JPH05340653A - Ice making device - Google Patents

Ice making device

Info

Publication number
JPH05340653A
JPH05340653A JP15340592A JP15340592A JPH05340653A JP H05340653 A JPH05340653 A JP H05340653A JP 15340592 A JP15340592 A JP 15340592A JP 15340592 A JP15340592 A JP 15340592A JP H05340653 A JPH05340653 A JP H05340653A
Authority
JP
Japan
Prior art keywords
refrigerant
supercooling
freezing
storage material
inner pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15340592A
Other languages
Japanese (ja)
Inventor
Shinji Matsuura
伸二 松浦
Yasunobu Okumura
恭伸 奥村
Koji Matsuoka
弘二 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP15340592A priority Critical patent/JPH05340653A/en
Publication of JPH05340653A publication Critical patent/JPH05340653A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE:To prevent reliably the freezing of a cold heat storage material by providing a freezing progress-preventing unit for preventing the progress of freezing to a supercooling generating unit on the way of a circulation path between the supercooling generating unit and a supercooling eliminating unit, forming the freezing progress-preventing unit into a structure of inner and outer double pipes and permitting a high-temperature refrigerant to flow through a space between the inner and the outer pipes. CONSTITUTION:In the ice making device, a supercooling generating unit for supercooling a cold heat storage material in an ice storage tank is connected, via a circulation path, with a supercooling eliminating unit for dissolving a supercooled state of the cold heat storage material supercooled, and a freezing progress-preventing unit is interposed on the way of the circulation path. The freezing progress-preventing unit has an outer pipe 71 and an inner pipe 73 inserted thereinto and spaced apart at a predetermined interval therefrom, and a space between both the pipes 71, 73 is used for a refrigerant passage 77. A high-temperature refrigerant for raising a temperature of the inner pipe 73 is introduced from a refrigerant circulating path into the refrigerant passage 77 through an inlet port 81 and is led out through an outlet port 83 after it flows spirally through the refrigerant passage 77 due to the presence of a spiral member 93 provided on the inner pipe. On the other hand, the cold heat storage material is permitted to flow through the inside of the inner pipe 73 and to exchange heat with the high-temperature refrigerant, thereby preventing the cold heat storage material from being frozen.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、空気調和装置等に使用
する製氷装置に係り、とくに管路の凍結進展防止対策に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ice making device used in an air conditioner or the like, and more particularly to a measure for preventing freezing of a pipeline.

【0002】[0002]

【従来の技術】この種の製氷装置は、特開平4−386
7号公報に開示されているように、蓄氷槽と過冷却生成
冷却器と過冷却解消部とを循環路により順次接続して水
または水溶液である蓄冷材の循環可能な閉回路を形成
し、過冷却生成冷却器で蓄冷材を過冷却し、蓄冷材の過
冷却状態を循環路内の過冷却解消部で解消してスラリー
状の氷化物を生成し、スラリー状の氷化物が混在する蓄
冷材を蓄氷槽まで流通して蓄氷槽に貯溜している。
2. Description of the Related Art This type of ice making device is disclosed in Japanese Patent Laid-Open No. 4-386.
As disclosed in Japanese Patent Publication No. 7, an ice storage tank, a subcooling generation cooler, and a subcooling elimination unit are sequentially connected by a circulation path to form a closed circuit in which a cold storage material that is water or an aqueous solution can be circulated. The supercooling generation cooler supercools the regenerator material, and the supercooling state of the regenerator material is eliminated by the supercooling elimination part in the circulation path to generate a slurry-like iced substance, and the slurry-like iced substance is mixed. The cold storage material is distributed to the ice storage tank and stored in the ice storage tank.

【0003】そして、循環路内で過冷却状態を解消する
ために循環路の管壁に付着した氷化物が上流側の過冷却
生成冷却器にまで進展して過冷却生成冷却器を凍結させ
る事態を防止するため、過冷却生成冷却器と過冷却解消
部との間の循環路には、凍結進展防止部が介設されてい
る。凍結進展防止部は、冷却装置の冷媒回路に接続され
た二重管式構造の熱交換器に構成され、該冷媒回路の冷
媒との熱交換によって循環路を加熱して着氷を融解して
いる。
Then, in order to eliminate the supercooling state in the circulation path, the iced matter attached to the pipe wall of the circulation path propagates to the upstream side supercooling generation cooler and freezes the subcooling generation cooler. In order to prevent the above, a freezing progress prevention unit is provided in the circulation path between the subcooling generation cooler and the subcooling elimination unit. The freezing progress prevention unit is configured in a heat exchanger having a double pipe structure connected to the refrigerant circuit of the cooling device, and heats the circulation path by heat exchange with the refrigerant of the refrigerant circuit to melt the icing ice. There is.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記製
氷装置では、凍結進展防止部の具体的構造は記載されて
おらず、二重管式構造の熱交換器の実用可能な構造を開
発することが望まれていた。
However, in the above-mentioned ice making device, the specific structure of the freezing progress preventing portion is not described, and it is possible to develop a practicable structure of a heat exchanger having a double pipe type structure. Was wanted.

【0005】例えば、二重管の蓄冷材通路の管壁を全領
域にわたって冷媒通路側の冷媒で加温できるようにする
と共に、冷媒通路側の冷媒流れに冷媒温度が低く凍結の
進展を阻止できない滞留部分ができないようにすること
が要請されていた。
For example, the pipe wall of the double pipe cold storage material passage can be heated by the refrigerant on the refrigerant passage side over the entire region, and the refrigerant temperature on the refrigerant passage side is low so that the progress of freezing cannot be prevented. It was requested that the stagnant part be prevented.

【0006】本発明は、かかる点に鑑みてなされたもの
であって、凍結進展防止部の具体的な加温構造を提供す
ることを目的としている。
The present invention has been made in view of the above points, and an object thereof is to provide a specific heating structure of the freeze-prevention preventing portion.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、請求項1に係る発明が講じた手段は、内管内を蓄冷
材の通路に、内管と外管との間を冷媒通路に形成し、内
管を高温冷媒で加温して内管内面における凍結進展を防
止するものである。
In order to achieve the above object, the means of the invention according to claim 1 is to provide a passage for a regenerator material in the inner pipe and a refrigerant passage between the inner pipe and the outer pipe. It is formed, and the inner pipe is heated with a high temperature refrigerant to prevent the freezing progress on the inner surface of the inner pipe.

【0008】具体的には、請求項1に係る発明が講じた
手段は、図2に示すように、スラリー状に氷化された蓄
冷材(W)を貯溜するための蓄氷槽(21)と、該蓄冷
材(W)を過冷却するための過冷却生成部(25)と、
過冷却された蓄冷材(W)の過冷却状態を解消するため
の過冷却解消部(27)とが循環路(51)により蓄冷
材(W)の循環可能に接続され、上記過冷却生成部(2
5)と過冷却解消部(27)との間の循環路(29)に
は、冷凍回路(R)に接続されて該冷凍回路(R)の冷
媒熱量により上記過冷却生成部(25)への凍結の進展
を防止する凍結進展防止部(31)が介設されている製
氷装置を前提としている。
Specifically, as shown in FIG. 2, the means taken by the invention according to claim 1 is, as shown in FIG. 2, an ice storage tank (21) for storing a cold storage material (W) iced in a slurry form. And a supercooling generator (25) for supercooling the regenerator material (W),
A supercooling elimination section (27) for eliminating the supercooled state of the supercooled regenerator material (W) is connected by a circulation path (51) so that the regenerator material (W) can circulate. (2
The circulation path (29) between the subcooling elimination unit (5) and the subcooling elimination unit (27) is connected to the refrigeration circuit (R), and the refrigerant heat quantity of the refrigeration circuit (R) causes the supercooling generation unit (25). It is assumed that the ice making device is provided with a freezing progress preventing section (31) for preventing the freezing progress.

【0009】そして、該凍結進展防止部(31)は、上
記外管(71)内に該外管(71)と所定の間隔を存し
て内管(73)が挿入され、該外管(71)と内管(7
3)との間が冷媒通路(77)に形成された構成として
いる。
The freezing extension preventing portion (31) has an inner tube (73) inserted into the outer tube (71) at a predetermined distance from the outer tube (71), and the outer tube (71) is inserted into the outer tube (71). 71) and inner tube (7
3) is formed in the refrigerant passage (77).

【0010】さらに、上記外管(71)の一端部には上
記内管(73)を加温する高温冷媒を上記冷凍回路
(R)から冷媒通路(77)に流入させる流入口(8
1)が、他端部には上記冷媒通路(77)より冷媒を上
記冷凍回路(R)に流出させる流出口(83)がそれぞ
れ形成された構成としている。
Further, at one end of the outer pipe (71), an inflow port (8) for introducing a high temperature refrigerant for heating the inner pipe (73) into the refrigerant passage (77) from the refrigeration circuit (R).
1), the other end is formed with an outlet (83) for letting out the refrigerant from the refrigerant passage (77) to the refrigeration circuit (R).

【0011】その上、上記内管(73)の両端には、蓄
冷材(W)が上記内管(73)内を流通するように上記
循環路(51)が接続された構成としている。
In addition, the circulation path (51) is connected to both ends of the inner pipe (73) so that the regenerator material (W) flows through the inner pipe (73).

【0012】また、請求項2に係る発明が講じた手段
は、請求項1記載の製氷装置において、らせん部材によ
り、冷媒通路にらせん流を形成して内管全体を均一に加
温するものである。
Further, the means taken by the invention according to claim 2 is, in the ice making device according to claim 1, for forming a spiral flow in the refrigerant passage by the spiral member to uniformly heat the entire inner pipe. is there.

【0013】具体的には、請求項2に係る発明が講じた
手段は、図2に示すように、請求項1記載の製氷装置に
おいて、冷媒通路(77)には、流入口(81)から流
出口(83)へ向かって冷媒が旋回して流れるようにら
せん部材(93)が配設された構成としている。
Specifically, the means taken by the invention according to claim 2 is, as shown in FIG. 2, in the ice making device according to claim 1, in the refrigerant passage (77), from the inlet (81). The spiral member (93) is arranged so that the refrigerant swirls and flows toward the outflow port (83).

【0014】[0014]

【作用】上記の構成により、請求項1に係る発明では、
過冷却生成部(25)で過冷却された蓄冷材(W)は、
過冷却解消部(27)で過冷却状態が解消されて、氷化
物が生成する。氷化物が循環路(29)の管壁に付着し
て凍結が上流側の凍結進展防止部(31)に向かって進
展する。
With the above structure, in the invention according to claim 1,
The regenerator material (W) supercooled by the supercooling generation unit (25) is
The supercooling elimination section (27) eliminates the supercooled state and produces a frozen product. The iced substance adheres to the pipe wall of the circulation path (29), and the freezing progresses toward the freezing-progression preventing portion (31) on the upstream side.

【0015】一方、凍結進展防止部(31)は、内管
(73)内が蓄冷材通路に形成され、外管(71)と内
管(73)との間(管外側空間)が冷媒通路(77)に
形成されているので、内管(73)外周を冷媒が加温す
ることになり、氷化物が付着しうる全領域について凍結
の進展が阻止される。
On the other hand, in the freezing progress prevention portion (31), the inside of the inner pipe (73) is formed as a cold storage material passage, and the space between the outer pipe (71) and the inner pipe (73) (outer pipe space) is the refrigerant passage. Since it is formed in (77), the refrigerant heats the outer circumference of the inner tube (73), and the progress of freezing is prevented in the entire region where the iced matter may adhere.

【0016】また、請求項2に係る発明では、らせん部
材(93)により、冷媒通路(77)において流入口
(81)から流出口(83)へ向かって冷媒が旋回して
流れるので、冷媒通路(77)内で冷媒が局所的に滞留
することがなく、内管(73)は均一に加温されて凍結
の進展が完全に阻止される。
Further, in the invention according to claim 2, the spiral member (93) causes the refrigerant to swirl and flow from the inflow port (81) to the outflow port (83) in the refrigerant passage (77). Refrigerant does not locally accumulate in (77), and the inner tube (73) is uniformly heated to completely prevent freezing.

【0017】[0017]

【発明の効果】以上のように、請求項1に係る発明によ
れば、管外側空間に冷媒通路(77)を形成して内管
(73)を加温しているので、凍結が生じ得る全領域を
加温でき、過冷却生成部(25)への凍結の進展を防止
する実用的な加温構造を提供することができ、安定した
連続運転を可能にする また、請求項2に係る発明によれば、らせん部材(9
3)により、内管(73)を均一に加温することがで
き、凍結進展を完全に防止することができる。
As described above, according to the first aspect of the present invention, since the refrigerant passage (77) is formed in the outer space of the pipe to heat the inner pipe (73), freezing may occur. The whole region can be heated, a practical heating structure that prevents the progress of freezing to the supercooling generation part (25) can be provided, and stable continuous operation is possible. According to the invention, the spiral member (9
By 3), the inner tube (73) can be heated uniformly and the freezing progress can be completely prevented.

【0018】[0018]

【実施例】以下、本発明の実施例を図面に基づき説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

【0019】図1〜図3は請求項1および2に係る発明
の実施例を示す。図1は、本実施例は製氷装置(Y)を
備えた空気調和装置の全体構成を示し、室外ユニット
(X)に対して、複数の室内ユニット(A),(A),
…が接続されたいわゆるマルチ形空気調和装置である。
1 to 3 show an embodiment of the invention according to claims 1 and 2. FIG. 1 shows the overall configuration of an air conditioner provided with an ice making device (Y) according to the present embodiment, and a plurality of indoor units (A), (A), with respect to an outdoor unit (X).
... is a so-called multi-type air conditioner connected.

【0020】上記室外ユニット(X)においては、
(1)は第1圧縮機、(11)は第2圧縮機(11)、
(2)は図中実線と図中破線との2方向に切り換わる四
路切換弁、(3)は冷房運転時には凝縮器として暖房運
転時には蒸発器として機能する室外熱交換器、(4)は
冷房運転時には冷媒流量調節弁として機能し、暖房運転
時には冷媒を減圧する減圧機構として機能し、製氷を行
う蓄熱運転時には冷媒圧力を調整する圧力調整手段とし
て機能する室外電動膨脹弁(4)である。
In the outdoor unit (X),
(1) is the first compressor, (11) is the second compressor (11),
(2) is a four-way switching valve that switches in two directions, a solid line in the figure and a broken line in the figure, (3) is an outdoor heat exchanger that functions as a condenser during cooling operation and as an evaporator during heating operation, and (4) is An outdoor electric expansion valve (4) that functions as a refrigerant flow rate control valve during a cooling operation, functions as a pressure reducing mechanism that reduces the pressure of the refrigerant during a heating operation, and functions as a pressure adjusting means that adjusts the refrigerant pressure during a heat storage operation for ice making. ..

【0021】一方、各室内ユニット(A),(A),…
は、同一構成のものが並列に接続されており、(6)は
冷房運転時には減圧機構として機能し、暖房運転時には
冷媒流量調整弁として機能する室内電動膨脹弁、(7)
は冷房運転時には蒸発器として、暖房運転時には凝縮器
として機能する室内熱交換器である。
On the other hand, each indoor unit (A), (A), ...
Are connected in parallel, and (6) is an indoor electric expansion valve that functions as a pressure reducing mechanism during cooling operation and as a refrigerant flow rate adjusting valve during heating operation, (7)
Is an indoor heat exchanger that functions as an evaporator during cooling operation and as a condenser during heating operation.

【0022】そして、上記第1圧縮機(1)と、四路切
換弁(2)と、室外熱交換器(3)と、室外電動膨脹弁
(4)とが順次接続された高熱源側回路(B)と、室外
電動膨脹弁(4)側より各室内ユニットの(A),
(A),…の室内電動膨脹弁(6),(6),…と室内
熱交換器(7),(7),…とが順次接続された利用側
回路(C)とが形成され、高熱源側回路(B)の室外電
動膨脹弁(4)側と利用側回路(C)の室内電動膨脹弁
(6),(6),…側とが接続部(g)において接続さ
れる一方、利用側回路(C)の室内熱交換器(7),
(7),…側は四路切換弁(2)に接続されて、冷媒が
可逆循環して室外空気との熱交換によって得た熱を室内
空気に放出するヒートポンプ作用を有する主冷媒回路
(E)が形成されている。
A high heat source side circuit in which the first compressor (1), the four-way switching valve (2), the outdoor heat exchanger (3), and the outdoor electric expansion valve (4) are sequentially connected. (B) and (A) of each indoor unit from the outdoor electric expansion valve (4) side,
(A), ... Indoor electric expansion valves (6), (6), ... And indoor heat exchangers (7), (7) ,. The outdoor electric expansion valve (4) side of the high heat source side circuit (B) and the indoor electric expansion valves (6), (6), ... Side of the utilization side circuit (C) are connected at the connection portion (g). , Indoor heat exchanger (7) of the user side circuit (C),
The main refrigerant circuit (E) having a heat pump function is connected to the four-way switching valve (2) on the (7), ... Sides, and releases the heat obtained by heat exchange with the outdoor air to the indoor air by reversibly circulating the refrigerant. ) Has been formed.

【0023】また、主冷媒回路(E)には、高熱源側回
路(B)に対して並列に低熱源側回路(H)が接続さ
れ、つまり、低熱源側回路(H)は、一端が第1圧縮機
(1)の吸込側に、他端が上記接続部(g)に接続さ
れ、低熱源側回路(H)には、第1圧縮機(1)側より
第2圧縮機(11)と、熱源側水熱交換器(13)と、
蓄熱冷房運転時に流量調整をする低熱源側電動膨脹弁
(14)とが順次接続されており、該主冷媒回路(E)
と高熱源側回路(B)とにより冷凍回路(R)が形成さ
れている。第1圧縮機(1)の吐出側と第2圧縮機(1
1)の吐出側との間には、第1圧縮機(1)から第2圧
縮機(11)へ冷媒の流入を阻止する逆止弁(17)
と、ピークカット用電磁弁(19)とが並列に接続され
ている。また、上記空気調和装置には、冷媒との熱交換
により冷熱を蓄熱する蓄熱運転と、この蓄熱を利用して
冷房を行う蓄熱冷房運転とを行うための製氷装置(Y)
が配置されている。
The low heat source side circuit (H) is connected in parallel to the high heat source side circuit (B) to the main refrigerant circuit (E), that is, one end of the low heat source side circuit (H) is connected. The other end is connected to the connection part (g) on the suction side of the first compressor (1), and the low heat source side circuit (H) includes the second compressor (11) from the first compressor (1) side. ) And a heat source side water heat exchanger (13),
A low heat source side electric expansion valve (14) for adjusting the flow rate during the heat storage cooling operation is sequentially connected to the main refrigerant circuit (E).
A refrigeration circuit (R) is formed by the high heat source side circuit (B). The discharge side of the first compressor (1) and the second compressor (1
A check valve (17) for blocking the inflow of refrigerant from the first compressor (1) to the second compressor (11) between the discharge side of (1).
And the peak cut solenoid valve (19) are connected in parallel. Further, in the air conditioner, an ice making device (Y) for performing a heat storage operation of storing cold heat by exchanging heat with a refrigerant and a heat storage cooling operation of performing cooling using this heat storage.
Are arranged.

【0024】該製氷装置(Y)は、スラリー状に氷化さ
れた蓄冷材(W)を貯溜して冷熱を蓄熱する蓄氷槽(2
1)と、ポンプ(23)と、冷媒との熱交換によって蓄
冷材(W)を過冷却する過冷却生成部としての過冷却生
成熱交換器(25)と、蓄冷材(W)の過冷却状態を解
消する過冷却解消部(27)とが循環路(29)によっ
て順次接続されて蓄冷材(W)の循環可能な閉回路に形
成されている。蓄冷材(W)としては、水または水溶液
が用いられる。
The ice making device (Y) stores an ice storage tank (2) which stores the cold storage material (W) which has been frozen into a slurry and stores cold heat.
1), a pump (23), a subcooling generation heat exchanger (25) as a subcooling generation unit that supercools the regenerator material (W) by heat exchange with the refrigerant, and a subcooler of the regenerator material (W). The supercooling elimination section (27) for eliminating the state is sequentially connected by the circulation path (29) to form a closed circuit in which the regenerator material (W) can circulate. Water or an aqueous solution is used as the cold storage material (W).

【0025】過冷却生成熱交換器(25)と過冷却解消
部(27)との間の循環路(29)には、過冷却解消部
(27)における過冷却状態の解消によって生成した氷
化物が循環路(29)の管壁に付着して凍結が発生した
場合に過冷却生成熱交換器(25)への凍結進展を防止
するための凍結進展防止部(31)が介設されている。
In the circulation path (29) between the subcooling generation heat exchanger (25) and the subcooling elimination section (27), the iced substances produced by elimination of the supercooled state in the subcooling elimination section (27). Is adhered to the pipe wall of the circulation path (29) and freezing is generated in the subcooling generation heat exchanger (25). ..

【0026】また、ポンプ(23)と過冷却生成熱交換
器(25)との間の循環路(29)には、上記熱源側水
熱交換器(13)が介設されている。該熱源側水熱交換
器(13)は、蓄熱冷房運転時には冷媒と蓄冷材(W)
との熱交換により冷熱を回収する凝縮器として機能する
ように構成されている。
The heat source side water heat exchanger (13) is interposed in the circulation path (29) between the pump (23) and the subcooling generation heat exchanger (25). The heat source side water heat exchanger (13) has a refrigerant and a cold storage material (W) during the heat storage cooling operation.
It is configured to function as a condenser that recovers cold heat by exchanging heat with.

【0027】また、上記過冷却生成熱交換器(25)へ
の冷熱の供給を目的として、上記冷凍回路(R)には過
冷却生成回路(F)が接続されている。該過冷却生成回
路(F)は、流入端(33a)が主冷媒回路(E)の接
続部(g)に接続され、低熱源側回路(H)との共通管
路(35)を経て分岐部(37)で低熱源側回路(H)
と分岐して流出端(33b)が両圧縮機(1),(1
1)の吸込側に接続され、該過冷却生成回路(F)には
接続部(g)側より蓄熱運転時に減圧機構として機能す
る水側電動膨脹弁(39)と、過冷却生成熱交換器(2
5)とが順次介設されている。
A supercooling generation circuit (F) is connected to the refrigeration circuit (R) for the purpose of supplying cold heat to the supercooling generation heat exchanger (25). The supercooling generation circuit (F) has an inflow end (33a) connected to the connection portion (g) of the main refrigerant circuit (E), and branches via a common pipe line (35) with the low heat source side circuit (H). Low heat source side circuit (H) in section (37)
And the outflow end (33b) is divided into both compressors (1), (1
1) A water side electric expansion valve (39) connected to the suction side of the supercooling generation circuit (F), which functions as a pressure reducing mechanism during the heat storage operation from the side of the connection portion (g), and a supercooling generation heat exchanger. (2
5) and are sequentially provided.

【0028】また、凍結進展防止部(31)への暖熱の
供給を目的として、冷凍回路(R)には、第2圧縮機
(11)の吐出側に流入端(41a)が、過冷却生成回
路(F)の水側電動膨脹弁(39)より上流側に流出端
(41b)がそれぞれ接続されて第1バイパス路(4
1)が形成され、該第1バイパス路(41)には流入端
(41a)側より凍結進展防止部(31)と冷媒冷却用
電動膨脹弁(43)とが介設されている。
Further, for the purpose of supplying warm heat to the freezing progress preventing portion (31), the refrigeration circuit (R) has an inflow end (41a) on the discharge side of the second compressor (11) which is supercooled. The outflow ends (41b) are connected to the upstream side of the water-side electric expansion valve (39) of the generation circuit (F) so that the first bypass passage (4)
1) is formed, and the first bypass passage (41) is provided with a freezing progress preventing portion (31) and a refrigerant cooling electric expansion valve (43) from the inflow end (41a) side.

【0029】さらに、過冷却解消部(27)への冷熱の
供給を目的として、第1バイパス路(41)の冷媒冷却
用電動膨脹弁(43)より下流側に流入端(45a)
が、低熱源側回路(H)の低熱源側電動膨脹弁(14)
より下流側に流出端(45b)がそれぞれ接続されて第
2バイパス路(45)が形成され、該第2バイパス路
(45)には過冷却解消部(27)が介設されている。
そして、上記空気調和装置は、各種運転モードに応じ
て、上記各弁の切り換えあるいは開度の調節を行い、冷
媒の循環経路の切り換えるように構成されている。
Further, for the purpose of supplying cold heat to the subcooling elimination portion (27), an inflow end (45a) is provided downstream of the electric refrigerant expansion valve (43) in the first bypass passage (41).
However, the low heat source side electric expansion valve (14) of the low heat source side circuit (H)
The outflow ends (45b) are connected to the more downstream side to form a second bypass passage (45), and a supercooling elimination portion (27) is provided in the second bypass passage (45).
Then, the air conditioner is configured to switch the respective valves or adjust the degree of opening according to various operation modes to switch the refrigerant circulation path.

【0030】次に、上記空気調和装置の各運転モードに
おける回路構成と冷媒の循環動作について説明する。図
1に示すように、通常冷房運転時には、四路切換弁
(2)を実線側に切り換え、低熱源側電動膨脹弁(1
4)と、水側電動膨脹弁(39)と、冷媒冷却用電動膨
脹弁(43)と、ピークカット用電磁弁(19)とを閉
制御する一方、室外電動膨脹弁(4)と、室内電動膨脹
弁(6),(6),…とを開制御して、冷媒が主冷媒回
路(E)のみを流れる運転制御状態にする。冷媒は第1
圧縮機(1)および第2圧縮機(11)より室外熱交換
器(3)に流入し、室外熱交換器(3)で凝縮し、室内
電動膨脹弁(6),(6),…で減圧された後、室内熱
交換器(7),(7),…で蒸発して両圧縮機(1),
(11)に戻る。
Next, the circuit configuration and refrigerant circulation operation in each operation mode of the air conditioner will be described. As shown in FIG. 1, during normal cooling operation, the four-way switching valve (2) is switched to the solid line side, and the low heat source side electric expansion valve (1
4), the water side electric expansion valve (39), the refrigerant cooling electric expansion valve (43), and the peak cut electromagnetic valve (19) are closed and controlled, while the outdoor electric expansion valve (4) and the indoor The electric expansion valves (6), (6), ... Are open-controlled to bring the refrigerant into an operation control state in which it flows only through the main refrigerant circuit (E). Refrigerant is first
From the compressor (1) and the second compressor (11), it flows into the outdoor heat exchanger (3), condenses in the outdoor heat exchanger (3), and in the indoor electric expansion valves (6), (6), ... After the pressure is reduced, it is evaporated in the indoor heat exchangers (7), (7), ...
Return to (11).

【0031】暖房運転時には、四路切換弁(2)を破線
側に切り換え、低熱源側電動膨脹弁(14)と、水側電
動膨脹弁(39)と、冷媒冷却用電動膨脹弁(43)
と、ピークカット用電磁弁(19)とを閉制御する一
方、室外電動膨脹弁(4)と、室内電動膨脹弁(6),
(6),…とを開制御して、冷媒が主冷媒回路(E)の
みを流れる運転制御状態にする。両圧縮機(1),(1
1)の吐出冷媒は、室内熱交換器(7),(7),…で
凝縮し、室外電動膨脹弁(4)で減圧された後、室外熱
交換器(3)で蒸発して両圧縮機(1),(11)に戻
る。
During heating operation, the four-way switching valve (2) is switched to the broken line side, and the low heat source side electric expansion valve (14), the water side electric expansion valve (39), and the refrigerant cooling electric expansion valve (43).
And the peak cut solenoid valve (19) are closed, while the outdoor electric expansion valve (4), the indoor electric expansion valve (6),
(6), ... Are controlled to be in an operation control state in which the refrigerant flows only through the main refrigerant circuit (E). Both compressors (1), (1
The refrigerant discharged from 1) is condensed in the indoor heat exchangers (7), (7), ..., Decompressed by the outdoor electric expansion valve (4), and then evaporated in the outdoor heat exchanger (3) to both compressions. Return to machines (1) and (11).

【0032】蓄熱運転時には、四路切換弁(2)を実線
側に切り換え、室外電動膨脹弁(4)と、水側電動膨脹
弁(39)と、冷媒冷却用電動膨脹弁(43)を開制御
する一方、室内電動膨脹弁(6),(6),…と、低熱
源側電動膨脹弁(14)と、ピークカット用電磁弁(1
9)とを閉制御して、高熱源側回路(B)と過冷却生成
回路(F)と、第1バイパス路(41)と、第2バイパ
ス路(45)とを冷媒の流通可能な状態にする一方、利
用側回路(C)と低熱源側回路(H)とへの冷媒の流通
が遮断される運転制御状態にする。第1圧縮機(1)の
吐出冷媒は、室外熱交換器(3)で凝縮し、室外電動膨
脹弁(4)で減圧された後過冷却生成回路(F)に流
れ、水側電動膨脹弁(39)で減圧された後過冷却生成
熱交換器(25)で蒸発し、高熱源側回路(B)に再び
流入して第1圧縮機(1)に戻る。
During the heat storage operation, the four-way switching valve (2) is switched to the solid line side to open the outdoor electric expansion valve (4), the water side electric expansion valve (39), and the refrigerant cooling electric expansion valve (43). While controlling, the indoor electric expansion valves (6), (6), ..., The low heat source side electric expansion valve (14), and the peak cut solenoid valve (1
9) is closed and controlled so that refrigerant can flow through the high heat source side circuit (B), the supercooling generation circuit (F), the first bypass passage (41), and the second bypass passage (45). On the other hand, the operation control state in which the flow of the refrigerant to the use side circuit (C) and the low heat source side circuit (H) is cut off is set. The refrigerant discharged from the first compressor (1) is condensed in the outdoor heat exchanger (3), is decompressed by the outdoor electric expansion valve (4), and then flows into the subcooling generation circuit (F), and the water-side electric expansion valve. After being decompressed in (39), it is evaporated in the supercooling generation heat exchanger (25), again flows into the high heat source side circuit (B), and returns to the first compressor (1).

【0033】一方、第2圧縮機(11)の吐出冷媒は、
第1バイパス路(41)に流れ、凍結進展防止部(3
1)で凝縮し、冷媒冷却用電動膨脹弁(43)で減圧さ
れて冷媒温度が0℃より低温に冷却された後、一部は第
2バイパス路(45)に分岐して過冷却解消部(27)
で蒸発して過冷却生成回路(F)を経て第2圧縮機(1
1)に戻る。冷媒の残部はそのまま第1バイパス路(4
1)を流れて過冷却生成回路に合流し、過冷却解消部
(27)を経て第2圧縮機(11)に戻る。
On the other hand, the refrigerant discharged from the second compressor (11) is
Flows to the first bypass path (41) and freezes the anti-freeze portion (3
After being condensed in 1) and decompressed by the refrigerant cooling electric expansion valve (43) to cool the refrigerant to a temperature lower than 0 ° C., a part of the refrigerant branches to the second bypass passage (45) and the supercooling elimination section. (27)
Is evaporated in the second compressor (1) through the supercooling generation circuit (F).
Return to 1). The remaining portion of the refrigerant remains as it is in the first bypass passage (4
1) to join the supercooling generation circuit, and returns to the second compressor (11) via the supercooling elimination section (27).

【0034】そして、冷媒は、過冷却生成熱交換器(2
5)で循環路(29)を流通する蓄冷材(W)を過冷却
し、凍結進展防止部(31)で循環路(29)の管壁を
加温して凍結の進展を防止し、過冷却解消部(27)で
蓄冷材(W)の過冷却状態を解消して氷化を開始させて
スラリー状の氷化物を生成し、蓄氷槽(21)に氷化物
を貯溜して冷熱を蓄える。
The refrigerant is a subcooling generation heat exchanger (2
In 5), the cold storage material (W) flowing through the circulation path (29) is supercooled, and the pipe wall of the circulation path (29) is heated by the freezing progress prevention section (31) to prevent the freezing progress, The cooling elimination section (27) eliminates the supercooled state of the regenerator material (W) to start freezing to produce a slurry-like iced substance, and the iced substance is stored in the ice storage tank (21) to cool the heat. store.

【0035】蓄熱冷房運転時には、四路切換弁(2)が
実線側に切り換えられ、水側電動膨脹弁(39)と、冷
媒冷却用電動膨脹弁(43)と、ピークカット用電磁弁
(19)とを閉制御する一方、室外電動膨脹弁(4)
と、室内電動膨脹弁(6),(6),…と、低熱源側電
動膨脹弁(14)とを開制御して、冷媒が高熱源側回路
(B)と低熱源側回路(H)とを分流する冷媒が利用側
回路(C)に合流して流れる運転制御状態にする。高熱
源側回路(B)における第1圧縮機(1)の吐出冷媒
は、室外熱交換器(3)で凝縮され、室外電動膨脹弁
(4)で低熱源側回路(H)の液管圧力にまで減圧され
る一方、低熱源側回路(H)における第2圧縮機(1
1)の吐出冷媒は、熱源側水熱交換器(13)で凝縮さ
れ、両凝縮冷媒は主冷媒回路(E)の接続部(g)で合
流して利用側回路(C)に流れ、室内電動膨脹弁
(6),(6),…で減圧され、室内熱交換器(7),
(7),…で蒸発した後高熱源側回路(B)に流入し、
両圧縮機(1),(11)に戻る。
During the heat storage cooling operation, the four-way switching valve (2) is switched to the solid line side, the water side electric expansion valve (39), the refrigerant cooling electric expansion valve (43), and the peak cut solenoid valve (19). ) And closed control, while the outdoor electric expansion valve (4)
, The indoor electric expansion valves (6), (6), ... And the low heat source side electric expansion valve (14) are controlled to be opened so that the refrigerant has a high heat source side circuit (B) and a low heat source side circuit (H). The operation control state is made in which the refrigerant that splits the and is merged into the utilization side circuit (C) and flows. The refrigerant discharged from the first compressor (1) in the high heat source side circuit (B) is condensed in the outdoor heat exchanger (3), and the liquid pipe pressure of the low heat source side circuit (H) is condensed in the outdoor electric expansion valve (4). While the pressure is reduced to 1, the second compressor (1) in the low heat source side circuit (H)
The discharged refrigerant of 1) is condensed in the heat source side water heat exchanger (13), and both condensed refrigerants merge at the connection part (g) of the main refrigerant circuit (E) and flow into the use side circuit (C), where The indoor heat exchanger (7) is decompressed by the electric expansion valves (6), (6), ...
After evaporating at (7), ..., it flows into the high heat source side circuit (B),
Return to both compressors (1), (11).

【0036】さらに、上記蓄熱冷房運転の一態様とし
て、電力使用量がピークに達する日中においては、蓄熱
だけを利用する蓄熱専用冷房運転を行う。つまり、上記
蓄熱冷房運転時において、室外電動膨脹弁(4)を閉制
御して高熱源側回路(B)を遮断する一方、ピークカッ
ト用電磁弁(19)を開制御して第1圧縮機(1)から
の冷媒を第1バイパス路(41)に流通させる運転制御
状態にする。両圧縮機(1),(11)の吐出冷媒は、
熱源側水熱交換器(13)だけで凝縮されるので、日中
の圧縮機の容量を減少することができ、電力使用量の低
減と安定した冷房運転が可能になる。
Further, as one mode of the heat storage cooling operation, during the day when the electric power consumption peaks, a heat storage dedicated cooling operation using only heat storage is performed. That is, during the heat storage cooling operation, the outdoor electric expansion valve (4) is closed to shut off the high heat source side circuit (B), while the peak cut solenoid valve (19) is opened to control the first compressor. The operation control state in which the refrigerant from (1) is circulated through the first bypass passage (41) is set. The refrigerant discharged from both compressors (1) and (11) is
Since it is condensed only by the heat source side water heat exchanger (13), it is possible to reduce the capacity of the compressor during the daytime, and it is possible to reduce the amount of electric power used and perform stable cooling operation.

【0037】次に、図2および図3に示すように、本発
明の特徴として、凍結進展防止部(31)は、外管(7
1)内に該外管(71)と所定の間隔を存して内管(7
3)を挿入して二重管を形成し、内管(73)内が蓄冷
材通路(75)に、内管(73)と外管(43)との間
の空間(管外側空間)が冷媒通路(77)に形成され、
上記二重管の両端にはフランジ(79),(79)が接
合され、該フランジ(79),(79)が循環路(2
9)側のフランジに接合されて冷媒が内管(73)内を
流通するように構成されている。外管(71)には、冷
媒通路(77)の冷媒流れが蓄冷材の流通方向に対して
向流になるように、一端部に冷媒の流入口(81)が、
他端部に流出口(83)が形成されている。流入口(8
1)には流入管(85)が流出口(83)には流出管
(87)がそれぞれ接続されて第2圧縮機(11)から
冷媒通路(77)に高温のガス冷媒が流通するように構
成されている。
Next, as shown in FIGS. 2 and 3, as a feature of the present invention, the freezing progress preventing portion (31) includes an outer tube (7).
1) The inner pipe (7) is spaced from the outer pipe (71) by a predetermined distance.
3) is inserted to form a double pipe, and the inside of the inner pipe (73) is in the cold storage material passage (75), and the space between the inner pipe (73) and the outer pipe (43) is Is formed in the refrigerant passage (77),
Flanges (79) and (79) are joined to both ends of the double pipe, and the flanges (79) and (79) are connected to the circulation path (2
It is configured to be joined to the flange on the 9) side so that the refrigerant flows in the inner pipe (73). The outer pipe (71) has a refrigerant inlet port (81) at one end thereof so that the refrigerant flow in the refrigerant passage (77) is countercurrent to the flow direction of the cold storage material.
An outlet (83) is formed at the other end. Inlet (8
An inflow pipe (85) is connected to 1) and an outflow pipe (87) is connected to an outflow port (83) so that a high temperature gas refrigerant flows from the second compressor (11) to the refrigerant passage (77). It is configured.

【0038】そして、内管温度は蓄冷材温度より高いが
過冷却されている蓄冷材(W)を昇温させない程度の温
度に設定されている。
The temperature of the inner pipe is higher than the temperature of the cold storage material, but is set to a temperature at which the supercooled cold storage material (W) is not heated.

【0039】冷媒通路(77)には、内管(73)外面
に線材がらせん状に巻回されてらせん部材(93)が配
設され、流入口(81)から流出口(83)へ向かって
冷媒が旋回して流れるように構成されている。
In the refrigerant passageway (77), a wire member is spirally wound around the outer surface of the inner pipe (73), and a spiral member (93) is arranged. The spiral member (93) extends from the inflow port (81) to the outflow port (83). The refrigerant is swirled and flows.

【0040】上記凍結進展防止部(31)の作動につい
て説明する。蓄熱運転時、過冷却生成部(25)で過冷
却された蓄冷材(W)は、過冷却解消部(27)で過冷
却状態が解消されて、氷化物が生成する。氷化物が循環
路(29)の管壁に付着して凍結が上流側の凍結進展防
止部(31)に向かって進展する。
The operation of the freezing / progression prevention section (31) will be described. During the heat storage operation, the supercooling elimination section (27) eliminates the supercooled state of the regenerator material (W) supercooled by the supercooling production section (25), and iced matter is produced. The iced substance adheres to the pipe wall of the circulation path (29), and the freezing progresses toward the freezing-progression preventing portion (31) on the upstream side.

【0041】一方、第2圧縮機(11)の吐出冷媒(ガ
ス冷媒)が第1バイパス路(41)に流れ、凍結進展防
止部(31)の冷媒通路(77)に流入する。ガス冷媒
は内管(73)を介して過冷却状態の蓄冷材(W)で冷
却されて凝縮する一方、内管(73)は加温されて内管
(73)内面に付着した氷化物が融解される。凍結進展
防止部(31)は、ガス冷媒の凝縮熱によって内管(7
3)を加温するので、図4に示すように、冷媒温度TR
は流入口(81)から流出口(83)までの間で一定に
なり、内管温度Th も一定になる。なお、Tw は蓄冷材
温度である。
On the other hand, the discharge refrigerant (gas refrigerant) of the second compressor (11) flows into the first bypass passage (41) and flows into the refrigerant passage (77) of the freezing progress preventing portion (31). The gas refrigerant is cooled by the regenerator material (W) in a supercooled state via the inner pipe (73) and condensed, while the inner pipe (73) is heated to remove the iced substances attached to the inner surface of the inner pipe (73). Is thawed. The freezing-progression prevention part (31) uses the heat of condensation of the gas refrigerant to cool the inner pipe (7).
Since 3) is heated, as shown in FIG.
Is constant from the inlet (81) to the outlet (83), and the inner tube temperature Th is also constant. In addition, Tw is a cold storage material temperature.

【0042】凍結進展防止部(31)は、内管(73)
内が蓄冷材通路に形成され、上記管外側空間が冷媒通路
(77)に形成されているので、内管(73)外周を冷
媒が加温することになり、氷化物が付着しうる全領域に
ついて凍結の進展が阻止される。
The freezing / progression prevention portion (31) is provided with an inner pipe (73).
Since the inside is formed in the cold storage material passage and the space outside the pipe is formed in the refrigerant passage (77), the outer periphery of the inner pipe (73) is heated by the refrigerant, and the entire area where the iced matter can adhere About the freeze progress is prevented.

【0043】また、らせん部材(93)により、冷媒通
路(77)において流入口(81)から流出口(83)
へ向かって冷媒が旋回して流れるようになるので、冷媒
通路(77)内で冷媒が局所的に滞留することがなく、
内管(73)は均一に加温されて凍結の進展が完全に阻
止される。
Further, by means of the spiral member (93), in the refrigerant passage (77) from the inflow port (81) to the outflow port (83).
Since the refrigerant swirls toward the flow, the refrigerant does not locally stay in the refrigerant passage (77),
The inner tube (73) is uniformly heated to completely prevent freezing.

【0044】以上のように、本実施例によれば、管外側
空間に冷媒通路(77)を形成して内管(73)を加温
しているので、凍結が生じ得る全領域を加温でき、過冷
却生成部(25)への凍結の進展を防止する実用的な加
温構造を提供することができ、安定した連続運転を行う
ことができる。
As described above, according to this embodiment, since the refrigerant passageway (77) is formed in the outer space of the pipe to heat the inner pipe (73), the entire region where freezing may occur is heated. It is possible to provide a practical heating structure that prevents the progress of freezing to the supercooling generation part (25), and to perform stable continuous operation.

【0045】さらに、ガス冷媒の凝縮熱によって内管
(73)を加温するので、内管温度Th が一定になり、
液冷媒の顕熱変化によって加温する場合のように流出口
(83)付近の内管(73)の温度低下を見込んで高め
の温度の冷媒を供給する必要がないので、熱効率を向上
することができる。
Furthermore, since the inner pipe (73) is heated by the heat of condensation of the gas refrigerant, the inner pipe temperature Th becomes constant,
Since it is not necessary to supply a refrigerant of a higher temperature in anticipation of a temperature drop of the inner pipe (73) near the outlet (83) as in the case of heating by the sensible heat change of the liquid refrigerant, it is necessary to improve the thermal efficiency. You can

【0046】また、らせん部材(93)により、内管
(73)を均一に加温することができ、凍結進展を完全
に防止することができる。
The spiral member (93) can evenly heat the inner tube (73) and completely prevent freezing.

【0047】なお、本実施例の製氷装置は、空気調和装
置以外の用途に使用してもよい。
The ice making device of this embodiment may be used for purposes other than the air conditioner.

【図面の簡単な説明】[Brief description of drawings]

【図1】本実施例の冷媒配管系統を示す回路図である。FIG. 1 is a circuit diagram showing a refrigerant piping system of this embodiment.

【図2】凍結進展防止部の一部破断正面図である。FIG. 2 is a partially cutaway front view of a freeze-freezing prevention portion.

【図3】凍結進展防止部の左側面図である。FIG. 3 is a left side view of a freeze-prevention prevention unit.

【図4】凍結進展防止部の冷媒と蓄冷材の温度変化を示
す特性図である。
FIG. 4 is a characteristic diagram showing temperature changes of a refrigerant and a regenerator material in a freezing progress prevention unit.

【符号の説明】[Explanation of symbols]

21 蓄氷槽 25 過冷却生成熱交換器(過冷却生成部) 27 過冷却解消部 29 循環路 31 凍結進展防止部 71 外管 73 内管 77 冷媒通路 81 流入口 83 流出口 93 らせん部材 21 Ice Storage Tank 25 Supercooling Generation Heat Exchanger (Supercooling Generation Section) 27 Supercooling Dissolving Section 29 Circulation Path 31 Freezing Progress Prevention Section 71 Outer Tube 73 Inner Tube 77 Refrigerant Passage 81 Inlet 83 Outlet 93 Helical Member

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 スラリー状に氷化された蓄冷材(W)を
貯溜するための蓄氷槽(21)と、該蓄冷材(W)を過
冷却するための過冷却生成部(25)と、過冷却された
蓄冷材(W)の過冷却状態を解消するための過冷却解消
部(27)とが循環路(51)により蓄冷材(W)の循
環可能に接続され、上記過冷却生成部(25)と過冷却
解消部(27)との間の循環路(29)には、冷凍回路
(R)に接続されて該冷凍回路(R)の冷媒熱量により
上記過冷却生成部(25)への凍結の進展を防止する凍
結進展防止部(31)が介設されている製氷装置におい
て、 該凍結進展防止部(31)は、上記外管(71)内に該
外管(71)と所定の間隔を存して内管(73)が挿入
され、該外管(71)と内管(73)との間が冷媒通路
(77)に形成されてなり、 上記外管(71)の一端部には上記内管(73)を加温
する高温冷媒を上記冷凍回路(R)から冷媒通路(7
7)に流入させる流入口(81)が、他端部には上記冷
媒通路(77)より冷媒を上記冷凍回路(R)に流出さ
せる流出口(83)がそれぞれ形成される一方、 上記内管(73)の両端には、蓄冷材(W)が上記内管
(73)内を流通するように上記循環路(51)が接続
されていることを特徴とする製氷装置。
1. An ice storage tank (21) for storing a cold storage material (W) iced into a slurry, and a supercooling generation section (25) for supercooling the cold storage material (W). , A supercooling elimination section (27) for eliminating a supercooled state of the supercooled regenerator material (W) is connected by a circulation path (51) so that the regenerator material (W) can circulate, and the above supercooling generation is performed. The circulation path (29) between the section (25) and the supercooling elimination section (27) is connected to the refrigeration circuit (R), and the supercooling generation section (25) is connected to the refrigeration circuit (R) by the amount of refrigerant heat. ), An ice making device having a freezing progress preventing portion (31) for preventing freezing progress to the outer pipe (71) is provided in the outer pipe (71). And the inner pipe (73) is inserted at a predetermined interval, and a refrigerant passage (77) is formed between the outer pipe (71) and the inner pipe (73). Is made, the refrigerant passage the inner tube at one end of the high-temperature refrigerant for heating (73) from said refrigeration circuit (R) of the outer tube (71) (7
7), an inlet port (81) is formed at the other end, and an outlet port (83) is formed at the other end of the refrigerant passage (77) to allow the refrigerant to flow out to the refrigeration circuit (R). The ice making device, wherein the circulation path (51) is connected to both ends of (73) so that the cold storage material (W) flows through the inner pipe (73).
【請求項2】 請求項1記載の製氷装置において、冷媒
通路(77)には、流入口(81)から流出口(83)
へ向かって冷媒が旋回して流れるようにらせん部材(9
3)が配設されていることを特徴とする製氷装置。
2. The ice making device according to claim 1, wherein the refrigerant passage (77) has an inlet (81) to an outlet (83).
The spiral member (9
3) is provided, the ice making device.
JP15340592A 1992-06-12 1992-06-12 Ice making device Pending JPH05340653A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15340592A JPH05340653A (en) 1992-06-12 1992-06-12 Ice making device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15340592A JPH05340653A (en) 1992-06-12 1992-06-12 Ice making device

Publications (1)

Publication Number Publication Date
JPH05340653A true JPH05340653A (en) 1993-12-21

Family

ID=15561775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15340592A Pending JPH05340653A (en) 1992-06-12 1992-06-12 Ice making device

Country Status (1)

Country Link
JP (1) JPH05340653A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002068891A1 (en) * 2001-02-28 2002-09-06 Samyoung Industrial Corporation Vibration-type heat exchanger
KR102128070B1 (en) * 2020-02-27 2020-06-29 (주)제이에스이엔지 Evaporator of auger-type ice machine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH043867A (en) * 1990-04-20 1992-01-08 Daikin Ind Ltd Ice making device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH043867A (en) * 1990-04-20 1992-01-08 Daikin Ind Ltd Ice making device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002068891A1 (en) * 2001-02-28 2002-09-06 Samyoung Industrial Corporation Vibration-type heat exchanger
KR102128070B1 (en) * 2020-02-27 2020-06-29 (주)제이에스이엔지 Evaporator of auger-type ice machine

Similar Documents

Publication Publication Date Title
JP4771721B2 (en) Air conditioner
JP2002005537A (en) Refrigerant heating apparatus and air conditioning apparatus
JP2001099514A (en) Heat storage type air-conditioning and refrigerating device
JP2007198730A (en) Air conditioning refrigeration device
JPH05340653A (en) Ice making device
JP4169638B2 (en) Refrigeration system
JP4108003B2 (en) Refrigeration system
JP3304866B2 (en) Thermal storage type air conditioner
JP4104519B2 (en) Refrigeration system
JP4270803B2 (en) Cold generation system
JP2007100986A (en) Refrigerating system
JP3454644B2 (en) Combined refrigeration system
JPH05133635A (en) Cold accumulation type air conditioning apparatus
JP3643687B2 (en) Air conditioner with ice heat storage unit
JP2806155B2 (en) Ice making equipment
KR100187774B1 (en) A regenerative cooling system
KR20020013337A (en) The combined Compact Refrigerative / Regenerative Heat-Pump System
JP3276013B2 (en) Thermal storage system
JP2800573B2 (en) Air conditioner
JP2924460B2 (en) Air conditioner
JPH0849924A (en) Heat storage type air-conditioner
JP3253276B2 (en) Thermal storage type air conditioner and operation method thereof
JPS63148063A (en) Defrostation controller for heat pump type air conditioner
JP2002327968A (en) Cold storage type refrigerating system
JPH10170086A (en) Air conditioner

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19980825