JPH05341148A - Method for adjusting axis of polarization of polarization keeping optical fiber and optical component - Google Patents

Method for adjusting axis of polarization of polarization keeping optical fiber and optical component

Info

Publication number
JPH05341148A
JPH05341148A JP14599992A JP14599992A JPH05341148A JP H05341148 A JPH05341148 A JP H05341148A JP 14599992 A JP14599992 A JP 14599992A JP 14599992 A JP14599992 A JP 14599992A JP H05341148 A JPH05341148 A JP H05341148A
Authority
JP
Japan
Prior art keywords
polarization
optical fiber
maintaining optical
image
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14599992A
Other languages
Japanese (ja)
Inventor
▲英▼▲華▼ ▲黄▼
Eika Kou
Shigefumi Yamazaki
成史 山崎
Fumio Suzuki
文生 鈴木
Ryozo Yamauchi
良三 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP14599992A priority Critical patent/JPH05341148A/en
Publication of JPH05341148A publication Critical patent/JPH05341148A/en
Pending legal-status Critical Current

Links

Landscapes

  • Mechanical Coupling Of Light Guides (AREA)

Abstract

PURPOSE:To enable accurate adjusting of the axis of polarization even with such a polarization keeping optical fiber that the difference in specific refraction between its stress applied portion and its clad is small by enabling adjusting of the axis of polarization while observing an image by the use of a camera via an objective lens, the image being formed by directly transmitted light. CONSTITUTION:A polarization keeping optical fiber 5 in which the difference in specific refraction between a stress applied portion and a clad is 0.3% or less is rotated on its axis and is photographed by a camera 2 via an objective lens 3 to observe an image which light transmitted through the polarization keeping optical fiber 5 and across the diameter of the fiber forms and the polarization keeping optical fiber 5 is fixed at an angle at which said image coincides with that of the stress applied portion 2 of the polarization keeping optical fiber 5, so as to adjust the axis of polarization of the polarization keeping optical fiber 5.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は偏波保持光ファイバを用
いて光ファイバカプラなどの光部品を製造する際に必要
な偏波軸合わせ方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polarization axis alignment method required when manufacturing an optical component such as an optical fiber coupler using a polarization maintaining optical fiber.

【0002】[0002]

【従来の技術】偏波保持光ファイバからなる光ファイバ
カプラは光通信、および光センサの分野で不可欠のもの
となっているが、偏波保持光ファイバを用いた光ファイ
バカプラを製造する場合は、複数の偏波保持光ファイバ
のファイバのコアの軸合わせに加えて、その内部の応力
付与部の偏波軸合わせすることが必要である。
2. Description of the Related Art An optical fiber coupler composed of a polarization maintaining optical fiber is indispensable in the fields of optical communication and optical sensors. However, when manufacturing an optical fiber coupler using a polarization maintaining optical fiber, In addition to the axial alignment of the cores of the plurality of polarization-maintaining optical fibers, it is necessary to align the polarization axes of the stress imparting portion inside the cores.

【0003】一般に偏波保持光ファイバの偏波軸合わせ
方法としては、従来よりプロフィール法が用いられてい
る。この方法は、偏波軸合わせする偏波保持光ファイバ
を回転しつつ、この偏波保持光ファイバの径方向の透過
光が形成する、明暗の縞模様の画像(以下、プロフィー
ルという)を、テレビカメラ、画像処理装置などを用い
て検出するものである。
Generally, a profile method has been conventionally used as a polarization axis alignment method for a polarization maintaining optical fiber. In this method, while rotating a polarization-maintaining optical fiber whose polarization axis is aligned, a bright and dark striped image (hereinafter referred to as a profile) formed by transmitted light in the radial direction of the polarization-maintaining optical fiber is displayed on a television. It is detected using a camera, an image processing device, or the like.

【0004】すなわち、偏波保持光ファイバ内のクラッ
ドと応力付与部は、その屈折率が異なるので、偏波保持
光ファイバの径方向の透過光の強度分布は、クラッドと
応力付与部の境界で変化する。したがってこの透過光
が、ファイバに対して光源の反対側に形成する像は縞模
様となる。この観測プロフィールを、上記テレビカメラ
を通して画像処理装置に送り、予め所望のファイバ角度
における像として、コントローラ内に記憶された標準プ
ロフィール、例えば0゜、90゜と比較、分析する。そ
して、観測プロフィールと標準プロフィールが一致する
ところで上記偏波保持光ファイバの回転を止めて、固定
する。
That is, since the cladding and the stress applying portion in the polarization maintaining optical fiber have different refractive indexes, the intensity distribution of transmitted light in the radial direction of the polarization maintaining optical fiber is at the boundary between the cladding and the stress applying portion. Change. Therefore, the image formed by this transmitted light on the side opposite to the light source with respect to the fiber has a striped pattern. This observation profile is sent to the image processing apparatus through the television camera and compared with a standard profile stored in the controller, for example, 0 ° and 90 ° as an image at a desired fiber angle, and analyzed. Then, when the observation profile and the standard profile match, the rotation of the polarization maintaining optical fiber is stopped and fixed.

【0005】そしてさらに上記と同様の操作をもう1本
の偏波保持光ファイバで繰り返し行なうことにより、2
本の偏波保持光ファイバの偏波軸合わせができる。この
方法は、応力付与部とクラッドとの比屈折率差が、0.
8〜1.0%といった大きな差をもつ偏波保持光ファイ
バに対して有効である。その理由は、比屈折率差が大き
いと、上記標準プロフィールは非常に際立った特徴を示
すからである。
Then, the same operation as described above is repeated with another polarization-maintaining optical fiber.
The polarization axes of the two polarization-maintaining optical fibers can be aligned. In this method, the relative refractive index difference between the stress applying portion and the cladding is 0.
This is effective for a polarization maintaining optical fiber having a large difference of 8 to 1.0%. The reason for this is that with a large relative index difference, the standard profile shows very distinctive features.

【0006】[0006]

【発明が解決しようとする課題】ところで、応力付与部
とクラッドとの比屈折率差が低い偏波保持光ファイバか
らなる光ファイバカプラは、光信号のロスが少ないた
め、広く用いられている。しかしながら、応力付与部と
クラッドの比屈折率差が、0.3%以下である偏波保持
光ファイバには、上記の偏波軸合わせ方法は適用できな
い。その原因は、比屈折率差が0.3%以下と小さいた
めに、いずれの角度の場合にも特徴あるプロフィールが
得られないためである。
By the way, an optical fiber coupler composed of a polarization maintaining optical fiber having a low relative refractive index difference between the stress applying portion and the cladding is widely used because it causes little loss of optical signals. However, the above polarization axis alignment method cannot be applied to the polarization maintaining optical fiber in which the relative refractive index difference between the stress applying portion and the cladding is 0.3% or less. This is because the difference in relative refractive index is as small as 0.3% or less, so that a characteristic profile cannot be obtained at any angle.

【0007】本発明は前記事情に鑑みてなされたもの
で、応力付与部とクラッドとの比屈折率差が小さい偏波
保持光ファイバでも、正確に偏波軸合わせが可能である
方法を提供するものである。
The present invention has been made in view of the above circumstances, and provides a method capable of accurately performing polarization axis alignment even in a polarization-maintaining optical fiber having a small relative refractive index difference between the stress applying portion and the cladding. It is a thing.

【0008】[0008]

【課題を解決するための手段】本発明の偏波軸合わせ方
法は、応力付与部とクラッドとの比屈折率差が0.3%
以下である偏波保持光ファイバを中心軸を中心に回転さ
せつつ、対物レンズを介してカメラで撮影し、この偏波
保持光ファイバの径方向に透過する光が形成する像を観
察し、この偏波保持光ファイバ内の2つの応力付与部の
像が一致する角度で、上記偏波保持光ファイバを固定す
ることを前記課題の解決手段とした。
According to the polarization axis aligning method of the present invention, the relative refractive index difference between the stress applying portion and the cladding is 0.3%.
While rotating the polarization-maintaining optical fiber, which is the following, about the central axis, the image is taken by the camera through the objective lens, and the image formed by the light transmitted in the radial direction of the polarization-maintaining optical fiber is observed. Fixing the polarization maintaining optical fiber at an angle at which the images of the two stress applying portions in the polarization maintaining optical fiber coincide with each other is the means for solving the above problems.

【0009】[0009]

【実施例】以下、本発明を詳しく説明する。図1は本発
明を好適に実施するための調整装置の一例を示したもの
である。この装置は、光源1、高感度カメラ2、対物レ
ンズ3、高解像度ビデオモニター4により構成されてい
る。
The present invention will be described in detail below. FIG. 1 shows an example of an adjusting device for suitably implementing the present invention. This device comprises a light source 1, a high-sensitivity camera 2, an objective lens 3, and a high-resolution video monitor 4.

【0010】上記光源1としては、白色光源または赤色
LED光源などが好ましく用いられ、反射鏡やレンズな
どと組み合わせて平行光が出射できるものが用いられ
る。
As the light source 1, a white light source or a red LED light source is preferably used, and a light source capable of emitting parallel light in combination with a reflecting mirror or a lens is used.

【0011】また高感度カメラ2としては、可視外波長
の光も検出できるようなCCDカメラなどが好ましく用
いられる。また高感度カメラ2の向きは光源からの光の
光路上に設定されている。そして、軸合わせするファイ
バからの透過光を拡大して撮影するために、上記対物レ
ンズ3が、光源1と高感度カメラ2の間に設置されてい
る。さらにこの高感度カメラ2は、高解像度ビデオモニ
ター4に接続され、高感度カメラ2で撮影した映像を、
高解像度で直接モニターできるようになっている。
As the high-sensitivity camera 2, a CCD camera or the like that can detect light having a wavelength outside the visible range is preferably used. The orientation of the high sensitivity camera 2 is set on the optical path of the light from the light source. Then, the objective lens 3 is installed between the light source 1 and the high-sensitivity camera 2 in order to magnify and photograph the transmitted light from the fiber to be aligned. Furthermore, this high-sensitivity camera 2 is connected to a high-resolution video monitor 4, and images captured by the high-sensitivity camera 2 are
High resolution can be directly monitored.

【0012】次に、図1ないし図4に基づいて、上記調
整装置を用いた偏波保持光ファイバの偏波軸合わせの一
例を説明する。まず、偏波保持光ファイバ5を光源1と
高感度カメラ2の間に設置し、かつ光源1からの出射光
が、上記偏波保持光ファイバ5内を径方向に透過して、
上記高感度カメラ2に達するようにする。
Next, an example of polarization axis alignment of a polarization maintaining optical fiber using the adjusting device will be described with reference to FIGS. 1 to 4. First, the polarization maintaining optical fiber 5 is installed between the light source 1 and the high sensitivity camera 2, and the light emitted from the light source 1 is transmitted through the polarization maintaining optical fiber 5 in the radial direction,
The high-sensitivity camera 2 is reached.

【0013】ついで光源1のスイッチを入れて、偏波保
持光ファイバ5に向けて光を出射するとともに、高感度
カメラ2の焦点を、適当な位置にセットする(後述)。
このような状態で、偏波保持光ファイバ5をその中心軸
を中心に回転させながら、偏波保持光ファイバ5を通し
た透過光を上記高感度カメラ2でとらえ、その映像を上
記高解像度ビデオモニター4により、観察する。
Then, the light source 1 is turned on to emit light toward the polarization-maintaining optical fiber 5, and the focus of the high-sensitivity camera 2 is set to an appropriate position (described later).
In such a state, while rotating the polarization-maintaining optical fiber 5 about its central axis, the transmitted light that has passed through the polarization-maintaining optical fiber 5 is captured by the high-sensitivity camera 2, and the image is captured by the high-resolution video. Observe by monitor 4.

【0014】ここで、偏波保持光ファイバ5としてパン
ダファイバを例にとり、その回転角度と、これに対応す
る高解像度ビデオモニター4上の映像との関係を、図2
ないし図4に示す。これらの図はいずれも(a)が、応
力付与部6、7の両中心軸を含む面8(以下中心面8と
記す)と光源1から出射される光の方向に対して垂直な
面9(以下光源面9と記す)との角度(以下ファイバ角
度と記す)を示し、(b)がこれに対応する高解像度ビ
デオモニター4画面上の映像を示すものである。ここ
で、高感度カメラ2の焦点は、偏波保持光ファイバ4の
中心軸を含み、かつ上記光源面9と平行な面10の近傍
に結ぶようにセットされている。
Here, taking a panda fiber as an example of the polarization-maintaining optical fiber 5, the relationship between the rotation angle and the corresponding image on the high-resolution video monitor 4 is shown in FIG.
Through FIG. In each of these figures, (a) shows a surface 8 including both central axes of the stress applying portions 6 and 7 (hereinafter referred to as a central surface 8) and a surface 9 perpendicular to the direction of light emitted from the light source 1. An angle (hereinafter referred to as a light source surface 9) (hereinafter referred to as a fiber angle) is shown, and (b) shows an image on the screen of the high-resolution video monitor 4 corresponding thereto. Here, the focal point of the high-sensitivity camera 2 is set so as to be in the vicinity of a plane 10 including the central axis of the polarization-maintaining optical fiber 4 and parallel to the light source plane 9.

【0015】図2で示すように、応力付与部6、7の中
心面8と光源面9が平行(ファイバ角度=0゜)の場合
(図2(a))、高解像度ビデオモニター4上の映像にお
いては、応力付与部6の像6’と応力付与部7の像7’
はコア11の像11’を挟んで完全に離れている(図2
(b))。すなわち、応力付与部6、7とクラッド12と
の境界に注目すると、上側の応力付与部像6’の下側の
境界線13と、下側の応力付与部像7’の上側の境界線
14がコアの像11’を挟んで完全に離れている。
As shown in FIG. 2, when the center plane 8 of the stress applying portions 6 and 7 and the light source plane 9 are parallel (fiber angle = 0 °) (FIG. 2 (a)), the high resolution video monitor 4 is mounted. In the image, the image 6 ′ of the stress applying portion 6 and the image 7 ′ of the stress applying portion 7
Are completely separated by the image 11 'of the core 11 (Fig. 2
(b)). That is, focusing on the boundary between the stress applying portions 6 and 7 and the clad 12, the lower boundary line 13 of the upper stress applying portion image 6 ′ and the upper boundary line 14 of the lower stress applying portion image 7 ′. Are completely separated by the core image 11 '.

【0016】また、図3で示すように、応力付与部6、
7の中心面8と光源面9が垂直(ファイバ角度=90
゜)の場合(図3(a))、高解像度ビデオモニター4上
の映像においては、応力付与部6の像6’と応力付与部
7の像7’は中央にコア11の像11’を含んで、完全
に一致している(図3(b))。すなわち、応力付与部
6、7とクラッド12との境界に注目すると、応力付与
部像6’および7’は、各々上側の境界線同士および下
側の境界線同士が完全に一致している。
Further, as shown in FIG. 3, the stress applying portion 6,
7 is perpendicular to the center plane 8 and the light source plane 9 (fiber angle = 90
(Fig. 3 (a)), in the image on the high-resolution video monitor 4, the image 6'of the stress applying part 6 and the image 7'of the stress applying part 7 have an image 11 'of the core 11 in the center. Including, they are in perfect agreement (Fig. 3 (b)). That is, paying attention to the boundary between the stress applying portions 6 and 7 and the clad 12, the stress applying portion images 6 ′ and 7 ′ have the upper boundary lines and the lower boundary lines completely coincide with each other.

【0017】図4(b)は、応力付与部6、7の中心面
8と光源面9のなす角度が45゜の場合(図4(a))の
映像を示している。このファイバ角度では、高解像度ビ
デオモニター4上の映像において、応力付与部6の像
6’の下部と応力付与部7の像7’の上部はコア11の
像11’付近で重なり始めている。このファイバ角度か
ら、さらに偏波保持光ファイバ5を回転させれば、高解
像度ビデオモニター4上で、応力付与部像5’、6’の
重なりが大きくなったり、あるいは離れたりするのが観
察できる。
FIG. 4B shows an image when the angle between the center plane 8 of the stress applying portions 6 and 7 and the light source plane 9 is 45 ° (FIG. 4A). At this fiber angle, in the image on the high-resolution video monitor 4, the lower part of the image 6'of the stress applying part 6 and the upper part of the image 7'of the stress applying part 7 begin to overlap near the image 11 'of the core 11. If the polarization-maintaining optical fiber 5 is further rotated from this fiber angle, it is possible to observe on the high-resolution video monitor 4 that the stress-applied portion images 5'and 6'become larger or apart from each other. ..

【0018】上述の如く、偏波保持光ファイバ5を、そ
の中心軸を中心に回転させると、高解像度ビデオモニタ
ー4画面上で、応力付与部とクラッドの境界線が上下方
向に移動する。そして図3で示したように、高解像度ビ
デオモニター4上で、応力付与部像6’および7’の、
上側の境界線同士および下側の境界線同士が完全に一致
した角度で、この偏波保持光ファイバ5を固定すればよ
い。
As described above, when the polarization-maintaining optical fiber 5 is rotated about its central axis, the boundary line between the stress applying part and the clad moves vertically on the screen of the high resolution video monitor 4. Then, as shown in FIG. 3, on the high resolution video monitor 4, the stress applying portion images 6'and 7 ',
The polarization-maintaining optical fiber 5 may be fixed at an angle such that the upper boundary lines and the lower boundary lines are completely coincident with each other.

【0019】そして、さらに高感度カメラ2の焦点位置
を少しずつずらして、その都度、ビデオモニター4上の
映像を観察しながら、ファイバ角度の微調整を行なうこ
とにより、正確なファイバ角度の調整が可能である。こ
のような方法により、クラッドと応力付与部との比屈折
率差が、0.1〜0.3%の範囲でも偏波保持光ファイ
バの正確な偏波軸合わせが可能である。
Further, the focus position of the high-sensitivity camera 2 is shifted little by little, and the fiber angle is finely adjusted while observing the image on the video monitor 4 each time, so that the fiber angle can be accurately adjusted. It is possible. By such a method, it is possible to accurately align the polarization axes of the polarization-maintaining optical fiber even when the relative refractive index difference between the cladding and the stress applying portion is in the range of 0.1 to 0.3%.

【0020】さらに上記調整装置に、ステッピングモー
ターまたは角度変位センサーと、これらに対応するコン
トローラを統合した装置を用いれば、偏波保持光ファイ
バのの正確な回転角度を知ることができる。すなわち、
このような装置を用いれば、図2ないし図4で示したよ
うにファイバ角度が0゜、45゜、90゜以外の場合
も、そのファイバ角度が容易に計算できるので、偏波保
持光ファイバを所望のファイバ角度に設定することが容
易になる。
Further, if a device in which a stepping motor or an angular displacement sensor and a controller corresponding to them are integrated is used as the adjusting device, an accurate rotation angle of the polarization maintaining optical fiber can be known. That is,
By using such a device, the fiber angle can be easily calculated even when the fiber angle is other than 0 °, 45 ° and 90 ° as shown in FIGS. It becomes easy to set a desired fiber angle.

【0021】上述の方法で、2本の偏波保持光ファイバ
の偏波軸合わせを行なった後に、これらを融着接続し
て、偏波保持光ファイバからなる光ファイバカプラを製
造すればよい。このとき、偏波保持光ファイバを1本ず
つ別々に偏波軸合わせしてもよいし、あるいは2本の偏
光保持光ファイバを、同時に調整装置内にセットして偏
波軸合わせすることもできる。この場合、2本の偏光保
持光ファイバを連続的に回転させ、一方のファイバが調
整して固定した後、もう一方の偏波軸合わせを行なえば
よい。
After the polarization axes of the two polarization-maintaining optical fibers are aligned by the above-described method, they may be fusion-spliced to manufacture an optical fiber coupler made of the polarization-maintaining optical fiber. At this time, the polarization-maintaining optical fibers may be polarization-axis aligned one by one, or the two polarization-maintaining optical fibers may be set in the adjusting device at the same time to perform polarization-axis alignment. .. In this case, two polarization-maintaining optical fibers may be continuously rotated, one fiber may be adjusted and fixed, and then the other polarization axis may be aligned.

【0022】また上述の偏波軸合わせ方法は、パンダフ
ァイバに限らず、これ以外の偏波保持光ファイバに広く
用いることができる。また2本の偏波保持光ファイバか
らなる光ファイバカプラに限らず、3本以上の偏波保持
光ファイバを用いて製造されるいわゆるスターカプラな
どの他の光部品の製造にも応用できる。
The above-mentioned polarization axis alignment method can be widely used not only for the panda fiber but also for other polarization maintaining optical fibers. Further, the invention is not limited to the optical fiber coupler composed of two polarization maintaining optical fibers, and can be applied to the manufacture of other optical components such as a so-called star coupler manufactured by using three or more polarization maintaining optical fibers.

【0023】[0023]

【発明の効果】以上説明したように本発明の偏波保持光
ファイバの偏波軸合わせ方法は、応力付与部とクラッド
との比屈折率差が0.3%以下である偏波保持光ファイ
バを中心軸を中心に回転させつつ、対物レンズを介して
カメラで撮影し、この偏波保持光ファイバの径方向に透
過する光が形成する像を観察し、この偏波保持光ファイ
バ内の2の応力付与部の像が一致する角度で、上記偏波
保持光ファイバを固定するものである。
As described above, according to the polarization maintaining method of the polarization maintaining optical fiber of the present invention, the polarization maintaining optical fiber in which the relative refractive index difference between the stress applying portion and the cladding is 0.3% or less. While rotating around the central axis, a picture is taken with a camera through an objective lens and the image formed by the light transmitted in the radial direction of the polarization maintaining optical fiber is observed. The polarization-maintaining optical fiber is fixed at an angle at which the images of the stress-applying portion of are matched.

【0024】したがって、対物レンズを介したカメラを
用いて、直接透過光の形成する像を観察しながら、偏波
軸合わせを行なうので、応力付与部とクラッドとの比屈
折率差が低い偏波保持光ファイバの場合でも、正確な偏
波軸合わせが可能である。また上述の方法で偏波軸合わ
せした偏波保持光ファイバから製造された本発明の光部
品は、正確に偏波軸合わせされた高品質のものである。
Therefore, since the polarization axes are aligned while directly observing the image formed by the transmitted light using the camera through the objective lens, the polarization with a small relative refractive index difference between the stress applying portion and the clad is obtained. Accurate polarization axis alignment is possible even with a holding optical fiber. Further, the optical component of the present invention manufactured from the polarization maintaining optical fiber whose polarization axes are aligned by the above-mentioned method is of high quality with the polarization axes aligned accurately.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の偏波保持光ファイバの偏波軸合わせ
方法の一実施例を示す概略図である。
FIG. 1 is a schematic view showing an embodiment of a polarization axis aligning method for a polarization maintaining optical fiber according to the present invention.

【図2】 本発明の偏波保持光ファイバの偏波軸合わせ
方法の一実施例を示すもので、(a)は光源面と偏波保
持光ファイバ内の応力付与部の中心面の角度を表し(フ
ァイバ角度=0゜)、(b)はこの角度における透過光
のビデオモニター画面上の映像を表す図である。
FIG. 2 shows an embodiment of a polarization axis aligning method for a polarization maintaining optical fiber according to the present invention, in which (a) shows an angle between a light source plane and a center plane of a stress applying portion in the polarization maintaining optical fiber. (Fiber angle = 0 °), and (b) is a diagram showing an image on the video monitor screen of the transmitted light at this angle.

【図3】 本発明の偏波保持光ファイバの偏波軸合わせ
方法の一実施例を示すもので、(a)は光源面と偏波保
持光ファイバ内の応力付与部の中心面の角度を表し(フ
ァイバ角度=90゜)、(b)はこの角度における透過
光のビデオモニター画面上の映像を表す図である。
FIG. 3 shows an embodiment of a polarization axis aligning method for a polarization maintaining optical fiber according to the present invention, in which (a) shows an angle between a light source surface and a center plane of a stress applying portion in the polarization maintaining optical fiber. (Fiber angle = 90 °), and (b) is a diagram showing an image on the video monitor screen of the transmitted light at this angle.

【図4】 本発明の偏波保持光ファイバの偏波軸合わせ
方法の一実施例を示すもので、(a)は光源面と偏波保
持光ファイバ内の応力付与部の中心面の角度を表し(フ
ァイバ角度=45゜)、(b)はこの角度における透過
光のビデオモニター画面上の映像を表す図である。
FIG. 4 shows an embodiment of a polarization axis aligning method for a polarization maintaining optical fiber according to the present invention, in which (a) shows an angle between a light source surface and a center plane of a stress applying portion in the polarization maintaining optical fiber. In the figure, (fiber angle = 45 °), (b) is a diagram showing an image on the video monitor screen of the transmitted light at this angle.

【符号の説明】[Explanation of symbols]

1…光源、2…カメラ、3…対物レンズ、5…偏波保持
光ファイバ 6、7…応力付与部、6’、7’…応力付与部像
DESCRIPTION OF SYMBOLS 1 ... Light source, 2 ... Camera, 3 ... Objective lens, 5 ... Polarization-maintaining optical fiber 6, 7 ... Stress applying part, 6 ', 7' ... Stress applying part image

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山内 良三 千葉県佐倉市六崎1440番地 藤倉電線株式 会社佐倉工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Ryozo Yamauchi 1440 Rokuzaki, Sakura City, Chiba Prefecture Fujikura Electric Wire Co., Ltd. Sakura Factory

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 応力付与部とクラッドとの比屈折率差が
0.3%以下である偏波保持光ファイバを中心軸を中心
に回転させつつ、対物レンズを介してカメラで撮影し、
この偏波保持光ファイバの径方向に透過する光が形成す
る像を観察し、この偏波保持光ファイバ内の2つの応力
付与部の像が一致する角度で、上記偏波保持光ファイバ
を固定することを特徴とする偏波保持光ファイバの偏波
軸合わせ方法。
1. A polarization-maintaining optical fiber having a relative refractive index difference of 0.3% or less between a stress-applying portion and a clad is rotated around a central axis and photographed by a camera through an objective lens,
The polarization-maintaining optical fiber is fixed by observing the image formed by the light transmitted in the radial direction of the polarization-maintaining optical fiber at an angle where the images of the two stress applying portions in the polarization-maintaining optical fiber coincide with each other. A method for aligning a polarization axis of a polarization maintaining optical fiber, comprising:
【請求項2】 請求項1記載の方法で偏波軸合わせした
偏波保持光ファイバから製造された光部品。
2. An optical component manufactured from a polarization maintaining optical fiber whose polarization axis is aligned by the method according to claim 1.
JP14599992A 1992-06-05 1992-06-05 Method for adjusting axis of polarization of polarization keeping optical fiber and optical component Pending JPH05341148A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14599992A JPH05341148A (en) 1992-06-05 1992-06-05 Method for adjusting axis of polarization of polarization keeping optical fiber and optical component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14599992A JPH05341148A (en) 1992-06-05 1992-06-05 Method for adjusting axis of polarization of polarization keeping optical fiber and optical component

Publications (1)

Publication Number Publication Date
JPH05341148A true JPH05341148A (en) 1993-12-24

Family

ID=15397817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14599992A Pending JPH05341148A (en) 1992-06-05 1992-06-05 Method for adjusting axis of polarization of polarization keeping optical fiber and optical component

Country Status (1)

Country Link
JP (1) JPH05341148A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6952007B2 (en) 2001-05-10 2005-10-04 Fujikura, Ltd. Method for estimating amount of angular disagreement of planes of polarization of polarization-maintaining optical fibers and for connecting polarization-maintaining optical fibers

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6952007B2 (en) 2001-05-10 2005-10-04 Fujikura, Ltd. Method for estimating amount of angular disagreement of planes of polarization of polarization-maintaining optical fibers and for connecting polarization-maintaining optical fibers

Similar Documents

Publication Publication Date Title
JP3168844B2 (en) Splicing method of constant polarization optical fiber
US6287020B1 (en) Observation apparatus and fusion splicer for optical fibers
JP3500850B2 (en) Method and apparatus for observing butted portion of ribbon-type optical fiber
JP4856840B2 (en) Determining the type of optical fiber
JPS59219707A (en) Method for aligning core of single mode optical fiber
JP3654904B2 (en) Connecting optical fiber with twin core and fiber with single core
JPH05341148A (en) Method for adjusting axis of polarization of polarization keeping optical fiber and optical component
JPH0815563A (en) Alignment method in coupling part of optical fiber having non-axisymmetrical refractive index distribution and optical waveguide, optical fiber fixing structure and coupling part
JPH02196204A (en) Method for aligning axis of constant polarization optical fiber
JPH0534646B2 (en)
JPH0453912A (en) Optical axis aligning method for photodetecting module
JPH0360086B2 (en)
JP2014123157A (en) Optical fiber discrimination method and optical fiber fusion splicing method
JPH0235284B2 (en)
JP2005173210A (en) Method for determining rotational reference position of plane of polarization keeping optical fiber and optical fiber fusion-splicing machine
JP4268057B2 (en) Polarization plane optical principal axis determination method for polarization maintaining optical fiber
JP3418296B2 (en) Detecting the amount of misalignment of optical fibers of different diameters
JP2002116014A (en) Method for detection and adjustment of position of stress-giving part in polarization-preserving optical fiber
JP2684075B2 (en) Multi-core optical fiber connection inspection method
JP3045991B2 (en) Optical axis adjustment method for optical components
JPH1026510A (en) Method for detecting position of optical fiber
JP3366728B2 (en) Optical fiber observation equipment
JPS5821709A (en) Connecting method for single mode optical fiber
JPS6139006A (en) Method and apparatus for exciting optical fiber
JP2000241123A (en) Very small dimension measuring apparatus