JPH05340790A - Method and instrument for measuring boundary level of sediment - Google Patents

Method and instrument for measuring boundary level of sediment

Info

Publication number
JPH05340790A
JPH05340790A JP15163692A JP15163692A JPH05340790A JP H05340790 A JPH05340790 A JP H05340790A JP 15163692 A JP15163692 A JP 15163692A JP 15163692 A JP15163692 A JP 15163692A JP H05340790 A JPH05340790 A JP H05340790A
Authority
JP
Japan
Prior art keywords
light
transmitted
window
liquid
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15163692A
Other languages
Japanese (ja)
Inventor
Kozo Maeda
孝三 前田
Mamoru Inaba
護 稲葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP15163692A priority Critical patent/JPH05340790A/en
Publication of JPH05340790A publication Critical patent/JPH05340790A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Abstract

PURPOSE:To always measure the boundary level of liquid-like spongy sediments by separating light into reflected light and transmitted light through a half mirror and measuring first and second transmitted light quantities, and then, finding the boundary level from the ratio between both light quantities. CONSTITUTION:Laser light La from a laser oscillator 41 is separated into transmitted light (reference light Lb) and reflected light La through a half mirror 42 and the reflected light La is made incident on a cylindrical long object 52 through an exit window 49a and entrance window 49b after the light La is reflected by a reflecting mirror 48a. The laser light attenuated through the object 52 is made incident on a photodetector 46 after the light is reflected by a reflecting mirror 48b. On the other hand, the reference light Lb is made incident on another photodetector 44 after the light La is attenuated through an attenuation filter 43 and the signal of the photoreceptor 44 is outputted as an output signal Oa through an amplifier 45. The signal of the photodetector 46 is outputted as an output signal Ob through another amplifier 47. The gains of the amplifiers 45 and 47 are adjusted in advance so that the signals Oa and Ob can become Ob/Oa=1. An arithmetic section calculates the Ob/Oa and a comparator section finds the boundary level of sediments by comparing the Ob/Oa with a target value previously stored in a setting section.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、タール沈澱槽や下水
の活性汚泥処理におけるフロック沈澱槽などに沈澱する
沈澱物のように、沈澱物が液体状又は海綿状のものであ
る場合の界面レベルを常時測定する沈澱物の界面レベル
測定方法及びその装置に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to an interfacial level when a precipitate is liquid or spongy, such as a precipitate deposited in a tar sedimentation tank or a floc sedimentation tank in the treatment of activated sludge of sewage. TECHNICAL FIELD The present invention relates to a method for measuring an interface level of a precipitate and a device therefor for constantly measuring the temperature.

【0002】[0002]

【従来の技術】例えば、コークス炉ガスからタールを抽
出する場合、ガスを吸収液に通気させて、この吸収液を
沈澱槽に導きタールと吸収液との比重の違いを利用して
タールを沈澱させて吸収液と分離することにより、ター
ルを抽出するようになっている。また、下水処理では河
川や海に放流できない有害物をバクテリアで処理し、凝
集させて得た凝集性微生物(フロックという)を沈澱さ
せて上澄みを放流させる活性汚泥法が広く実施されてい
る。この場合も、処理状況を把握し、有害物を放流しな
いようにするためには、沈澱したフロックの界面レベル
を常時監視しておく必要がある。このような沈澱物の界
面を測定する装置(この装置は沈澱物界面計とも呼ばれ
る)として、「水底のスラッジ表面深さ測定器」の名称
で考案された実願昭63−26271号(従来例とい
う)が開示されている。
2. Description of the Related Art For example, in the case of extracting tar from coke oven gas, the gas is passed through an absorbing liquid, and the absorbing liquid is introduced into a precipitation tank to precipitate the tar by utilizing the difference in specific gravity between the tar and the absorbing liquid. The tar is extracted by separating the absorbing solution from the absorbing solution. In the sewage treatment, an activated sludge method is widely practiced in which harmful substances that cannot be released into rivers or the sea are treated with bacteria to precipitate flocculating microorganisms (called flocs) obtained by flocculation and the supernatant is discharged. Also in this case, it is necessary to constantly monitor the interfacial level of the precipitated flocs in order to grasp the treatment status and prevent the harmful substances from being discharged. As a device for measuring the interface of such a precipitate (this device is also referred to as a precipitate interfacial meter), Japanese Patent Application No. 63-26271 (conventional example) was devised under the name of "sludge surface depth measuring device at the bottom of the water". That is disclosed).

【0003】図5は上記の従来例の要部構成を示す模式
説明図である。図にみみられるように、検出部1は、防
水容器4aに収納した投光噐3とこれに対向して所定間
隔をもって設けられた防水容器4bに収納した光検出器
2とが、取り付け枠6によって固定された主構造となっ
ている。なお、5a,5bはそれぞれ投光窓,受光窓で
あり、各防水容器4a,4bを気密にすると共に、いず
れも投光器3から出射した光を光検出器で受光するため
の透明な平板窓である。そして、投光器3及び光検出器
2に給電を行い、光検出器2が出力する信号を伝送する
ケーブル7,8と、光検出器2が受光状態にあるか否か
を表示する表示器10がケーブル7,8に接続されてい
る。9はケーブル7,8に設けられた深さ目盛りであ
り、11,12は表示器10に設けられたそれぞれ電流
計,ブザーである。
FIG. 5 is a schematic explanatory view showing the structure of the main part of the above conventional example. As can be seen in the figure, the detection unit 1 includes a light projecting device 3 housed in a waterproof container 4a and a photodetector 2 housed in a waterproof container 4b which is opposed to the light projecting device 3 and has a predetermined interval. The main structure is fixed by. Numerals 5a and 5b are a light projecting window and a light receiving window, respectively, which are airtight in the respective waterproof containers 4a and 4b, and both are transparent flat windows for receiving the light emitted from the light projector 3 by a photodetector. is there. Then, the cables 7 and 8 for supplying power to the projector 3 and the photodetector 2 and transmitting the signal output from the photodetector 2 and the indicator 10 for displaying whether or not the photodetector 2 is in the light receiving state are provided. It is connected to cables 7 and 8. Reference numeral 9 is a depth scale provided on the cables 7 and 8, and 11 and 12 are an ammeter and a buzzer provided on the display 10.

【0004】以上の構成において、検出部1を水面から
垂直に沈降させながら、常時光検出器2によって投光器
3からの光を受光してその透過光量を測定すると、図示
しない水底に存在するスラッジの上澄み部分の領域では
電流計11によって所定の電流値が保持されている。し
かし、検出器1がスラッジの表面領域に突入すると、前
記の透過光量が急激に減少してスラッジの存在が表示さ
れブザー等で告知すると共に、深さ目盛り9によってス
ラッジの表面までの深さを読み取る事ができるようにな
っている。
In the above construction, when the light from the projector 3 is constantly received by the photodetector 2 and the amount of transmitted light is measured while the detector 1 is vertically settled from the water surface, sludge existing on the bottom of the water is not shown. In the region of the supernatant portion, the ammeter 11 holds a predetermined current value. However, when the detector 1 plunges into the surface area of the sludge, the amount of the transmitted light sharply decreases and the presence of sludge is displayed and a buzzer or the like is notified, and the depth scale 9 indicates the depth to the surface of the sludge. You can read it.

【0005】[0005]

【発明が解決しようとする課題】上記のように測定対象
物が液体状や海綿状の沈澱物の場合では、砂泥のような
固形沈澱物とは異なるので、重り等を沈めて沈澱物表面
に到達したときの深さを測る機械的方法では重りが沈澱
物表面で停止しないので適用できない。また、超音波を
沈澱槽の深さ方向に照射して沈澱物表面空の反射波を検
出してその照射から反射波検出までの時間によって沈澱
物表面までの深さを測定する方法も、沈澱物表面からの
反射波が得られないため適用できない。
When the object to be measured is a liquid or spongy precipitate as described above, it is different from a solid precipitate such as sand and mud. It cannot be applied by the mechanical method of measuring the depth when the weight reaches the point because the weight does not stop at the surface of the precipitate. In addition, a method of irradiating ultrasonic waves in the depth direction of the precipitation tank to detect reflected waves on the surface of the precipitate and measuring the depth to the surface of the precipitate by the time from the irradiation to the detection of reflected waves Not applicable because the reflected wave from the object surface cannot be obtained.

【0006】そこで、上述のような従来例の装置が考案
されているが、この方法では光検知器の受光量の絶対値
で判定するため光源の劣化によって光源からの光量が減
少したときにはその影響で判定を誤ることや、防水容器
の汚れによっても光検出器のの受光量が減少し同様に判
定を誤るという問題がある。また、光源と受光機器を防
水容器に収納して液体中に浸漬させることから防水容器
への液体の侵入などで絶縁不良となり、その機能を果さ
なくなる可能性も高い。こういったことから、上記の従
来例の装置は、常設型の沈澱物界面計として適用できな
い。
Therefore, the conventional device as described above has been devised, but in this method, the judgment is made by the absolute value of the amount of light received by the photodetector. Therefore, when the amount of light from the light source decreases due to deterioration of the light source, its influence is affected. However, there is a problem in that the amount of light received by the photodetector decreases even if the waterproof container is soiled, and the determination is similarly erroneous. Further, since the light source and the light receiving device are housed in the waterproof container and immersed in the liquid, there is a high possibility that the liquid may enter the waterproof container, resulting in poor insulation and the function thereof being lost. For this reason, the above-mentioned conventional apparatus cannot be applied as a permanent sediment interferometer.

【0007】本発明は以上のような課題を解決するため
になされたもので、液体状の沈澱物や海綿状の沈澱物の
界面レベルを常時測定する方法及び装置を提供すること
を目的とするものである。
The present invention has been made to solve the above problems, and an object of the present invention is to provide a method and apparatus for constantly measuring the interfacial level of a liquid-like precipitate or a spongy precipitate. It is a thing.

【0008】[0008]

【課題を解決するための手段】本発明に係る沈澱物の界
面レベル測定方法は、ハーフミラーを用いて光を反射光
と透過光に分離し、内部に光の往路及び復路を有する筒
状長尺物の一方の端部から反射光を入射し、筒状長尺物
の他方の端部に設けた凹部の内側壁面に対向して設置し
た反射光の出射窓及び入射窓が形成する検出部を被測定
液体中に浸漬し、透過光による第一の透過光量を測定す
ると共に、検出部の被測定液体を透過する反射光による
第二の透過光量を測定し、第一の透過光量と第二の透過
光量の比の値から被測定液体中の沈澱物の界面レベルを
求めるものである。また、本発明に係わる沈澱物の界面
レベル測定装置は、光の反射.透過を含む送光.受光を
行う光学系及び光検出器を有し、一方の端部から出射し
た光の反射光が他方の端部の凹部の壁に対向して設けた
光の出射窓と入射窓からなる検出部で被測定液体を透過
するように導く光の往路とこの透過光を一方の端部の光
検出器に導く復路とを内部に有する筒状長尺物と、凹部
の近傍に出射窓と入射窓の汚れを被測定液体の振動によ
って防止するように設けられた超音波振動子と、筒状長
尺物の被測定液体中への浸漬深さを変更するための駆動
装置と、浸漬深さを測定する検出器と、筒状長尺物の先
端に光の出射窓と入射窓を透過した光の光量とハーフミ
ラーを透過した光の光量の比の設定手段と、筒状長尺物
の先端に出射窓と入射窓を透過した光の光量とハーフミ
ラーを透過した光の光量の比の演算手段と、設定値と演
算値との比較手段と、この比較結果から筒状長尺物の浸
漬深さを変更する出力手段とを有する制御装置とからな
るものである。
A method for measuring an interfacial level of a precipitate according to the present invention comprises a half-mirror that separates light into reflected light and transmitted light, and has a cylindrical length having a forward light path and a backward light path inside. A detection unit that receives reflected light from one end of a scale and is formed by a reflection light emission window and an incident window that are installed so as to face the inner wall surface of the concave portion provided at the other end of the tubular elongated body. Is immersed in the liquid to be measured, and the first transmitted light amount by the transmitted light is measured, and the second transmitted light amount by the reflected light transmitted through the liquid to be measured of the detection unit is measured, and the first transmitted light amount and the first The interface level of the precipitate in the liquid to be measured is determined from the value of the ratio of the two transmitted light amounts. In addition, the apparatus for measuring the interfacial level of precipitates according to the present invention can detect light reflection. Light transmission including transmission. A detection unit that has an optical system for receiving light and a photodetector, and that is provided with a light emission window and an incident window provided so that the reflected light of the light emitted from one end faces the wall of the recess at the other end. A cylindrical elongated object having therein a forward path of light guided so as to pass through the liquid to be measured and a return path for guiding the transmitted light to a photodetector at one end, and an exit window and an entrance window near the recess. The ultrasonic transducer provided to prevent the contamination of the liquid due to the vibration of the liquid to be measured, the drive device for changing the immersion depth of the cylindrical long object in the liquid to be measured, and the immersion depth A detector to measure, a means for setting the ratio of the amount of light transmitted through the exit window and the incident window of light to the end of the cylindrical elongated object and the amount of light transmitted through the half mirror, and the distal end of the cylindrical elongated object. The calculation means of the ratio of the amount of light transmitted through the exit window and the incident window to the amount of light transmitted through the half mirror, and the ratio between the set value and the calculated value Means and, is made of this comparison a control device and an output means for changing the immersion depth of the cylindrical long object.

【0009】[0009]

【作用】本発明においては、光の往路及び復路を有する
筒状長尺物の一方の端部から反射光を入射し、筒状長尺
物の他方の端部に設けた凹部内側壁面に対向して設置し
た反射光の出射窓及び入射窓が形成する検出部を被測定
液体中に浸漬し、透過光による第一の透過光量を測定す
ると共に、検出部の被測定液体を透過する反射による第
二の透過光量を測定し、第一の透過光量と第二の透過光
量の比の値から被測定液体中の沈澱物の界面レベルを求
めるのであるが、タールやフロックは、タールを吸収さ
せる吸収液や下水の処理水(以下総称して母液という)
との比重の違いを利用して沈澱分離させるが、母液と沈
澱物との間には明確な境界面があるわけではなく、境界
付近には母液中のタールやフロックの濃度が徐々に高く
なる領域がある。液面からこの領域にいたるまでは光の
透過率はほとんど変化せず、境界付近の母液中のタール
やフロックの濃度が徐々に高くなる領域では光の透過率
はその濃度が高くなるにともなって低下し、最終的には
タールやフロックの沈澱物の透過率となる。そこで、沈
澱物と母液の境界付近の母液中のタールやフロックの濃
度が徐々に高くなる領域における光の透過率の変化を利
用し、この光の透過率が変化する領域を母液と沈澱物の
界面レベルと定義して、沈澱槽深さ方向の光の透過率を
測定すると母液と沈澱物の界面レベルが求められる。
In the present invention, the reflected light is made incident from one end of the tubular elongated object having the outgoing and return paths of light, and is opposed to the inner wall surface of the recess provided at the other end of the tubular elongated object. By immersing the detection part formed by the emission window and the incident window of the reflected light installed in the liquid to be measured, the first transmitted light amount by the transmitted light is measured, and by the reflection transmitted through the liquid to be measured by the detection part. The second transmitted light amount is measured, and the interface level of the precipitate in the liquid to be measured is determined from the value of the ratio of the first transmitted light amount and the second transmitted light amount. Tar or floc absorbs tar. Absorbed liquid and sewage treated water (hereinafter collectively referred to as mother liquor)
However, there is no clear boundary between the mother liquor and the precipitate, and the concentration of tar and flocs in the mother liquor gradually increases near the boundary. There is an area. From the liquid surface to this region, the light transmittance hardly changed, and in the region near the boundary where the concentration of tar and flock in the mother liquor gradually increased, the light transmittance increased as the concentration increased. And ultimately the permeability of tar and floc precipitates. Therefore, by utilizing the change in the light transmittance in the region where the concentration of tar and flocs in the mother liquor near the boundary between the precipitate and the mother liquor gradually increases, the region in which the light transmittance changes is defined as the mother liquor and the precipitate. By defining the interface level and measuring the light transmittance in the depth direction of the precipitation tank, the interface level between the mother liquor and the precipitate can be obtained.

【0010】[0010]

【実施例】本発明の一実施例を模式図面を参照しながら
説明する。図1はタール沈澱槽を例にとって示した沈澱
物界面計の構成説明図である。また、図2は検出器の動
作を説明する図、図3は沈澱槽の液面から深さ方向の光
の透過度を説明する線図、図4は制御装置の動作説明図
である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to the schematic drawings. FIG. 1 is a configuration explanatory view of a sediment interferometer, which shows a tar precipitation tank as an example. 2 is a diagram for explaining the operation of the detector, FIG. 3 is a diagram for explaining the transmittance of light in the depth direction from the liquid surface of the settling tank, and FIG. 4 is a diagram for explaining the operation of the control device.

【0011】図1において、21はタールの沈澱槽、2
2はタールの吸収液、23は沈澱タール、24は検出
器、25は検出器駆動装置、26は検出器位置検出器、
27は制御装置、52は筒状長尺物である。沈澱槽21
には上層にタールの吸収液22と下層に沈澱タール23
が分離している。検出器24を吸収液22の表面から吸
収液の光の透過率を測定しながら検出器駆動装置25で
検出器24を下方に移動させ、制御装置27で予め設定
した光の透過率と検出器24で測定した光の透過率を比
較し、制御装置27で予め設定した光の透過率と検出器
24で測定した光の透過率が一致する液面からの深さで
検出器24を停止させ、このときの検出器位置検出器2
6の測定値を吸収液22と沈澱タール23の界面として
図示しない表示器に表示する。
In FIG. 1, 21 is a tar settling tank, 2
2 is tar absorption liquid, 23 is precipitated tar, 24 is detector, 25 is detector drive device, 26 is detector position detector,
Reference numeral 27 is a control device, and 52 is a cylindrical long object. Settling tank 21
The upper layer is the tar absorption liquid 22 and the lower layer is the precipitated tar 23.
Are separated. While the detector 24 measures the light transmittance of the absorbing liquid from the surface of the absorbing liquid 22, the detector driving device 25 moves the detector 24 downward, and the controller 27 preset the light transmittance and the detector. The light transmittance measured at 24 is compared, and the detector 24 is stopped at the depth from the liquid surface where the light transmittance preset at the control device 27 and the light transmittance measured at the detector 24 match. , Detector position detector 2 at this time
The measured value of 6 is displayed as an interface between the absorbent 22 and the precipitated tar 23 on a display not shown.

【0012】図2において、41はレーザ発信器、42
はハーフミラー、43は減衰フィルタ、44は参照光の
受光素子、45は受光素子44の信号の増幅器、46は
測定光の受光素子、47は受光素子46の信号の増幅器
で投受光部51に収納されている。また、48a,48
bは反射ミラー、49aは出射窓、49bは入射窓、5
0出射窓49aと入射窓49bを液の振動によって洗浄
するための超音波振動子で、出射窓49aと入射窓49
が設けられている凹部53に収納されている。Laはレ
ーザ発信器41からの照射光、Lbはハーフミラー42
を透過したレーザ光の参照光、Lcはハーフミラー42
を反射したレーザ光、Ldは測定光である。そして、O
aは参照光を受光したときの増幅器45の出力、Obは
測定光Lbを受光したときの増幅器47の出力信号であ
る。
In FIG. 2, 41 is a laser oscillator, and 42 is a laser oscillator.
Is a half mirror, 43 is an attenuation filter, 44 is a light receiving element for reference light, 45 is a signal amplifier for the light receiving element 44, 46 is a light receiving element for measuring light, 47 is an amplifier for the signal of the light receiving element 46, It is stored. Also, 48a, 48
b is a reflection mirror, 49a is an exit window, 49b is an entrance window, 5
An ultrasonic oscillator for cleaning the exit window 49a and the entrance window 49b by the vibration of the liquid.
Are accommodated in the recess 53 provided with. La is the irradiation light from the laser oscillator 41, and Lb is the half mirror 42.
The reference light of the laser light transmitted through, Lc is the half mirror 42
Is the laser light reflected by Ld, and Ld is the measurement light. And O
a is the output of the amplifier 45 when the reference light is received, and Ob is the output signal of the amplifier 47 when the measurement light Lb is received.

【0013】以上の構成において、レーザ発信器41か
ら照射されたレーザ光Laはハーフミラー42でレーザ
光Laの光量の1/2程度を参照光Lbとして透過し、
残りの1/2程度を反射光Lcとして反射する。反射光
Lcは筒状長尺物52を光路として反射ミラー48aで
反射し出射窓49aから出射される。出射窓49aと入
射窓49bの間即ち凹部53には図1で示した吸収液2
2が満たされているから、出射窓49aから出射したレ
ーザ光は吸収液22中を通過して入射窓49bから筒状
長尺物52に入射する。レーザ光吸収液22を通過する
とき吸収液22の光の透過率が小さいためレーザ光の光
量は減衰し、この減衰したレーザ光は反射ミラー48b
で反射し、測定光Ldとして筒状長尺物52を通り受光
素子46に入射する。一方、参照光Lbは減衰フィルタ
43デ減衰されたのち受光素子44に入射する。受光素
子44の信号は増幅器45に入力され参照光の出力信号
Oaとして出力される。同様に、受光素子46の信号は
増幅器47に入力され測定光の出力信号Obとして出力
される。
In the above-mentioned structure, the laser light La emitted from the laser oscillator 41 is transmitted by the half mirror 42 as the reference light Lb by about half of the light quantity of the laser light La.
The remaining about 1/2 is reflected as the reflected light Lc. The reflected light Lc is reflected by the reflection mirror 48a using the cylindrical elongated object 52 as an optical path and is emitted from the emission window 49a. Between the exit window 49a and the entrance window 49b, that is, in the recess 53, the absorbing liquid 2 shown in FIG.
Since 2 is filled, the laser light emitted from the emission window 49a passes through the absorbing liquid 22 and enters the cylindrical elongated object 52 from the incidence window 49b. Since the light transmittance of the absorbing liquid 22 is small when passing through the laser light absorbing liquid 22, the light amount of the laser light is attenuated, and the attenuated laser light is reflected by the reflection mirror 48b.
And is incident on the light receiving element 46 as the measurement light Ld through the cylindrical elongated object 52. On the other hand, the reference light Lb enters the light receiving element 44 after being attenuated by the attenuation filter 43. The signal of the light receiving element 44 is input to the amplifier 45 and output as the output signal Oa of the reference light. Similarly, the signal of the light receiving element 46 is input to the amplifier 47 and output as the output signal Ob of the measurement light.

【0014】この場合、減衰フィルター43は図1の検
出器24を吸収液22に浸漬させない状態で受光素子4
6と受光素子44の受光量がほぼ同じになるような光の
透過率に選定されており、検出器24を吸収液22に浸
漬させない状態で、増幅器45と増幅器47のゲインを
Ob/Oa=1となるように調節している。また、出射
窓49aと入射窓49bの表面に汚れなどが付着して凹
部53の吸収液やタールの正確な光の減衰量がえられな
くなるのを防止するため、必要に応じて、超音波振動子
50を作動して出射窓49aと入射窓49bの表面を洗
浄している。
In this case, the attenuating filter 43 is used as the light receiving element 4 in a state where the detector 24 of FIG. 1 is not immersed in the absorbing liquid 22.
6 and the light receiving element 44 are set so that the light receiving amounts thereof are substantially the same, and the gains of the amplifier 45 and the amplifier 47 are set to Ob / Oa = with the detector 24 not immersed in the absorbing liquid 22. It is adjusted to be 1. In addition, in order to prevent dirt or the like from adhering to the surfaces of the exit window 49a and the entrance window 49b to prevent accurate absorption of light by the absorbing liquid or tar in the recess 53, ultrasonic vibration may be applied as necessary. The child 50 is operated to clean the surfaces of the exit window 49a and the entrance window 49b.

【0015】図3は図1の沈澱槽21の深さ方向に検出
器24を移動させたときの出力信号OaとObの比Ob
/Oaの測定値をグラフ化したもので、横軸は槽深さ、
縦軸はOa/Obである。図3にみられるように、検出
器24の凹部53が吸収液22の表面に到達するまでO
b/Oaは1であるが、吸収液22に浸漬すると、吸収
液22の光の透過率が小さいためOb/Oaが低下す
る。さらに検出器24を深さ方向に移動させると、徐々
にOb/Oaの値が低下した後急激に0となり、これよ
り下層はOb/Oaの値が0のままとなる。このことか
ら、前述のOb/Oaの値が徐々に低下する領域が吸収
液22と沈澱タール23の界面と判定される。
FIG. 3 shows the ratio Ob of the output signals Oa and Ob when the detector 24 is moved in the depth direction of the settling tank 21 of FIG.
/ Oa is a graph of the measured values, the horizontal axis is the tank depth,
The vertical axis is Oa / Ob. As can be seen from FIG. 3, the recess 53 of the detector 24 reaches the surface of the absorbing liquid 22 until the O
Although b / Oa is 1, when immersed in the absorbing liquid 22, Ob / Oa decreases because the light transmittance of the absorbing liquid 22 is small. When the detector 24 is further moved in the depth direction, the Ob / Oa value gradually decreases and then rapidly becomes 0, and the Ob / Oa value in the lower layer remains 0. From this, it is determined that the region where the Ob / Oa value gradually decreases is the interface between the absorbing liquid 22 and the precipitated tar 23.

【0016】次に、制御装置27の機能について説明す
る。図4において、71,72はA/D変換部、73は
位置データ受信部、74は演算部、75は比較部、76
は設定部である。A/D変換部71には検出器24から
の参照光の出力信号Oaが、A/D変換部72には検出
器24からの測定光の出力信号Obが入力され、それぞ
れをディジタル値に変換する。そして、このディジタル
値は演算部74でOb/Oaの演算を行い比較部75に
送られる。比較部75では予め設定部76に記憶させた
Ob/Oaの目標値とこの目標値に対する不感帯幅と比
較し、例えばOb/Oaの値が目標値に不感帯幅を加え
た値より大きい場合は検出器駆動装置25に対してOb
/Oaの値が目標値となるまで下降指令信号を出力し、
Ob/Oaの値が目標値から不感帯幅を引いた値より小
さい場合は検出器駆動装置25に対してOb/Oaの値
が目標値となるまで上昇指令信号を出力して、検出器2
4をOb/Oaの目標値に対する不感帯幅の範囲で吸収
液22と沈澱タール23の界面レベルの変動に追従させ
るようになっている。検出器24の位置は検出器位置検
出器26で測定し、その測定信号は位置データ受信部7
3に入力され位置データ受信部73からは界面レベルを
示す界面位置信号が精度よく出力される。
Next, the function of the control device 27 will be described. In FIG. 4, 71 and 72 are A / D conversion units, 73 is a position data reception unit, 74 is a calculation unit, 75 is a comparison unit, and 76.
Is a setting unit. The output signal Oa of the reference light from the detector 24 is input to the A / D conversion unit 71, and the output signal Ob of the measurement light from the detector 24 is input to the A / D conversion unit 72, and each is converted into a digital value. To do. Then, this digital value is calculated Ob / Oa by the calculation unit 74 and sent to the comparison unit 75. The comparing unit 75 compares the target value of Ob / Oa stored in advance in the setting unit 76 with the dead band width for this target value. For example, when the Ob / Oa value is larger than the target value plus the dead band width, it is detected. Ob to the drive unit 25
Output the descending command signal until the value of / Oa reaches the target value,
When the Ob / Oa value is smaller than the target value minus the dead band width, the detector driving device 25 outputs an increase command signal until the Ob / Oa value reaches the target value, and the detector 2
4 is adapted to follow the fluctuation of the interface level between the absorbing liquid 22 and the precipitated tar 23 within the dead zone width with respect to the target value of Ob / Oa. The position of the detector 24 is measured by the detector position detector 26, and the measurement signal is measured by the position data receiving unit 7.
3 is input to the position data receiving unit 73, and an interface position signal indicating the interface level is accurately output.

【0017】なお、上記の実施例では、沈澱物がタール
の場合について示したが、本発明は同様な液体状または
海綿状の沈澱物例えば活性汚泥処理槽のフロックのよう
な沈澱物の界面レベルの測定にも適用できることはいう
までもない。
In the above examples, the case where the precipitate is tar is shown, but the present invention shows that the same liquid or sponge-like precipitate, for example, the interfacial level of the precipitate such as flocs in the activated sludge treatment tank is used. It goes without saying that it can also be applied to the measurement of.

【0018】[0018]

【発明の効果】以上のように本発明によれば、タール沈
澱槽のタールや活性汚泥処理で発生するフロックのよう
に、母液と沈澱物との間に明確な境界面がないが、この
境界面付近には母液中のタールやフロックの濃度が徐々
に高くなる領域が存在するような沈澱物の界面レベル
を、沈澱物と母液の境界付近の母液中のタールやフロッ
クの濃度が徐々に高くなる領域における光の透過率の変
化を利用し、かつ検出部の出射窓及び入射窓の随時その
場洗浄を可能としたことにより、前述の光の透過率が変
化する領域を母液と沈澱物の界面レベルと定義して、沈
澱槽の深さ方向の光の透過率を測定することによって、
上記のように定義した沈澱物の界面レベルを常時精度よ
く測定することができる。
As described above, according to the present invention, there is no clear boundary surface between the mother liquor and the precipitate, unlike the tar in the tar settling tank and the flocs generated in the activated sludge treatment. The interface level of the precipitate such that there is a region where the concentration of tar and floc in the mother liquor gradually increases near the surface, and the concentration of tar and floc in the mother liquor near the boundary between the precipitate and mother liquor gradually increases. By utilizing the change in the light transmittance in the region where the light is transmitted and enabling the in-situ cleaning of the exit window and the entrance window of the detection unit at any time, the above-mentioned region in which the light transmittance changes is defined as the mother liquor and the precipitate. By defining the interface level and measuring the light transmittance in the depth direction of the precipitation tank,
The interfacial level of the precipitate defined as described above can always be measured accurately.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の沈澱物界面計の構成説明図
である。
FIG. 1 is a structural explanatory view of a precipitate interface meter according to an embodiment of the present invention.

【図2】本発明の検出器の動作説明図である。FIG. 2 is an operation explanatory diagram of the detector of the present invention.

【図3】本発明の沈澱槽の液面から深さ方向の光の透過
度を説明する線図である。
FIG. 3 is a diagram illustrating the light transmittance in the depth direction from the liquid surface of the precipitation tank of the present invention.

【図4】本発明の制御装置の動作説明図である。FIG. 4 is an operation explanatory diagram of the control device of the present invention.

【図5】従来例の要部構成を示す模式説明図である。FIG. 5 is a schematic explanatory view showing a configuration of a main part of a conventional example.

【符号の説明】[Explanation of symbols]

1 検出部 2 光検出器 3 投光噐 4a,4b 防水容器 5a 投光窓 5b 受光窓 6 取り付け枠 7,8 ケーブル 9 深さ目盛り 10 表示器 11 電流計 12 ブザー 21 沈澱槽 22 吸収液 23 沈澱タール 24 検出器 25 検出器駆動装置 26 検出器位置検出器 27 制御装置 41 レーザ発信器 42 ハーフミラー 43 減衰フィルタ 44,46 受光素子け 45,47 増幅器 48a,48b 反射ミラー 49a 出射窓 49b入 射窓 50 超音波振動子 51 投受光部 52 筒状長尺物 53 凹部 71,72 A/D変換器 73 位置データ受信部 74 演算部 75 比較部 76 設定部 1 Detector 2 Photodetector 3 Light emitting device 4a, 4b Waterproof container 5a Light emitting window 5b Light receiving window 6 Mounting frame 7,8 Cable 9 Depth scale 10 Indicator 11 Ammeter 12 Buzzer 21 Precipitation tank 22 Absorbing liquid 23 Precipitation Tar 24 Detector 25 Detector driving device 26 Detector Position detector 27 Control device 41 Laser oscillator 42 Half mirror 43 Attenuation filter 44,46 Light receiving element only 45,47 Amplifier 48a, 48b Reflecting mirror 49a Emission window 49b Incident window 50 Ultrasonic Transducer 51 Projecting / Receiving Section 52 Cylindrical Long Object 53 Recesses 71, 72 A / D Converter 73 Position Data Receiving Section 74 Computing Section 75 Comparing Section 76 Setting Section

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ハーフミラーを用いて光を反射光と透過
光に分離し、内部に光の往路及び復路を有する筒状長尺
物の一方の端部から前記反射光を入射し、前記筒状長尺
物の他方の端部に設けた凹部内側壁面に対向して設置し
た前記反射光の出射窓及び入射窓が形成する検出部を被
測定液体中に浸漬し、前記透過光による第一の透過光量
を測定すると共に、前記検出部の被測定液体を透過する
前記反射による第二の透過光量を測定し、前記第一の透
過光量と第二の透過光量の比の値から被測定液体中の沈
澱物の界面レベルを求めることを特徴とする沈澱物の界
面レベル測定方法。
1. A half-mirror is used to separate light into reflected light and transmitted light, and the reflected light is made incident from one end of a cylindrical elongated object having a forward path and a backward path of the light therein. The detection part formed by the emission window and the incident window of the reflected light, which is installed so as to face the inner wall surface of the recess provided at the other end of the strip-shaped elongated object, is immersed in the liquid to be measured, and the first part by the transmitted light is used. Along with measuring the amount of transmitted light, to measure the second amount of transmitted light by the reflection that passes through the liquid to be measured of the detection unit, the liquid to be measured from the value of the ratio of the first transmitted light amount and the second transmitted light amount. A method for measuring an interfacial level of a precipitate, comprising: determining an interfacial level of a precipitate in the precipitate.
【請求項2】 光の反射.透過を含む送光.受光を行う
光学系及び光検出器を有し、一方の端部から出射した前
記光の反射光が他方の端部の凹部の壁に対向して設けた
光の出射窓と入射窓からなる検出部で被測定液体を透過
するように導く光の往路とこの透過光を前記一方の端部
の前記光検出器に導く復路とを内部に有する筒状長尺物
と、前記凹部の近傍に前記出射窓と入射窓の汚れを被測
定液体の振動によって防止するように設けられた超音波
振動子と、前記筒状長尺物の前記測定液体中への浸漬深
さを変更するための駆動装置と、前記浸漬深さを測定す
る検出器と、前記筒状長尺物の先端に光の出射窓と入射
窓を透過した光の光量とハーフミラーを透過した光の光
量の比の設定手段と、前記筒状長尺物の先端に前記出射
窓と入射窓を透過した光の光量と前記ハーフミラーを透
過した光の光量の比の演算手段と、設定値と演算値との
比較手段と、この比較結果から前記筒状長尺物の浸漬深
さを変更する出力手段とを有する制御装置とからなるこ
とを特徴とする沈澱物の界面レベル測定装置。
2. Reflection of light. Light transmission including transmission. A detection system that has an optical system for receiving light and a photodetector, and the reflected light of the light emitted from one end is formed of a light emission window and an incident window provided facing the wall of the recess at the other end. And a cylindrical elongated object having therein a forward path of light guided so as to pass through the liquid to be measured at the part and a return path for guiding the transmitted light to the photodetector at the one end, and in the vicinity of the recess. An ultrasonic vibrator provided to prevent contamination of the exit window and the entrance window by vibration of the liquid to be measured, and a drive device for changing the immersion depth of the cylindrical elongated object in the liquid to be measured. A detector for measuring the immersion depth, and a means for setting the ratio of the amount of light transmitted through the emission window and the incident window of light to the tip of the cylindrical elongated object and the amount of light transmitted through the half mirror. , The amount of light transmitted through the emission window and the incident window at the tip of the cylindrical elongated object and transmitted through the half mirror And a control unit having an output unit for changing the immersion depth of the cylindrical long object from the comparison result. And an interfacial level measuring device for the precipitate.
JP15163692A 1992-06-11 1992-06-11 Method and instrument for measuring boundary level of sediment Pending JPH05340790A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15163692A JPH05340790A (en) 1992-06-11 1992-06-11 Method and instrument for measuring boundary level of sediment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15163692A JPH05340790A (en) 1992-06-11 1992-06-11 Method and instrument for measuring boundary level of sediment

Publications (1)

Publication Number Publication Date
JPH05340790A true JPH05340790A (en) 1993-12-21

Family

ID=15522882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15163692A Pending JPH05340790A (en) 1992-06-11 1992-06-11 Method and instrument for measuring boundary level of sediment

Country Status (1)

Country Link
JP (1) JPH05340790A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110456094A (en) * 2018-05-08 2019-11-15 赛多利斯百得液体处理公司 Liquid processing system and method for analyzing suction nozzle state

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110456094A (en) * 2018-05-08 2019-11-15 赛多利斯百得液体处理公司 Liquid processing system and method for analyzing suction nozzle state
JP2019203885A (en) * 2018-05-08 2019-11-28 サートリウス・ビオヒット・リキッド・ハンドリング・オイSartorius Biohit Liquidhandling Oy Liquid handling system and method of analyzing state of chip

Similar Documents

Publication Publication Date Title
AU652553B2 (en) Turbidity measurement
US4622465A (en) Arrangement for determining the presence of specific substances in a liquid
US4637719A (en) Optical measurement of marine conditions
KR100572370B1 (en) Low turbidity turbidity measuring device and its measuring method
US4457624A (en) Suspended sediment sensor
EP0609461A1 (en) Concentration measuring apparatus
EP0340184A3 (en) Method and apparatus for determining the concentration of a substance which is bonded to particles in a flowing medium
JPH05340790A (en) Method and instrument for measuring boundary level of sediment
DE59306505D1 (en) Device for measuring turbidity in aqueous measuring media
JPH0228541A (en) Optical concentration detector
JP2001183354A (en) Ultrasonic concentration meter
JP3021406B2 (en) Water quality measurement sensor and water quality measurement device
SU815619A1 (en) Method of measuring non-uniformity concentration in liquids
JPH02259451A (en) Turbidity meter
JP3031778U (en) Probe type turbidity detector
SE9203834L (en) Method and apparatus for determining the level of gaseous or liquid media in tubes
JPH0921680A (en) Device for determining position of boundary between two media, container using device thereof and detecting method thereof
JPS6391561A (en) Apparatus for measuring blood sedimentation rate
JP2003161690A (en) Aggregation monitoring apparatus
JPH11344443A (en) Highly sensitive turbidimeter for measuring filtered water
JP3446804B2 (en) Sludge interface measuring device
JP3101776B2 (en) Turbidity measuring device
RU1770853C (en) Method of photometrically determining gas content in gas-liquid emulsion
SU1103082A1 (en) Submerged pickup of photocolorimeter
JPS6316685B2 (en)