at 20°C), the pavement constructed according to the present invention can be used for sidewalks, playgrounds, and parking lots where the applied load is relatively small. Of course, it can withstand practical use even on roads where the load is relatively large, for example, roads in the B traffic classification indicated in the traffic volume classification of the concrete pavement guidelines. According to the present invention, when paving a road, for example, the amount of rainfall, rainfall intensity, magnitude of load on the paved surface, water storage capacity of the pavement, bearing capacity of the subgrade, permeability of the subgrade, etc. are taken into consideration. However, as a general guideline, the permeable concrete pavement of the present invention has a width of 10 cm for sidewalks, 15 cm for playgrounds and parking lots, and 15 to 20 cm for light traffic roads.
It is considered appropriate to have a thickness of approximately In addition, to strengthen the pavement, nets with high tensile strength (for example, mesh-like glass fibers) are used.
can also be provided inside the pavement. The construction of permeable concrete pavement is carried out, for example, by mixing and kneading cement, aggregate, binder, water and any additives added as necessary in a concrete plant equipped with common equipment. This is accomplished by transporting the material to the site using a truck mixer or dump truck, and then using a finisher to flatten it onto a paved surface such as a roadbed or roadbed to a predetermined thickness and quality. The present invention will be explained below with reference to Examples.
The present invention is of course not limited to these examples. Examples 1, 2 and Comparative Examples 1, 2 Aggregates having the particle size distribution shown in Table 1 and the diagrams in the attached drawings were used in Examples 1, 2 and Comparative Examples 1, 2, respectively, and 1 m 3 of cement-concrete mixture (Theoretically) 350Kg of Portland cement, 132.3Kg of water (excluding water contained in the binder), 14Kg of binder in the form of 45% emulsion (as mentioned above JSR Tomatsu Super:
A cement concrete mixture consisting of solid content 6.3Kg) and the remainder of the above aggregate is mixed in a concrete plant, and the resulting mix is mixed at 0.8Kg/
1500r by a finisher with a ground pressure of cm 2 .
Pavements 1 and 2 of the present invention and comparative pavements 1 and 2 were constructed by applying vibrations of pm, casting on a crushed stone roadbed, and curing. Therefore, the water/cement weight ratio in this case was 0.40. Table 1 shows the hydraulic conductivity and 4-week bending strength values measured for each of the concrete pavements manufactured in this manner.

【表】 第1表に示される結果から、本発明舗装1およ
び2の透水係数および曲げ強度はいずれも共に大
きいのに対して、骨材の2.5mm篩通過重量百分率
が本発明の範囲の下限よりも小さい比較舗装1で
は曲げ強度が小さく、また骨材の1.2mm篩通過重
量百分率が本発明の範囲の上限を越えている比較
舗装材2では透水係数が低いことがわかる。 実施例3および比較例3 第2表および添付図面の図に示される粒度分布
を有する骨材をそれぞれ実施例3および比較例3
において用い、そしてセメントコンクリート混合
物1m3(理論上)当たり350Kgのポルトランドセ
メント、148.8Kgの水(バインダー中に含まれる
水分を除く)、15.8Kgの45%エマルジヨンの形の
バインダー(前記のJSRトマツクスーパー、:固
形分7.1Kg)および残部の上記骨材からなるセメ
ントコンクリート混合物をコンクリートプラント
で混練し、その結果得られた混練物を0.8Kg/cm2
の接地圧をもつたフイニツシヤーにより1500r.p.
m.no振動をかけて砕石路盤上に打設し、そして
硬化させることによつて、本発明舗装材3および
比較舗装材3をそれぞれ製造した。したがつて、
この場合の水/セメント重量比は0.45であつた。
このようにして製造された各舗装材について測定
された透水係数および4週曲げ強度の値を第2表
に示す。
[Table] From the results shown in Table 1, the permeability coefficient and bending strength of Invention Pavements 1 and 2 are both large, while the weight percentage of aggregate passing through a 2.5 mm sieve is at the lower limit of the range of the invention. It can be seen that Comparative Pavement 1, which is smaller than , has a low bending strength, and Comparative Pavement 2, in which the weight percentage of aggregate passing through a 1.2 mm sieve exceeds the upper limit of the range of the present invention, has a low coefficient of permeability. Example 3 and Comparative Example 3 Aggregates having the particle size distributions shown in Table 2 and the figures in the attached drawings were used in Example 3 and Comparative Example 3, respectively.
and per m 3 (theoretical) cement-concrete mixture 350 Kg of Portland cement, 148.8 Kg of water (excluding water contained in the binder), 15.8 Kg of binder in the form of 45% emulsion (as mentioned above from JSR Tomac) A cement-concrete mixture consisting of 7.1Kg (solid content: 7.1Kg) and the remainder of the above aggregate is kneaded in a concrete plant, and the resulting mix is 0.8Kg/cm 2
The finisher has a ground pressure of 1500r.p.
The paving material 3 of the present invention and the comparative paving material 3 were manufactured by applying m.no vibration, placing the paving material on a crushed stone roadbed, and curing it. Therefore,
The water/cement weight ratio in this case was 0.45.
Table 2 shows the permeability coefficient and 4-week bending strength values measured for each of the paving materials thus manufactured.

【表】 第2表に示される結果から、本発明舗装3は透
水係数および曲げ強度が共に大きいのに対して、
骨材の2.5mm篩通過重量百分率が本発明の範囲の
上限を越えている比較舗装3は透水係数が著しく
低いことがわかる。
[Table] From the results shown in Table 2, the present invention pavement 3 has a high permeability coefficient and a high bending strength, while
It can be seen that Comparative Pavement 3, in which the weight percentage of aggregate passing through the 2.5 mm sieve exceeds the upper limit of the range of the present invention, has a significantly low coefficient of permeability.

【図面の簡単な説明】[Brief explanation of the drawing]

添付図面に示されている図は実施例1〜3およ
び比較例1〜3で用いた骨材の粒度分布を示すグ
ラフである。
The figures shown in the accompanying drawings are graphs showing the particle size distribution of the aggregates used in Examples 1-3 and Comparative Examples 1-3.

Claims (1)

【特許請求の範囲】 1 セメントコンクリート混合物1m3当たり、
300〜400Kgのポルトランドセメント、このセメン
ト1重量部に対して0.005〜0.1重量部のバインダ
ーと0.35〜0.45重量部の水および残部の骨材から
なる配合割合で構成されるセメントコンクリート
混合物であつて、前記骨材が、5mm篩の通過重量
百分率が50〜100%,2.5mm篩の通過重量百分率
が、水/セメント重量比が0.35〜0.43の場合には
8〜25%、水/セメント重量比が0.43よりも大き
く、かつ0.45以下の場合には0〜18%、そして
1.2mm篩の通過重量百分率が0〜6%である粒度
分布を有する前記セメントコンクリート混合物を
混練し、その結果生成したコンクリート混練物を
フイニツシヤーで被舗装面に打設することによつ
て、高い透水性を有するセメントコンクリート舗
装を構築する方法。 2 セメント1重量部に対して0.015〜0.03重量
部のバインダーを用いる特許請求の範囲第1項記
載の方法。 3 セメントコンクリート混合物1m3当たり、セ
メントを320〜370Kg配合する特許請求の範囲第1
項または第2項記載の方法。
[Claims] 1. Per 1 m 3 of cement-concrete mixture,
A cement-concrete mixture consisting of 300 to 400 kg of Portland cement, 0.005 to 0.1 part by weight of binder, 0.35 to 0.45 part by weight of water, and the balance of aggregate to 1 part by weight of this cement, The weight percentage of the aggregate passing through a 5 mm sieve is 50 to 100%, the weight percentage passing through a 2.5 mm sieve is 8 to 25% when the water/cement weight ratio is 0.35 to 0.43, and the water/cement weight ratio is 8 to 25%. 0-18% if greater than 0.43 and less than or equal to 0.45, and
High water permeability can be achieved by kneading the cement-concrete mixture having a particle size distribution in which the weight percentage passing through a 1.2 mm sieve is 0 to 6%, and placing the resulting concrete mixture on the paved surface with a finisher. How to construct cement concrete pavement with properties. 2. The method according to claim 1, in which 0.015 to 0.03 parts by weight of binder is used per 1 part by weight of cement. 3. Claim 1 in which 320 to 370 kg of cement is mixed per 1 m 3 of cement-concrete mixture.
or the method described in paragraph 2.
JP59067441A 1983-05-10 1984-04-06 Manufacture of cement concrete product with high water permeability Granted JPS60215565A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP59067441A JPS60215565A (en) 1984-04-06 1984-04-06 Manufacture of cement concrete product with high water permeability
CA000453846A CA1239774A (en) 1983-05-10 1984-05-08 Process of producing water permeable cement concrete constructions
DE19843417024 DE3417024A1 (en) 1983-05-10 1984-05-09 METHOD FOR PRODUCING A WATERPROOF CEMENT CONCRETE CONSTRUCTION
FR8407131A FR2545819B1 (en) 1983-05-10 1984-05-09 PROCESS FOR THE PRODUCTION OF WATER-PERMEABLE CONCRETE STRUCTURES
GB08411748A GB2142329B (en) 1983-05-10 1984-05-09 Road-surfacing material
KR1019850001860A KR910006894B1 (en) 1984-04-06 1985-03-21 Manufacture of cement concrete product with high water permeability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59067441A JPS60215565A (en) 1984-04-06 1984-04-06 Manufacture of cement concrete product with high water permeability

Publications (2)

Publication Number Publication Date
JPS60215565A JPS60215565A (en) 1985-10-28
JPH0534299B2 true JPH0534299B2 (en) 1993-05-21

Family

ID=13345016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59067441A Granted JPS60215565A (en) 1983-05-10 1984-04-06 Manufacture of cement concrete product with high water permeability

Country Status (2)

Country Link
JP (1) JPS60215565A (en)
KR (1) KR910006894B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002275812A (en) * 2001-03-13 2002-09-25 Seltec Corp Deflective water permeable concrete pavement
JP2013100662A (en) * 2011-11-08 2013-05-23 Kajima Road Co Ltd Porous concrete

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2840676B2 (en) * 1989-06-26 1998-12-24 住友大阪セメント株式会社 Organic fiber reinforced permeable concrete composition
JPH0421549A (en) * 1990-05-11 1992-01-24 Sugawara Doboku Kk Water-permeable concrete
KR20010111688A (en) * 2000-06-13 2001-12-20 이민구 Colored fine compacted concrete pavement method
KR100532811B1 (en) * 2000-06-13 2005-12-02 이민구 Colored fine compacted concrete pavement method
KR20020069334A (en) * 2001-02-26 2002-08-30 주식회사 한수도로산업 Permeable Remital

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5342974A (en) * 1976-09-29 1978-04-18 Reppas George S Combined bed and desk
JPS5638547A (en) * 1979-09-07 1981-04-13 Hitachi Ltd Variable venturi type carburetor
JPS5736218A (en) * 1980-08-12 1982-02-27 Kajima Corp Underwater construction of water-permeable concrete

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5342974A (en) * 1976-09-29 1978-04-18 Reppas George S Combined bed and desk
JPS5638547A (en) * 1979-09-07 1981-04-13 Hitachi Ltd Variable venturi type carburetor
JPS5736218A (en) * 1980-08-12 1982-02-27 Kajima Corp Underwater construction of water-permeable concrete

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002275812A (en) * 2001-03-13 2002-09-25 Seltec Corp Deflective water permeable concrete pavement
JP2013100662A (en) * 2011-11-08 2013-05-23 Kajima Road Co Ltd Porous concrete

Also Published As

Publication number Publication date
KR910006894B1 (en) 1991-09-10
JPS60215565A (en) 1985-10-28
KR850007237A (en) 1985-12-02

Similar Documents

Publication Publication Date Title
JP3280847B2 (en) Permeable concrete pavement method
AM et al. Development of high quality pervious concrete specifications for Maryland conditions.
KR100203991B1 (en) Method for paving water draining road with pervious cement concrete
Zhuge A review of permeable concrete and its application to pavements
JPH05255908A (en) Manufacture of improved water-permeable concrete structure
JPH0534299B2 (en)
CA1239774A (en) Process of producing water permeable cement concrete constructions
JPH0799002B2 (en) Method for manufacturing permeable cement concrete construct
JP4785817B2 (en) Pavement structure
JP4456984B2 (en) Water-retaining concrete member
KR100271535B1 (en) Colorful permeable concrete having porosities and pavement including the same
KR100266876B1 (en) Porous concrete
JP2945543B2 (en) Permeable concrete and pavement method of permeable concrete
JP2001164502A (en) Precast-concrete pavement slab
JP2544970B2 (en) Curable soil composition and soil hardening method
JP3589898B2 (en) Permeable pavement structure
KR100411911B1 (en) Paving method of permeable concrete having high endurance
JP2004225283A (en) Concrete block
KR100381056B1 (en) Construction method of porous concrete for river bank and surface
KR0132371B1 (en) Collar concrete
CN220352535U (en) Municipal road construction roadbed drainage structure
JP3053315B2 (en) Cement concrete, a paving slab for building permeable pavements
JP2000178910A (en) Paving structure
KR100241719B1 (en) Bubble porous concrete
JP2000319806A (en) High-performance road structure and execution method thereof

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term