JPH05342933A - Manufacture of nb3sn compound superconductive wire - Google Patents

Manufacture of nb3sn compound superconductive wire

Info

Publication number
JPH05342933A
JPH05342933A JP4153171A JP15317192A JPH05342933A JP H05342933 A JPH05342933 A JP H05342933A JP 4153171 A JP4153171 A JP 4153171A JP 15317192 A JP15317192 A JP 15317192A JP H05342933 A JPH05342933 A JP H05342933A
Authority
JP
Japan
Prior art keywords
alloy
wire
outer tube
primary
plating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4153171A
Other languages
Japanese (ja)
Inventor
Tomonori Yamada
知礼 山田
Hisaki Sakamoto
久樹 坂本
Kiyoshi Yamada
清 山田
Yasuzo Tanaka
靖三 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP4153171A priority Critical patent/JPH05342933A/en
Publication of JPH05342933A publication Critical patent/JPH05342933A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To improve critical current value characteristics of a superconductive wire by forming an Sn-included Cu plating layer for restricting diffusion of an Sn component on the surface of a primary composite body. CONSTITUTION:Billets of Cu-Sn alloy in which the other parts than Sn, Ti comprises Cu are formed to be a cylindrical body, an Nb rod is inserted into the cylindrical body, extrusion work is applied, and groove roll rolling work and die drawing work are applied in order for forming a primary composite body of a hexagonal wire comprising a core part of Nb and alloy matrix. The surface of the hexagonal wire is degreased with alcohol, it is then cleaned with sulfur, and it is immersed in an electroless plating bath. The surface of the hexagonal wire is thus coated with a Cu plating layer. This comprises Cu-Sn alloy, and stabilized copper at a center of an outer tube and a cylinder enclosing its circumference are disposed, and the hexagonal wire is stacked between the outer tube and the cylinder. An HIP is then applied to provide a secondary composite body.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はNb3 Sn系化合物超電
導線の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing Nb 3 Sn compound superconducting wire.

【0002】[0002]

【従来の技術】ブロンズ法で製造される内部安定型のN
3 Sn系化合物超電導線は、概ね、図4で示したよう
な断面構造になっている。すなわち、中心に安定化銅3
が位置し、その外側にTaやNbのような材料から成る
拡散防止バリア層4が前記安定化銅3の外周面と一体に
なった状態で位置し、その外側には超電導体であるNb
3 Sn化合物を主成分とするバンドル部5が前記拡散防
止バリア層2の外周面と一体になった状態で位置し、そ
してその外側をCu−Sn合金から成る外管6が前記バ
ンドル部5の外周面と一体化した状態で被覆している。
2. Description of the Related Art An internally stable N produced by the bronze method
The b 3 Sn-based compound superconducting wire has a cross-sectional structure as shown in FIG. That is, stabilized copper 3 at the center
Is located on the outer side of the stabilized copper 3 and a diffusion prevention barrier layer 4 made of a material such as Ta or Nb is integrated with the outer peripheral surface of the stabilized copper 3, and on the outer side thereof is a superconductor Nb.
3 The bundle portion 5 containing Sn compound as a main component is located integrally with the outer peripheral surface of the diffusion preventing barrier layer 2, and the outer tube 6 made of Cu-Sn alloy is provided outside the bundle portion 5 of the bundle portion 5. The outer peripheral surface is covered in an integrated manner.

【0003】この超電導線は次のようにして製造され
る。まず、Cu−Sn合金の例えば円柱ブロックに1個
または複数個の孔を穿設し、この孔の中にNbから成る
芯材を挿入する。このとき、目標とする超電導特性との
関係で、Nb芯材の断面積とCu−Sn合金ブロックの
断面積との間の比率が適宜に選定される。
This superconducting wire is manufactured as follows. First, one or a plurality of holes are formed in, for example, a cylindrical block of Cu-Sn alloy, and a core material made of Nb is inserted into the holes. At this time, the ratio between the cross-sectional area of the Nb core material and the cross-sectional area of the Cu-Sn alloy block is appropriately selected in relation to the target superconducting property.

【0004】ついで、この複合ブロックに所定の温度下
で例えば伸線,圧延などの塑性加工を施して所定断面形
状の一次複合体にする。その後、Cu−Sn合金製の外
管を用意し、その中心に安定化銅を配置し、更に、安定
化銅と一次複合体との相互反応を防止することを目的と
してその外側に拡散防止バリアとして機能する材料を配
置し、前記外管の断面内に形成されている環状部分に前
記した一次複合体を充填し、全体に所定温度での塑性加
工を施して伸線する。
Then, the composite block is subjected to plastic working such as wire drawing and rolling at a predetermined temperature to form a primary composite having a predetermined sectional shape. After that, an outer tube made of Cu-Sn alloy is prepared, a stabilizing copper is arranged in the center thereof, and a diffusion prevention barrier is provided on the outer side thereof for the purpose of preventing mutual reaction between the stabilizing copper and the primary complex. A material functioning as is disposed, the annular portion formed in the cross section of the outer tube is filled with the above-mentioned primary composite, and the whole is subjected to plastic working at a predetermined temperature and drawn.

【0005】ついで、この得られた線材を所定の温度で
加熱してNbとSnの間に拡散熱処理を施す。この過程
で、芯材であるNbとその周囲に位置するCu−Sn合
金は密着一体化すると同時にCu−Sn合金に含まれて
いるSnが所定の反応率でNbと拡散反応して超電導体
であるNb3 Sn化合物が生成し、バンドル層が形成さ
れる。その結果、図1で示したような断面構造の超電導
線が製造される。
Next, the wire thus obtained is heated at a predetermined temperature to perform a diffusion heat treatment between Nb and Sn. In this process, Nb, which is the core material, and the Cu—Sn alloy located around it are closely integrated, and at the same time, Sn contained in the Cu—Sn alloy diffuses and reacts with Nb at a predetermined reaction rate to form a superconductor. A certain Nb 3 Sn compound is produced, and a bundle layer is formed. As a result, a superconducting wire having a sectional structure as shown in FIG. 1 is manufactured.

【0006】[0006]

【発明が解決しようとする課題】ところで、上記した超
電導線の製造方法には次のような問題がある。一次複合
体を安定化銅や拡散防止バリアと共にCu−Sn合金の
外管に充填して一次複合体におけるNbとSnの反応を
進める場合、この外管に近接する一次複合体において
は、外管に含まれているSn成分が他の個所よりも過剰
になっている関係でNbとSnの反応率は大きくなる。
また、安定化銅の近辺では、一次複合体のSn成分が拡
散防止バリアと反応することがあり、本来、一次複合体
のNbと反応してNb3 Snを生成すべきSn成分の量
が不足することになる。
The method of manufacturing the superconducting wire described above has the following problems. When the outer tube of a Cu—Sn alloy is filled with the primary composite together with stabilized copper and a diffusion barrier to promote the reaction between Nb and Sn in the primary composite, the outer tube is provided in the primary composite close to the outer composite. The reaction rate of Nb and Sn becomes large because the Sn component contained in is excessive compared to other places.
In addition, in the vicinity of the stabilized copper, the Sn component of the primary complex may react with the diffusion barrier, and the amount of the Sn component that should originally react with Nb of the primary complex to produce Nb 3 Sn is insufficient. Will be done.

【0007】すなわち、形成されたバンドル層におい
て、外管側では相対的にNb3 Sn化合物の生成割合が
多くなり、安定化銅側では相対的にNb3 Sn化合物の
生成割合が少なくなり、全体の断面で、超電導体である
Nb3 Sn化合物が均一に分布していないことになる。
そのため、得られた超電導線の外側部分では電流容量が
高くなり、中心部側では電流容量が低くなってしまう。
[0007] That is, in the formed bundle layer, the rate of formation of relatively Nb 3 Sn compound is increased in the outer pipe side, the rate of formation of relatively Nb 3 Sn compound is reduced in the stabilizing copper side, the whole In this section, the Nb 3 Sn compound that is the superconductor is not uniformly distributed.
Therefore, the current capacity becomes high in the outer portion of the obtained superconducting wire and becomes low in the central portion side.

【0008】このような問題に対しては、充填した一次
複合体とCu−Sn合金の外管の間にSnの拡散を防止
する別のバリア層を介在させることが考えられる。しか
し、この構造の超電導線では、外管を溶解して超電導線
を相互に接続しようとした場合、上記した別のバリア層
が露出するので、接続が阻害されるという問題を避け得
ない。
To solve such a problem, it is considered that another barrier layer for preventing the diffusion of Sn is interposed between the filled primary composite and the outer tube of the Cu--Sn alloy. However, in the superconducting wire having this structure, when the outer tube is melted and the superconducting wires are connected to each other, the above-mentioned another barrier layer is exposed, so that the problem of obstructing the connection cannot be avoided.

【0009】また、一次複合体のマトリックスとして用
いるCu−Sn合金に更にPを添加してSnの拡散を抑
制することも考えられるが、しかし、そのP添加のCu
−Sn合金は激しく加工硬化を起こし、また再結晶温度
も高いので、この合金を一次複合体のマトリックスにす
ることは適切ではない。本発明は、従来のブロンズ法に
よるNb3 Sn系化合物超電導線の製造方法における上
記した問題を解決し、生成するNb3 Sn化合物の分布
が線の断面内で均一であり、したがって高い電気容量を
実現することができるNb3 Sn系化合物超電導線の製
造方法の提供を目的とする。
It is also possible to further add P to the Cu-Sn alloy used as the matrix of the primary composite to suppress the diffusion of Sn, but the P-added Cu is added.
The -Sn alloy undergoes severe work hardening and also has a high recrystallization temperature, so it is not appropriate to use this alloy as the matrix of the primary composite. The present invention solves the above-mentioned problems in the conventional method for producing a Nb 3 Sn-based compound superconducting wire by the bronze method, and the distribution of the Nb 3 Sn compound to be formed is uniform in the cross section of the wire, and therefore a high electric capacity It is an object of the present invention to provide a method for producing an Nb 3 Sn-based compound superconducting wire that can be realized.

【0010】[0010]

【課題を解決するための手段】上記した目的を達成する
ために、本発明においては、Nbの芯部と、前記芯部を
被包するCu−Sn合金のマトリックスとから成る複数
本の一次複合体を、安定化銅およびその外側に位置する
拡散防止バリアが中心に配置されているCu−Sn合金
外管の中に充填したのち熱間加工を行ない、更に拡散熱
処理を行うNb 3 Sn系化合物超電導線の製造方法にお
いて、前記一次複合体の外周面にはSを含むCuめっき
層が形成されていることを特徴とするNb3 Sn系化合
物超電導線の製造方法が提供される。
[Means for Solving the Problems] To achieve the above-mentioned object.
Therefore, in the present invention, the Nb core and the core are
A plurality of Cu-Sn alloy matrix to be encapsulated
Book primary composites located on stabilized copper and on the outside
Cu-Sn alloy centered on diffusion barrier
After filling the inside of the outer tube, hot working is performed
Nb to process 3For the production method of Sn-based compound superconducting wire
And Cu plating containing S on the outer peripheral surface of the primary composite.
Nb characterized in that a layer is formed3Sn compound
A method for manufacturing a superconducting wire is provided.

【0011】本発明方法の場合、Cu−Sn合金の外管
内に充填する一次複合体の表面に後述する処理を施すこ
とを除いては、前記した従来のブロンズ法と変わること
はない。すなわち、本発明方法においては、一次複合体
の表面にSを含むCuめっき層が形成される。
The method of the present invention is the same as the above-mentioned conventional bronze method except that the surface of the primary composite body filled in the outer tube of the Cu--Sn alloy is subjected to the treatment described below. That is, in the method of the present invention, a Cu plating layer containing S is formed on the surface of the primary composite.

【0012】ここで、SはSnの拡散を抑制する働きを
する。したがって、一次複合体をCu−Sn合金の外管
内に充填すると、各一次複合体の間にはこのCuめっき
層が介在することになる。そのため、前記した拡散熱処
理を行うと、このCuめっき層に含まれているSが、一
次複合体のマトリックス(Cu−Sn合金)のSn成分
が外部に拡散していくことと、例えば外管の近くでは外
管に含まれているSnが一次複合体のマトリックス内に
拡散してくることを抑制する。その結果、それぞれの一
次複合体では、外部のSn成分の量に関係なく、自らの
マトリックスと自らのNb芯材との間でNb3 Sn化合
物が生成することになる。
Here, S functions to suppress the diffusion of Sn. Therefore, when the primary composite is filled in the outer tube of the Cu—Sn alloy, the Cu plating layer is interposed between the primary composites. Therefore, when the diffusion heat treatment described above is performed, S contained in the Cu plating layer causes the Sn component of the matrix (Cu-Sn alloy) of the primary composite to diffuse to the outside and, for example, in the outer tube. In the vicinity, Sn contained in the outer tube is prevented from diffusing into the matrix of the primary complex. As a result, in each primary complex, an Nb 3 Sn compound is formed between its own matrix and its Nb core material, regardless of the amount of external Sn component.

【0013】このCuめっき層は次のようにして形成さ
れる。まず、熱間加工によって製造された一次複合体の
表面を硫酸を用いて洗浄する。この洗浄により、熱間加
工時に表面に付着した油汚れや、また熱間加工の過程で
加工歪み除去のために行う中間焼鈍時に表面に形成され
る酸化層などが除去される。
This Cu plating layer is formed as follows. First, the surface of the primary composite body manufactured by hot working is washed with sulfuric acid. By this cleaning, oil stains adhering to the surface during hot working, and an oxide layer formed on the surface during intermediate annealing for removing working strain during the hot working are removed.

【0014】ついで、一次複合体を例えば硫酸銅系の無
電解めっき浴に浸漬する。一次複合体のマトリックス表
面に存在するSn成分とめっき浴のCuイオンとの間で
イオン交換が起こり、マトリックス表面にはCuめっき
層が形成される。このとき、上記洗浄時にマトリックス
表面に付着している硫酸根,めっき浴中の硫酸根などの
S成分は、めっき層やマトリックスの原子空孔にトラッ
プして、固溶状態で取り込まれる。
Next, the primary composite is immersed in a copper sulfate-based electroless plating bath, for example. Ion exchange occurs between the Sn component existing on the matrix surface of the primary composite and Cu ions in the plating bath, and a Cu plating layer is formed on the matrix surface. At this time, S components such as sulfate radicals adhering to the surface of the matrix at the time of cleaning and sulfate radicals in the plating bath are trapped in atomic vacancies in the plating layer and matrix and taken in in a solid solution state.

【0015】用いる無電解めっき浴としては、格別限定
されるものではないが、例えば、金属塩として硫酸銅,
還元剤としてホルマリン,錯化剤としてロッセル塩,ア
ルカリ剤として水酸化ナトリウムを含む組成のフェーリ
ング氏液をあげることができる。また、このCuめっき
層におけるS成分の濃度が低すぎると、そのめっき層は
Snの拡散防止機能が減退してしまい、またその濃度が
高すぎると、表面にピットが発生してくるので、S濃度
は通常5〜100ppmの範囲となるように管理するこ
とが好ましい。
The electroless plating bath to be used is not particularly limited, but for example, copper sulfate as a metal salt,
Fehling's solution containing formalin as a reducing agent, Rossel salt as a complexing agent, and sodium hydroxide as an alkaline agent can be mentioned. Further, if the concentration of the S component in this Cu plating layer is too low, the diffusion preventing function of Sn in the plating layer will deteriorate, and if the concentration is too high, pits will occur on the surface. It is preferable to control the concentration so that it is usually in the range of 5 to 100 ppm.

【0016】このS濃度の管理は、一次複合体の洗浄時
に用いる硫酸の濃度や、無電解めっき浴の組成などを適
宜に選択することによって行うことができる。更に、形
成するCuめっき層の厚みは0.1〜1μm程度であるこ
とが好ましい。厚みが0.1μmより薄いときは、拡散防
止機能が弱くなり、また1μmより厚くなると、拡散防
止機能が強くなりすぎるからである。
The control of the S concentration can be performed by appropriately selecting the concentration of sulfuric acid used for cleaning the primary composite, the composition of the electroless plating bath, and the like. Further, the thickness of the Cu plating layer to be formed is preferably about 0.1 to 1 μm. This is because if the thickness is less than 0.1 μm, the diffusion preventing function becomes weak, and if it is more than 1 μm, the diffusion preventing function becomes too strong.

【0017】[0017]

【発明の実施例】Sn14.3重量%,Ti0.22重量
%,残部がCuから成るCu−Sn合金のビレットを外
径200mm,内径113.6mmの筒状体に加工した。この
円筒内に直径113.0mmのNbロッドを挿入し、全体に
温度680℃で押出加工を施し、更に、溝ロール圧延,
ダイス伸線を順次施して、図1の断面図で示したよう
に、Nbの芯部1と上記合金のマトリックス2とから成
り、対辺距離が2.0mmの6角線(一次複合体)とした。
この6角線では、芯部1とマトリックス2との面積比は
2.0で芯部のNbの20%が未反応状態で残るように設
計されている。
BEST MODE FOR CARRYING OUT THE INVENTION A billet of Cu-Sn alloy having Sn14.3% by weight, Ti0.22% by weight, and the balance being Cu was formed into a cylindrical body having an outer diameter of 200 mm and an inner diameter of 113.6 mm. An Nb rod with a diameter of 113.0 mm was inserted into this cylinder, and the whole was extruded at a temperature of 680 ° C.
As shown in the cross-sectional view of FIG. 1, dies were sequentially drawn, and a hexagonal wire (primary composite) having a core portion 1 of Nb and a matrix 2 of the above alloy and having an opposite side distance of 2.0 mm was formed. did.
In this hexagonal line, the area ratio between the core 1 and the matrix 2 is
At 2.0, it is designed so that 20% of Nb in the core remains unreacted.

【0018】この6角線の表面をまずアルコール脱脂
し、ついで、比重1.22,濃度13.0%の硫酸で洗浄し
たのち、組成が、硫酸銅5g/l,ロッシェル塩25g
/l,ホルマリン10ml/l,水酸化ナトリウム7g
/lである無電解めっき浴中に30分間浸漬した。6角
線の表面は厚み0.5μmのCuめっき層で被覆された。
Sn13.0重量%のCu─Sn合金から成り、外径20
0mm,内径180mmの外管の中心に、直径89mmの安定
化銅とその周囲を被包する厚み1.5mmの円筒(組成:N
b)を配置したのち、外管との間に上記した6角線をス
タックした。
The surface of the hexagonal wire was first degreased with alcohol and then washed with sulfuric acid having a specific gravity of 1.22 and a concentration of 13.0%, and the composition was 5 g / l of copper sulfate and 25 g of Rochelle salt.
/ L, formalin 10ml / l, sodium hydroxide 7g
It was immersed for 30 minutes in an electroless plating bath of 1 / l. The surface of the hexagonal wire was covered with a Cu plating layer having a thickness of 0.5 μm.
Made of Sn13.0 wt% Cu-Sn alloy with an outer diameter of 20
In the center of an outer tube with a diameter of 0 mm and an inner diameter of 180 mm, a stabilized copper with a diameter of 89 mm and a cylinder with a thickness of 1.5 mm enclosing the stabilized copper (composition: N
After arranging b), the above hexagonal wire was stacked between the outer tube and the outer tube.

【0019】ついで、全体に、温度600℃,圧力15
00気圧で2時間のHIPを行なって二次複合体にし
た。この二次複合体のバンドル部における6角線の複合
状態を図2に示した。各6角線は互いに密着して複合し
ている。このバンドル部の断面において、ある6角線の
中心Aと隣の6角線の中心A’との間につき、法で元素
分析を行った。その結果を図3に示した。
Next, the temperature is 600 ° C. and the pressure is 15
HIP was performed at 00 atm for 2 hours to form a secondary complex. The composite state of hexagonal lines in the bundle portion of this secondary composite is shown in FIG. The hexagonal lines are in close contact with each other and are compounded. In the cross section of this bundle portion, elemental analysis was performed by a method between the center A of a certain hexagonal line and the center A ′ of the adjacent hexagonal line. The results are shown in Fig. 3.

【0020】図4から明らかなように、6角線の密着界
面ではS成分の濃度が高く、かつSn成分の濃度は低く
なっている。上記した二次複合体を温度680℃で押出
し、更に、溝ロール圧延とダイス伸線を行なって、図4
で示した断面構造で線径0.7mmの線材にした。この線材
に温度700℃で3時間の熱処理を行ったのち長さ50
mmのストレートサンプルとし、温度4.2Kにおいて、1
0T,12T,14Tの磁場中でその臨界電流値(A)
を測定した。比較のために、一次複合体にCuめっき層
を形成しない場合についても実施例と同様にして線径0.
7mmの線材を製造し、その臨界電流値も測定した。
As is clear from FIG. 4, the concentration of the S component is high and the concentration of the Sn component is low at the close contact interface of the hexagonal line. The above-mentioned secondary composite was extruded at a temperature of 680 ° C., and further, groove roll rolling and die wire drawing were carried out, and the result shown in FIG.
A wire rod having a wire diameter of 0.7 mm having the cross-sectional structure shown in FIG. After heat-treating this wire at a temperature of 700 ° C for 3 hours, the length is 50
mm straight sample, 1 at temperature 4.2K
Its critical current value (A) in 0T, 12T, 14T magnetic field
Was measured. For comparison, when the Cu plating layer was not formed on the primary composite, the wire diameter was 0.
A 7 mm wire rod was manufactured and its critical current value was also measured.

【0021】以上の結果を表1に示した。The above results are shown in Table 1.

【0022】[0022]

【表1】 表のデータから明らかなように、本発明方法で製造した
線材は、従来のそれに比べて、臨界電流値特性が優れて
いる。
[Table 1] As is clear from the data in the table, the wire manufactured by the method of the present invention has excellent critical current value characteristics as compared with the conventional wire.

【0023】ついで、上記2種類の線材につき、外管近
辺のバンドル部に位置する6角線,拡散防止バリア近辺
のバンドル部に位置する6角線のそれぞれにおいて、N
bとSnの反応率を、残留Nbの断面積と生成したNb
3 Sn層の断面積との比として算出した。本発明の線材
では、外管近辺の反応率は平均して約90%,バリヤ近
辺の反応率は平均して約80%であった。比較例の場
合、外管近辺の反応率は約100%,バリヤ近辺の反応
率は平均して約75%であった。
Next, regarding each of the above-mentioned two types of wire rods, each of the hexagonal wire located in the bundle part near the outer tube and the hexagonal wire located in the bundle part near the diffusion barrier is N
The reaction rate between b and Sn is determined by the cross-sectional area of residual Nb
3 Calculated as a ratio with the cross-sectional area of the Sn layer. In the wire of the present invention, the reaction rate near the outer tube was about 90% on average, and the reaction rate near the barrier was about 80% on average. In the case of the comparative example, the reaction rate near the outer tube was about 100%, and the reaction rate near the barrier was about 75% on average.

【0024】このように、本発明方法で製造した超電導
線は、バンドル部におけるNb3 Sn化合物の生成は非
常に均一になっている。
As described above, in the superconducting wire manufactured by the method of the present invention, the formation of the Nb 3 Sn compound in the bundle portion is extremely uniform.

【0025】[0025]

【発明の効果】以上の説明で明らかなように、本発明方
法によれば、一次複合体の表面にはSn成分の拡散を抑
制するSn含有Cuめっき層が形成されているので、N
3 Sn化合物の生成はバンドル部の径方向で均一化す
る。そのため、得られた超電導線の臨界電流値特性は向
上する。また、Cuめっき層の働きで、塑性加工時にお
ける一次複合体相互の密着性が向上して伸線加工性は良
好になる。
As is apparent from the above description, according to the method of the present invention, since the Sn-containing Cu plating layer for suppressing the diffusion of the Sn component is formed on the surface of the primary composite, N
The formation of the b 3 Sn compound is made uniform in the radial direction of the bundle portion. Therefore, the critical current value characteristics of the obtained superconducting wire are improved. In addition, the function of the Cu plating layer improves the adhesion between the primary composites during plastic working and improves wire drawability.

【図面の簡単な説明】[Brief description of drawings]

【図1】一次複合体の断面図である。1 is a cross-sectional view of a primary composite.

【図2】本発明方法で製造した二次複合体のバンドル部
の一部断面図である。
FIG. 2 is a partial cross-sectional view of a bundle portion of a secondary composite manufactured by the method of the present invention.

【図3】本発明方法で複合した一次複合体相互間の断面
における元素分析の結果を示すグラフである。
FIG. 3 is a graph showing a result of elemental analysis in a cross section between primary composites composited by the method of the present invention.

【図4】内部安定型超電導線の断面図である。FIG. 4 is a cross-sectional view of an internal stable superconducting wire.

【符号の説明】[Explanation of symbols]

1 Cu−Sn合金のマトリックス 2 Nbの芯材 3 安定化銅 4 拡散防止バリヤ 5 バンドル部 6 Cu−Sn合金の外管 1 Matrix of Cu-Sn alloy 2 Core material of Nb 3 Stabilized copper 4 Diffusion barrier 5 Bundle part 6 Cu-Sn alloy outer tube

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田中 靖三 東京都千代田区丸の内2丁目6番1号 古 河電気工業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yasuzo Tanaka 2-6-1, Marunouchi, Chiyoda-ku, Tokyo Furukawa Electric Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 Nbの芯部と、前記芯部を被包するCu
−Sn合金のマトリックスとから成る複数本の一次複合
体を、安定化銅およびその外側に位置する拡散防止バリ
アが中心に配置されているCu−Sn合金外管の中に充
填したのち熱間加工を行ない、更に拡散熱処理を行うN
3 Sn系化合物超電導線の製造方法において、前記一
次複合体の外周面にはSを含むCuめっき層が形成され
ていることを特徴とするNb3 Sn系化合物超電導線の
製造方法。
1. A core of Nb and Cu encapsulating the core.
-Sn alloy matrix and a plurality of primary composites are filled into a Cu-Sn alloy outer tube having a stabilized copper and an outer diffusion barrier located at the center thereof, and then hot working. N, which is followed by diffusion heat treatment
In b 3 manufacturing method of Sn-based compound superconducting wire, manufacturing method of Nb 3 Sn compound superconducting wire on the outer peripheral surface of the primary complex, characterized in that it is formed Cu plating layer containing S.
JP4153171A 1992-06-12 1992-06-12 Manufacture of nb3sn compound superconductive wire Pending JPH05342933A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4153171A JPH05342933A (en) 1992-06-12 1992-06-12 Manufacture of nb3sn compound superconductive wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4153171A JPH05342933A (en) 1992-06-12 1992-06-12 Manufacture of nb3sn compound superconductive wire

Publications (1)

Publication Number Publication Date
JPH05342933A true JPH05342933A (en) 1993-12-24

Family

ID=15556609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4153171A Pending JPH05342933A (en) 1992-06-12 1992-06-12 Manufacture of nb3sn compound superconductive wire

Country Status (1)

Country Link
JP (1) JPH05342933A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004015163A3 (en) * 2002-08-05 2004-04-08 Mtu Aero Engines Gmbh Method for the production of a ceramic fiber with a metal coating
KR100748444B1 (en) * 2006-02-23 2007-08-10 한국기계연구원 Method and apparatus of forming stabilizer for superconducting wire using electroless plating
CN114429857A (en) * 2020-10-29 2022-05-03 东莞市铧美电子有限公司 Diffusion-proof treatment process for alloy material iron core

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004015163A3 (en) * 2002-08-05 2004-04-08 Mtu Aero Engines Gmbh Method for the production of a ceramic fiber with a metal coating
KR100748444B1 (en) * 2006-02-23 2007-08-10 한국기계연구원 Method and apparatus of forming stabilizer for superconducting wire using electroless plating
CN114429857A (en) * 2020-10-29 2022-05-03 东莞市铧美电子有限公司 Diffusion-proof treatment process for alloy material iron core

Similar Documents

Publication Publication Date Title
CA1036337A (en) Method of manufacturing an intermetallic superconductor
JPH0377608B2 (en)
GB1561751A (en) Superconductor composite and method of making the same
US4224735A (en) Method of production multifilamentary intermetallic superconductors
JPH0768605B2 (en) Nb (bottom 3) Method for manufacturing Sn-based superconducting wire
JPS6215967B2 (en)
JPS5823110A (en) Method of producing nb3sn superconductive wire material
JPH05342933A (en) Manufacture of nb3sn compound superconductive wire
JP3866969B2 (en) Manufacturing method of Nb (3) Sn superconducting wire
JP3736425B2 (en) Manufacturing method of oxide superconducting multi-core wire
RU2815890C1 (en) Blank for producing long superconducting wire based on nb3sn
JPH04277416A (en) Manufacture of nb3sn superconducting wire
JPS602728B2 (en) Method for manufacturing compound composite superconductor
JPH04138630A (en) Manufacture of nb3sn superconducting wire
JPH03274612A (en) Manufacture of nb3 sn superconductive wire
JPH0492316A (en) Manufacture of compound linear material
JPS6113508A (en) Method of producing low copper ratio nb3sn superconductive wire
JPS63102115A (en) Manufacture of superconductive alloy wire material
JPH0636331B2 (en) Nb (bottom 3) A1 compound superconducting wire manufacturing method
JPH0737445A (en) Compound superconductive wire
Xu et al. Development of internal-tin diffusion multifilamentary Nb/sub 3/Sn conductors including hydrostatic extrusion
JPH0350368B2 (en)
JPS6358715A (en) Manufacture of nb3sn multi-core superconductor
JPS59191213A (en) Method of producing compound composite superconductive conductor
JPS58189908A (en) Method of producing fibrous dispersion type nb3sn superconductive wire material