JPH05340636A - Heat storage type air conditioner - Google Patents

Heat storage type air conditioner

Info

Publication number
JPH05340636A
JPH05340636A JP14535092A JP14535092A JPH05340636A JP H05340636 A JPH05340636 A JP H05340636A JP 14535092 A JP14535092 A JP 14535092A JP 14535092 A JP14535092 A JP 14535092A JP H05340636 A JPH05340636 A JP H05340636A
Authority
JP
Japan
Prior art keywords
heat
refrigerant
heat storage
storage tank
heat exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14535092A
Other languages
Japanese (ja)
Inventor
Tetsuei Kuramoto
哲英 倉本
Shigeo Aoyama
繁男 青山
Kozo Suzuki
皓三 鈴木
Yoshihide Sugita
吉秀 杉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Tokyo Electric Power Company Holdings Inc
Original Assignee
Matsushita Refrigeration Co
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co, Tokyo Electric Power Co Inc filed Critical Matsushita Refrigeration Co
Priority to JP14535092A priority Critical patent/JPH05340636A/en
Publication of JPH05340636A publication Critical patent/JPH05340636A/en
Pending legal-status Critical Current

Links

Landscapes

  • Other Air-Conditioning Systems (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE:To obtain an air conditioner having no water leakage accident due to direct conveyance of cold and hot water to a load side and a heat reservoir which has a high efficiency and stable heat output in a cycle having an ice storage tank of a heat storage type air conditioner. CONSTITUTION:A heat storage type air conditioner has a primary side cycle communicating with a heat source side and a secondary side cycle communicating with a load side. An ice floatation preventing net 19 is mounted horizontally at a predetermined interval in a depth direction of a heat reservoir STR. Thus, floating of the ice to a water surface at the time of room cooling in the daytime is prevented, a temperature distribution in the reservoir is made uniform, and a stable heat output is performed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、空気を熱源とする空気
調和機において、夜間電力を利用するための蓄熱機能、
及びその制御機能を備えた蓄熱式空気調和機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner using air as a heat source, and has a heat storage function for utilizing nighttime electric power.
And a heat storage type air conditioner having a control function thereof.

【0002】[0002]

【従来の技術】従来の蓄熱式空気調和機については、既
にさまざまな開発がなされており、例えば、冷凍・第6
2巻第714号(昭和62年4月号)P358に示され
ているような蓄熱式空気調和機がある。
2. Description of the Related Art Various conventional heat storage type air conditioners have already been developed, for example, refrigeration / sixth type.
There is a heat storage type air conditioner as shown in P358 of Volume 2, No. 714 (April, 1987).

【0003】その基本的な技術について述べると、図4
に示すように、空冷ヒ−トポンプ1は、圧縮機2,四方
弁3,室外側熱交換器4,室外側膨張弁5,フロン対ブ
ライン熱交換器6を環状に順次接続して冷凍サイクルA
を形成し、一方、フロン対ブライン熱交換器6,ブライ
ン対水熱交換器7,蓄熱槽8,ブラインポンプ9を環状
に順次接続してブライン循環サイクルBを形成してい
る。
The basic technique will be described with reference to FIG.
As shown in FIG. 1, the air-cooling heat pump 1 has a refrigeration cycle A in which a compressor 2, a four-way valve 3, an outdoor heat exchanger 4, an outdoor expansion valve 5, a Freon-to-brine heat exchanger 6 are sequentially connected in an annular shape.
On the other hand, a freon-to-brine heat exchanger 6, a brine-to-water heat exchanger 7, a heat storage tank 8, and a brine pump 9 are sequentially connected in an annular shape to form a brine circulation cycle B.

【0004】また、負荷側についてはブライン対水熱交
換器7,蓄熱槽8,冷温水ポンプ10,室内機12を環
状に順次接続して冷温水循環サイクルCを形成してい
る。
On the load side, the brine-to-water heat exchanger 7, the heat storage tank 8, the cold / hot water pump 10, and the indoor unit 12 are sequentially connected in an annular shape to form a cold / hot water circulation cycle C.

【0005】この蓄熱式空気調和機において夜間運転
は、冷凍サイクルAにおいて四方弁3によって製氷運
転,蓄熱運転が切り替えられ、製氷運転時は図4中の実
線矢印の方向に冷媒が流れて冷房サイクルが形成され、
フロン対ブライン熱交換器6を介してブライン循環サイ
クルBにおける蓄熱槽8内の伝熱管の周囲に氷として蓄
冷される。
In this heat storage type air conditioner, during the night operation, the four-way valve 3 switches the ice making operation and the heat storing operation in the refrigeration cycle A. During the ice making operation, the refrigerant flows in the direction of the solid line arrow in FIG. Is formed,
It is stored as ice around the heat transfer tubes in the heat storage tank 8 in the brine circulation cycle B via the freon-to-brine heat exchanger 6.

【0006】また、蓄熱運転時には図4中の破線方向に
冷媒が流れて暖房サイクルが形成され、同じくフロン対
ブライン熱交換器6を介してブライン循環サイクルBに
おける蓄熱槽8内に温水として蓄熱される。この場合、
ブライン対水熱交換器7は使用されない。
Further, during the heat storage operation, the refrigerant flows in the direction of the broken line in FIG. 4 to form a heating cycle, and heat is stored as hot water in the heat storage tank 8 in the brine circulation cycle B via the CFC-to-brine heat exchanger 6 as well. It in this case,
The brine to water heat exchanger 7 is not used.

【0007】一方、昼間運転は、冷温水循環サイクルC
において蓄熱槽8内の冷温水を冷温水ポンプ10により
室内機12へ送り、冷暖房を行う。この際、冷温水循環
サイクルCでの効率を高めるべく、冷凍サイクルA、ブ
ライン循環サイクルBを冷房、あるいは暖房モ−ドで運
転して、ブライン対水熱交換器7を介して冷温水循環サ
イクルC内の冷温水の予冷、あるいは予熱を行う。
On the other hand, during the daytime operation, the cold / hot water circulation cycle C is used.
In, the cold / hot water in the heat storage tank 8 is sent to the indoor unit 12 by the cold / hot water pump 10 to perform cooling / heating. At this time, in order to improve the efficiency in the cold / hot water circulation cycle C, the refrigeration cycle A and the brine circulation cycle B are operated in the cooling or heating mode, and the cold / hot water circulation cycle C is operated through the brine / water heat exchanger 7. Pre-cool or pre-heat the cold / hot water.

【0008】以上のように、夜間の余剰電力エネルギー
を熱に変換して蓄熱しておき、昼間にその電力を利用す
ることにより、昼間の高負荷時刻における電力ピークを
抑え、電力利用の平準化が可能である。
As described above, surplus power energy at night is converted into heat and stored, and the power is used in the daytime to suppress the power peak at a high load time in the daytime and to level the power usage. Is possible.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、前述の
従来例では、熱源側と負荷側との間に熱交換器2台を介
しているため効率が悪く、また負荷側へは冷温水を直接
搬送するため、水漏れ事故が生じた場合、近年OA化が
進歩したオフィス内のOA機器への水損は避けられな
い。
However, in the above-mentioned conventional example, since the two heat exchangers are interposed between the heat source side and the load side, the efficiency is low, and cold / hot water is directly conveyed to the load side. Therefore, when a water leakage accident occurs, water loss to OA equipment in an office, which has been improved in OA in recent years, cannot be avoided.

【0010】更に、昼間の冷房運転時においては、蓄熱
槽8内の1次側熱交換部の伝熱管に着氷した氷の融解進
行に伴い、氷が伝熱管から分離して水面へ浮上するた
め、蓄熱槽内の温度分布が不均一となり、蓄熱槽8内の
2次側熱交換部の各部における冷媒と水の熱交換量(温
度差)が不均一となるため安定した熱取出しが行えず冷
房能力の低下をまねくという欠点を有していた。
Further, during the daytime cooling operation, as the ice adhering to the heat transfer tube of the primary side heat exchange section in the heat storage tank 8 melts, the ice separates from the heat transfer tube and floats on the water surface. Therefore, the temperature distribution in the heat storage tank becomes non-uniform, and the heat exchange amount (temperature difference) of the refrigerant and water in each part of the secondary side heat exchange section in the heat storage tank 8 becomes non-uniform, so stable heat extraction can be performed. However, it had a drawback that the cooling capacity was deteriorated.

【0011】そこで、本発明は、高効率で、かつ安全性
の高い蓄熱式空気調和機を提供することを目的とするも
のである。
[0011] Therefore, an object of the present invention is to provide a heat storage type air conditioner having high efficiency and high safety.

【0012】[0012]

【課題を解決するための手段】上記課題を解決する本発
明の技術的手段は、蓄熱槽を介して1次側冷凍サイクル
と2次側冷凍サイクルとからなる蓄熱式空気調和機にお
いて、蓄熱槽内の深さ方向に対して所定の間隔をおい
て、水平に氷浮上防止用網を設置するものである。
Means for Solving the Problems The technical means of the present invention for solving the above problems is to provide a heat storage tank in a heat storage type air conditioner comprising a primary side refrigeration cycle and a secondary side refrigeration cycle via a heat storage tank. An ice floating prevention net is installed horizontally at a predetermined interval in the depth direction.

【0013】[0013]

【作用】この技術的手段による作用は次のようになる。The function of this technical means is as follows.

【0014】夜間には、圧縮機、四方弁、室外側熱交換
器、膨張弁、三方弁、冷媒対冷媒熱交換器の1次側熱交
換部、蓄熱槽内の1次側熱交換部とを連通した1次側冷
凍サイクルにおいて、夜間に安価な夜間電力を利用して
冷媒対冷媒熱交換器を使用しない状態で、三方弁、及び
膨張弁の制御により運転を行う。
At night, the compressor, the four-way valve, the outdoor heat exchanger, the expansion valve, the three-way valve, the primary side heat exchange section of the refrigerant-refrigerant heat exchanger, and the primary side heat exchange section in the heat storage tank. In the primary-side refrigeration cycle communicating with each other, the operation is performed by controlling the three-way valve and the expansion valve in a state in which the refrigerant-to-refrigerant heat exchanger is not used by using inexpensive nighttime electric power at night.

【0015】即ち、蓄熱槽内の1次側熱交換部の伝熱管
を介して冷媒と蓄熱材である水の熱交換を行うことによ
り水に蓄冷、または蓄熱しておく。
That is, heat is exchanged between the refrigerant and water as a heat storage material through the heat transfer tube of the primary side heat exchange section in the heat storage tank to store or store heat in the water.

【0016】一方、昼間は1次側冷凍サイクルにおいて
三方弁の制御により蓄熱槽の1次側熱交換部を使用しな
い状態で運転し、蓄熱槽内の蓄冷熱に加えて、冷媒対冷
媒熱交換器を介して1次側冷凍サイクルにおける冷房・
暖房能力を2次側冷凍サイクル内の冷媒へ熱交換する2
次側冷凍サイクルの運転を行う。
On the other hand, during the daytime, in the primary side refrigeration cycle, the three-way valve is controlled to operate without using the primary side heat exchange section of the heat storage tank, and in addition to the cold storage heat in the heat storage tank, refrigerant-refrigerant heat exchange is performed. Cooling in the primary side refrigeration cycle
Heat exchange of heating capacity to the refrigerant in the secondary side refrigeration cycle 2
Operate the secondary refrigeration cycle.

【0017】即ち、蓄熱槽内に蓄冷熱として蓄えられた
水と冷媒が、蓄熱槽内の2次側熱交換部の伝熱管を介し
て熱交換して、その冷媒を冷媒搬送ポンプにて室内側熱
交換器へ搬送して室内空気と熱交換(冷房、または暖
房)する。
That is, the water and the refrigerant stored as the cold storage heat in the heat storage tank exchange heat with each other through the heat transfer tube of the secondary side heat exchange section in the heat storage tank, and the refrigerant is stored in the chamber by the refrigerant transfer pump. It is transferred to the inner heat exchanger and exchanges heat with indoor air (cooling or heating).

【0018】ここで、昼間の冷房運転時においては、蓄
熱槽内の1次側熱交換部の伝熱管に着氷した氷の融解進
行に伴い、氷が伝熱管から分離して水面へ浮上する。
Here, during the daytime cooling operation, the ice separated from the heat transfer tube and floated to the surface of the water as the ice adhering to the heat transfer tube of the primary side heat exchange section in the heat storage tank progresses to melt. ..

【0019】しかし、蓄熱槽内の深さ方向に対して所定
の間隔をおいて、水平に氷浮上防止用網を設置して氷の
水面への浮上を防止することにより、蓄熱槽内の温度分
布を均一に維持して蓄熱槽内の2次側熱交換部の各部に
おける冷媒と水または氷水との熱交換量(温度差)が均一
となり、安定した熱取出しが行え、冷房能力の低下を防
止する。
However, the temperature inside the heat storage tank is prevented by horizontally installing ice floating prevention nets at predetermined intervals in the depth direction inside the heat storage tank to prevent the ice from floating on the water surface. Maintaining a uniform distribution, the amount of heat exchange (temperature difference) between the refrigerant and water or ice water in each part of the secondary side heat exchange section in the heat storage tank becomes uniform, and stable heat extraction can be performed, reducing cooling capacity. To prevent.

【0020】これにより、夜間電力を利用した蓄冷熱に
より昼間に暖房、または冷房運転が行えるだけでなく、
昼間運転時の負荷応答性が高まり、特に昼間冷房運転時
における安定した熱取出しが可能となり、運転費が低減
できる。
As a result, not only heating or cooling operation can be performed in the daytime by the stored cold heat using the nighttime electric power,
The load responsiveness during the daytime operation is enhanced, and stable heat extraction can be achieved especially during the daytime cooling operation, and the operating cost can be reduced.

【0021】[0021]

【実施例】以下、本発明の一実施例を添付図面に基づい
て説明を行うが、従来と同一構成については同一符号を
付し、その詳細な説明を省略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the accompanying drawings. The same components as those of the prior art will be designated by the same reference numerals and detailed description thereof will be omitted.

【0022】図1は本発明の一実施例の蓄熱式空気調和
機の冷凍サイクル図である。この実施例の蓄熱式空気調
和機は、室外ユニット11と室内ユニット12とからな
る。
FIG. 1 is a refrigeration cycle diagram of a heat storage type air conditioner according to an embodiment of the present invention. The heat storage type air conditioner of this embodiment includes an outdoor unit 11 and an indoor unit 12.

【0023】室外ユニット11は、圧縮機2、四方弁
3、室外側熱交換器4、膨張弁5、三方弁KV1、1次
側熱交換部14aと2次側熱交換部14bとからなる冷
媒対冷媒熱交換器HEX、蓄熱材として水16を充填し
た、1次側熱交換部13aと2次側熱交換部13bとか
らなる蓄熱槽STR、及び冷媒搬送ポンプPMとから構
成されている。
The outdoor unit 11 includes a compressor 2, a four-way valve 3, an outdoor heat exchanger 4, an expansion valve 5, a three-way valve KV1, a primary side heat exchange section 14a and a secondary side heat exchange section 14b. It is composed of a heat exchanger for refrigerant HEX, a heat storage tank STR having a primary side heat exchange section 13a and a secondary side heat exchange section 13b filled with water 16 as a heat storage material, and a refrigerant transfer pump PM.

【0024】一方、室内ユニット12は、室内側熱交換
器17から構成されている。また、図2は図1中の蓄熱
槽STRの縦方向の一断面図であり、図3は蓄熱槽ST
R内に設置した氷浮上防止用網19の上面図を示す。
On the other hand, the indoor unit 12 is composed of an indoor heat exchanger 17. 2 is a vertical cross-sectional view of the heat storage tank STR in FIG. 1, and FIG. 3 is a heat storage tank ST.
The top view of the ice floating prevention net | network 19 installed in R is shown.

【0025】蓄熱槽STR内には図2に示すように、氷
浮上防止用網19が蓄熱槽STR内の深さ方向に対して
所定の間隔をおいて水平に、蓄熱槽STR内の2次側熱
交換部13bの伝熱管P2にフックHKを介して設置さ
れている。
In the heat storage tank STR, as shown in FIG. 2, an ice flotation prevention net 19 is horizontally arranged at a predetermined interval in the depth direction of the heat storage tank STR so as to be secondary in the heat storage tank STR. It is installed on the heat transfer tube P2 of the side heat exchange section 13b via a hook HK.

【0026】更に、氷浮上防止用網19の材質について
は耐食性を考慮してプラスチック製とし、その形状につ
いては図3に示すように等ピッチの網目状としている
が、その網目の大きさは、蓄熱槽STR内の1次側熱交
換部13aの伝熱管P1から分離した氷が網目を通り抜
けて水面に浮上しないような大きさとしている。
Further, the material for the ice-floating prevention net 19 is made of plastic in consideration of corrosion resistance, and the shape thereof is a mesh of equal pitch as shown in FIG. 3, but the size of the mesh is The size is set such that the ice separated from the heat transfer tube P1 of the primary side heat exchange section 13a in the heat storage tank STR does not pass through the mesh and float on the water surface.

【0027】室外ユニット11において、圧縮機2と、
四方弁3と、室外側熱交換器4と、膨張弁5とを順次連
通し、さらに三方弁KV1を介して冷媒対冷媒熱交換器
HEXの1次側熱交換部14aと、蓄熱槽STR内の1
次側熱交換部13aとを並列に連通して1次側冷凍サイ
クルを形成している。
In the outdoor unit 11, the compressor 2 and
The four-way valve 3, the outdoor heat exchanger 4, and the expansion valve 5 are sequentially communicated with each other, and the three-way valve KV1 is further used to connect the primary side heat exchange section 14a of the refrigerant-refrigerant heat exchanger HEX and the heat storage tank STR. Of 1
The primary side refrigeration cycle is formed by communicating with the secondary side heat exchange section 13a in parallel.

【0028】一方、蓄熱槽内STRの2次側熱交換部1
3bと、冷媒対冷媒熱交換器HEXの2次側熱交換部1
4bと、可逆式冷媒搬送ポンプPMと、室内側熱交換器
17とを順次連通してなる2次側冷凍サイクルを形成し
ている。
On the other hand, the secondary side heat exchange section 1 of the STR in the heat storage tank
3b and the secondary heat exchanger 1 of the refrigerant-to-refrigerant heat exchanger HEX
4b, the reversible refrigerant transport pump PM, and the indoor heat exchanger 17 are sequentially connected to each other to form a secondary refrigeration cycle.

【0029】次に、この−実施例の構成における作用を
説明する。(表1)は本実施例における各場合の四方弁
3、膨張弁5、三方弁KV1の開閉状態、及び各熱交換
器の作用状態(蒸発器、あるいは凝縮器)を示す。以
下、(表1)を参照して説明する。
Next, the operation of the structure of this embodiment will be described. Table 1 shows the open / closed states of the four-way valve 3, the expansion valve 5, and the three-way valve KV1 and the working state (evaporator or condenser) of each heat exchanger in each case in this embodiment. Hereinafter, description will be made with reference to (Table 1).

【0030】[0030]

【表1】 [Table 1]

【0031】尚、四方弁3のモ−ドについては、圧縮機
2吐出側と室外側熱交換器4とを、かつ、圧縮機2吸入
側と蓄熱槽STRとを連通する場合を冷房モ−ド、圧縮
機2吐出側と蓄熱槽STRとを、かつ、圧縮機2吸入側
と室外側熱交換器4とを連通する場合を暖房モ−ドと定
義する。
Regarding the mode of the four-way valve 3, a cooling mode is used when the discharge side of the compressor 2 and the outdoor heat exchanger 4 and the suction side of the compressor 2 and the heat storage tank STR are connected to each other. A mode in which the discharge side of the compressor 2 communicates with the heat storage tank STR and the suction side of the compressor 2 communicates with the outdoor heat exchanger 4 is defined as a heating mode.

【0032】三方弁KV1については1次側冷凍サイク
ル内にて蓄熱槽STRと膨張弁5とを連通する設定を第
1モ−ド,冷媒対冷媒熱交換器HEXと膨張弁5とを連
通する設定を第2モ−ドと定義する。
Regarding the three-way valve KV1, the first mode is set so that the heat storage tank STR and the expansion valve 5 are communicated with each other in the primary side refrigeration cycle, and the refrigerant-refrigerant heat exchanger HEX and the expansion valve 5 are communicated with each other. The setting is defined as the second mode.

【0033】まず、夜間の製氷・蓄熱運転(1次側冷凍
サイクル)について説明する。1次側冷凍サイクルにお
いて、蓄熱槽STRが作用し、冷媒対冷媒熱交換器HE
Xは作用しないように三方弁KV1を切替え、2次側冷
凍サイクル内の冷媒搬送ポンプPMは停止している。こ
の場合の1次側冷凍サイクルの作用を以下説明してい
く。
First, the ice making / heat storage operation (primary refrigeration cycle) at night will be described. In the primary side refrigeration cycle, the heat storage tank STR operates to operate the refrigerant-refrigerant heat exchanger HE.
The three-way valve KV1 is switched so that X does not act, and the refrigerant transfer pump PM in the secondary side refrigeration cycle is stopped. The operation of the primary side refrigeration cycle in this case will be described below.

【0034】夜間製氷運転;四方弁3を冷房モ−ド,膨
張弁5を所定の開度,三方弁KV1を第1モ−ドとす
る。この時、圧縮機2から送られる高温高圧の冷媒は、
室外側熱交換器4にて凝縮し、膨張弁5で減圧されて液
あるいは二相状態となり、蓄熱槽STR内の1次側熱交
換部13aの管内にて蒸発して水16から吸熱した後、
圧縮機2へ戻る。
Night-time ice making operation: The four-way valve 3 is set to the cooling mode, the expansion valve 5 is set to a predetermined opening, and the three-way valve KV1 is set to the first mode. At this time, the high temperature and high pressure refrigerant sent from the compressor 2 is
After being condensed in the outdoor heat exchanger 4, decompressed by the expansion valve 5 to be in a liquid or two-phase state, evaporated in the pipe of the primary side heat exchange section 13a in the heat storage tank STR, and absorbed from the water 16 ,
Return to compressor 2.

【0035】これにより、蓄熱槽STR内の水16は、
蓄熱槽STR内の1次側熱交換部13aの伝熱管P1を
介して熱を奪われるため、前記伝熱管P1の外表面に氷
が生成される。このようにして製氷運転を行う。
As a result, the water 16 in the heat storage tank STR is
Since heat is taken through the heat transfer tube P1 of the primary side heat exchange section 13a in the heat storage tank STR, ice is generated on the outer surface of the heat transfer tube P1. The ice making operation is performed in this manner.

【0036】夜間蓄熱運転;四方弁3を暖房モ−ド,膨
張弁5を所定の開度,三方弁KV1を第1モ−ドとす
る。この時、圧縮機2から送られる高温高圧の冷媒は、
蓄熱槽STR内の1次側熱交換部13aの管内にて凝縮
して水16へ放熱した後、膨張弁5で減圧されて液ある
いは二相状態となり、室外側熱交換器4の管内にて蒸発
して室外から吸熱した後、圧縮機2へ戻る。
Night-time heat storage operation: The four-way valve 3 is a heating mode, the expansion valve 5 is a predetermined opening, and the three-way valve KV1 is a first mode. At this time, the high temperature and high pressure refrigerant sent from the compressor 2 is
After condensing in the pipe of the primary side heat exchange unit 13a in the heat storage tank STR and radiating heat to the water 16, the pressure is reduced by the expansion valve 5 to become a liquid or two-phase state, and in the pipe of the outdoor heat exchanger 4. After evaporating and absorbing heat from the outside, it returns to the compressor 2.

【0037】これにより、蓄熱槽STR内の水16は、
蓄熱槽STR内の1次側熱交換部13aの伝熱管P1を
介して熱を受け取るため、加熱され温水となる。このよ
うにして蓄熱運転を行う。
As a result, the water 16 in the heat storage tank STR is
Since it receives heat via the heat transfer pipe P1 of the primary side heat exchange section 13a in the heat storage tank STR, it is heated to become hot water. In this way, the heat storage operation is performed.

【0038】次に、昼間運転(2次側冷凍サイクル)に
ついて説明する。この場合、蓄熱槽STRには蓄冷(蓄
熱)されているが、1次側冷凍サイクルにおいて三方弁
KV1を第1モ−ドとして冷媒対冷媒熱交換器HEXの
2次側熱交換部14aを蒸発器(凝縮器)として作用さ
せて運転を行う。同時に、2次側冷凍サイクルにおい
て、冷媒対冷媒熱交換器HEXの2次側熱交換部14b
を作用させて運転を行う。
Next, the daytime operation (secondary refrigeration cycle) will be described. In this case, the heat is stored in the heat storage tank STR (heat storage), but in the primary side refrigeration cycle, the three-way valve KV1 is used as the first mode to evaporate the secondary side heat exchange section 14a of the refrigerant-refrigerant heat exchanger HEX. It operates as a condenser (condenser). At the same time, in the secondary side refrigeration cycle, the secondary side heat exchange section 14b of the refrigerant-to-refrigerant heat exchanger HEX.
To operate to operate.

【0039】この状態で、2次側冷凍サイクル内の冷媒
は、冷媒搬送ポンプPMにて、蓄熱槽STR内の2次側
熱交換部13bに送られ、蓄熱槽STR内の水16と熱
交換される。
In this state, the refrigerant in the secondary side refrigeration cycle is sent to the secondary side heat exchange section 13b in the heat storage tank STR by the refrigerant transfer pump PM and exchanges heat with the water 16 in the heat storage tank STR. To be done.

【0040】冷房時は図1中の矢印aのように冷媒は流
れ、蓄熱槽STR内の2次側熱交換部13bにおいて冷
却された冷媒は、更に、冷媒対冷媒熱交換器HEXの2
次側熱交換部14bへ送られ、1次側冷凍サイクル内の
冷媒対冷媒熱交換器HEXの2次側熱交換部14aとの
熱交換により冷却され液冷媒となる。
During cooling, the refrigerant flows as shown by the arrow a in FIG. 1, and the refrigerant cooled in the secondary side heat exchange section 13b in the heat storage tank STR is further cooled by the refrigerant-refrigerant heat exchanger HEX 2.
It is sent to the secondary side heat exchange section 14b and cooled by heat exchange with the secondary side heat exchange section 14a of the refrigerant-refrigerant heat exchanger HEX in the primary side refrigeration cycle to become a liquid refrigerant.

【0041】その後、室内側熱交換器17に送られ、そ
こで室内空気と熱交換して室内空気を冷却すると共に、
冷媒自身は高温のガス冷媒となって蓄熱槽STR内の2
次側熱交換部13bに戻るという作用を繰り返す。
After that, it is sent to the indoor heat exchanger 17 where it exchanges heat with the indoor air to cool the indoor air and
The refrigerant itself becomes a high-temperature gas refrigerant, which is 2 in the heat storage tank STR.
The operation of returning to the next-side heat exchange section 13b is repeated.

【0042】ここで、昼間の冷房運転時においては、蓄
熱槽STR内の1次側熱交換部13aの伝熱管P1に着
氷した氷の融解進行に伴い、氷が伝熱管P1から分離し
て水面へ浮上する。
Here, during the daytime cooling operation, the ice is separated from the heat transfer tube P1 as the ice adhering to the heat transfer tube P1 of the primary side heat exchange section 13a in the heat storage tank STR is melting. Ascend to the surface of the water.

【0043】しかし、蓄熱槽STR内の深さ方向に対し
て所定の間隔をおいて、水平に氷浮上防止用網19を設
置して氷の水面への浮上を防止することにより、蓄熱槽
STR内の温度分布を均一に維持して蓄熱槽STR内の
2次側熱交換部13bの各部における冷媒と水の熱交換
量(温度差)が均一となり、安定した熱取出しが行え、冷
房能力の低下を防止する。
However, the ice floating prevention net 19 is installed horizontally at a predetermined interval in the depth direction in the heat storage tank STR to prevent the ice from floating on the water surface. Maintaining a uniform temperature distribution inside, the heat exchange amount (temperature difference) of the refrigerant and water in each part of the secondary side heat exchanging part 13b in the heat storage tank STR becomes uniform, and stable heat extraction can be performed, thereby improving the cooling capacity. Prevent decline.

【0044】また、暖房時は図1中の矢印bのように冷
媒は流れ、冷媒対冷媒熱交換器HEXの2次側熱交換部
14bへ送られ、冷媒対冷媒熱交換器HEXの1次側熱
交換部14aとの熱交換により加熱された冷媒は、更
に、蓄熱槽STR内の2次側熱交換部13bにおいて加
熱されガス冷媒となる。
During heating, the refrigerant flows as shown by the arrow b in FIG. 1 and is sent to the secondary side heat exchange section 14b of the refrigerant-refrigerant heat exchanger HEX, where the primary refrigerant of the refrigerant-refrigerant heat exchanger HEX. The refrigerant heated by heat exchange with the side heat exchange section 14a is further heated in the secondary side heat exchange section 13b in the heat storage tank STR to become a gas refrigerant.

【0045】その後、室内側熱交換器17に送られ、そ
こで室内空気と熱交換して室内空気を加熱すると共に、
冷媒自身は低温の液冷媒となって可逆式冷媒搬送ポンプ
PMに戻るという作用を繰り返す。
After that, it is sent to the indoor heat exchanger 17 where it exchanges heat with the indoor air to heat the indoor air and
The refrigerant itself becomes a low temperature liquid refrigerant and repeats the action of returning to the reversible refrigerant transport pump PM.

【0046】このようにして、昼間の室内負荷が大きい
場合も対応ができ、室内機での冷房・暖房運転が行われ
る。
In this way, even when the indoor load during the daytime is large, it is possible to cope with it, and the cooling / heating operation in the indoor unit is performed.

【0047】以上のように、上記実施例では、蓄熱槽S
TRを介して1次側冷凍サイクルと2次側冷凍サイクル
とからなる蓄熱式空気調和機において、蓄熱槽STR内
の深さ方向に対して所定の間隔をおいて、水平に氷浮上
防止用網19を設置している。
As described above, in the above embodiment, the heat storage tank S
In a heat storage type air conditioner consisting of a primary side refrigeration cycle and a secondary side refrigeration cycle via TR, an ice floating prevention net is horizontally provided at a predetermined interval in the depth direction in the heat storage tank STR. 19 are installed.

【0048】これにより、夜間電力を利用した蓄冷熱に
より昼間に暖房、または冷房運転が行えるだけでなく、
昼間運転時の負荷応答性が高まり、特に昼間冷房運転時
における安定した熱取出しが可能となり、運転費が大幅
に低減できる。
As a result, not only heating or cooling operation can be performed in the daytime by the cold storage heat using the night electric power,
The load responsiveness during the daytime operation is improved, and stable heat extraction can be achieved especially during the daytime cooling operation, and the operating cost can be significantly reduced.

【0049】[0049]

【発明の効果】以上のように本発明は、蓄熱槽を介して
1次側冷凍サイクルと2次側冷凍サイクルとからなる蓄
熱式空気調和機において、前記蓄熱槽内の深さ方向に対
して所定の間隔をおいて、水平に氷浮上防止用網を設置
している。
As described above, according to the present invention, in a heat storage type air conditioner including a primary side refrigeration cycle and a secondary side refrigeration cycle with a heat storage tank interposed therebetween, with respect to a depth direction in the heat storage tank. Ice floating nets are installed horizontally at a predetermined interval.

【0050】これにより、夜間電力を利用した蓄冷熱に
より昼間に暖房、または冷房運転が行えるだけでなく、
昼間運転時の負荷応答性が高まり、特に昼間冷房運転時
における安定した熱取出しが可能となり、運転費が大幅
に低減できる。
As a result, not only heating or cooling operation can be performed in the daytime by the stored cold heat using the nighttime electric power,
The load responsiveness during the daytime operation is improved, and stable heat extraction can be achieved especially during the daytime cooling operation, and the operating cost can be significantly reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例における蓄熱式空気調和機の
冷凍サイクル図
FIG. 1 is a refrigeration cycle diagram of a heat storage type air conditioner according to an embodiment of the present invention.

【図2】本発明の一実施例における蓄熱槽内の熱交換器
及び氷浮上防止用網の設置状態を示す断面図
FIG. 2 is a cross-sectional view showing an installed state of a heat exchanger and an ice floating prevention net in a heat storage tank according to an embodiment of the present invention.

【図3】本発明の一実施例における氷浮上防止用網の概
略図
FIG. 3 is a schematic view of an ice floating prevention net according to an embodiment of the present invention.

【図4】従来例を示すヒ−トポンプ式空気調和機の冷凍
サイクル図
FIG. 4 is a refrigeration cycle diagram of a heat pump type air conditioner showing a conventional example.

【符号の説明】[Explanation of symbols]

2 圧縮機 3 四方弁 4 室外側熱交換器 5 膨張弁 13a 蓄熱槽の1次側熱交換部 13b 蓄熱槽の2次側熱交換部 14a 冷媒対冷媒熱交換器の1次側熱交換部 14b 冷媒対冷媒熱交換器の2次側熱交換部 17 室内側熱交換器 19 氷浮上防止用網 STR 蓄熱槽 P1,P2 伝熱管 HK フック HEX 冷媒対冷媒熱交換器 PM 冷媒搬送ポンプ KV1 三方弁 2 Compressor 3 Four-way valve 4 Outdoor heat exchanger 5 Expansion valve 13a Primary heat exchange part of heat storage tank 13b Secondary heat exchange part of heat storage tank 14a Primary heat exchange part of refrigerant-refrigerant heat exchanger 14b Secondary heat exchange part of refrigerant-refrigerant heat exchanger 17 Indoor heat exchanger 19 Ice floating prevention net STR Heat storage tank P1, P2 Heat transfer tube HK hook HEX Refrigerant-refrigerant heat exchanger PM Refrigerant transfer pump KV1 Three-way valve

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鈴木 皓三 東京都千代田区内幸町1丁目1番3号 東 京電力株式会社内 (72)発明者 杉田 吉秀 東京都千代田区内幸町1丁目1番3号 東 京電力株式会社内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Kozo Suzuki 1-3-1, Uchisaiwaicho, Chiyoda-ku, Tokyo Tokyo Electric Power Co., Inc. (72) Yoshihide Sugita 1-3-1, Uchisaiwai-cho, Chiyoda-ku, Tokyo Kyoden Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機と、四方弁と、室外側熱交換器
と、膨張弁と、三方弁とを直列に接続し、1次側熱交換
部と2次側熱交換部とを有した冷媒対冷媒熱交換器及び
1次側熱交換部と2次側熱交換部とを有した蓄熱槽の各
1次側熱交換部を並列に配置して前記切替弁により冷媒
の流路を切替え可能にした1次側冷凍サイクルと、前記
蓄熱槽内の2次側熱交換部と、冷媒対冷媒熱交換器の2
次側熱交換部と、冷媒搬送ポンプと、室内側熱交換器と
を環状に接続した2次側冷凍サイクルとからなり、前記
蓄熱槽内の深さ方向に対して所定の間隔をおいて、水平
に氷浮上防止用網を設置した蓄熱式空気調和機。
1. A compressor, a four-way valve, an outdoor heat exchanger, an expansion valve, and a three-way valve are connected in series, and a primary side heat exchange section and a secondary side heat exchange section are provided. Refrigerant-to-refrigerant heat exchangers, primary heat exchange parts of a heat storage tank having a primary side heat exchange part and a secondary side heat exchange part are arranged in parallel, and the flow path of the refrigerant is switched by the switching valve. The primary side refrigeration cycle made possible, the secondary side heat exchange section in the heat storage tank, and the refrigerant-refrigerant heat exchanger 2
It consists of a secondary side heat exchange section, a refrigerant transfer pump, and a secondary side refrigeration cycle in which an indoor side heat exchanger is annularly connected, with a predetermined interval in the depth direction in the heat storage tank, A heat storage type air conditioner with a horizontal ice floating prevention net installed.
JP14535092A 1992-06-05 1992-06-05 Heat storage type air conditioner Pending JPH05340636A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14535092A JPH05340636A (en) 1992-06-05 1992-06-05 Heat storage type air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14535092A JPH05340636A (en) 1992-06-05 1992-06-05 Heat storage type air conditioner

Publications (1)

Publication Number Publication Date
JPH05340636A true JPH05340636A (en) 1993-12-21

Family

ID=15383160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14535092A Pending JPH05340636A (en) 1992-06-05 1992-06-05 Heat storage type air conditioner

Country Status (1)

Country Link
JP (1) JPH05340636A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008215656A (en) * 2007-02-28 2008-09-18 Jfe Engineering Kk Thermal storage apparatus
US9421845B2 (en) 2004-04-22 2016-08-23 Webasto Ag Heating and air-conditioning system for a motor vehicle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9421845B2 (en) 2004-04-22 2016-08-23 Webasto Ag Heating and air-conditioning system for a motor vehicle
JP2008215656A (en) * 2007-02-28 2008-09-18 Jfe Engineering Kk Thermal storage apparatus

Similar Documents

Publication Publication Date Title
KR101864636B1 (en) Waste heat recovery type hybrid heat pump system
WO2013061473A1 (en) Hot-water supply and air-conditioning device
JP2008164237A (en) Heat pump system
CN216114369U (en) Air conditioner system
JP3404133B2 (en) Thermal storage type air conditioner
CN101936613B (en) Integrated heat exchange system
CN110207292A (en) Radiation-type air conditioner system and corresponding control method
JPH05340636A (en) Heat storage type air conditioner
JPH0320708Y2 (en)
JP3502155B2 (en) Thermal storage type air conditioner
JP3297467B2 (en) Thermal storage type air conditioner
JP3236345B2 (en) Thermal storage type air conditioner
JP2003202135A (en) Regenerative air-conditioning device
JP2727754B2 (en) Ice making equipment
JP2851696B2 (en) Thermal storage type air conditioner
CN212870024U (en) Air conditioner
JPH086940B2 (en) Building air conditioning system
JPS58124138A (en) Controlling method of driving auxiliary heat source in regenerative air conditioner
JPH05346248A (en) Heat accumulation type air conditioner
CN216924804U (en) Heat storage defrosting air conditioning system
JPH05340630A (en) Heat storage type air conditioner
JP3056588B2 (en) Thermal storage type air conditioner
JPH05340633A (en) Heat storage type air conditioner
JPH05346247A (en) Heat accumulation type air conditioner
JPH05340634A (en) Heat storage type air conditioner