JPH05339080A - Composite material - Google Patents

Composite material

Info

Publication number
JPH05339080A
JPH05339080A JP4147669A JP14766992A JPH05339080A JP H05339080 A JPH05339080 A JP H05339080A JP 4147669 A JP4147669 A JP 4147669A JP 14766992 A JP14766992 A JP 14766992A JP H05339080 A JPH05339080 A JP H05339080A
Authority
JP
Japan
Prior art keywords
silicon carbide
sic
composite material
substrate
base body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4147669A
Other languages
Japanese (ja)
Other versions
JPH0788265B2 (en
Inventor
Kichiya Yano
吉弥 谷野
Yasuhiro Akune
安博 阿久根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Pillar Packing Co Ltd
Original Assignee
Nippon Pillar Packing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Pillar Packing Co Ltd filed Critical Nippon Pillar Packing Co Ltd
Priority to JP4147669A priority Critical patent/JPH0788265B2/en
Publication of JPH05339080A publication Critical patent/JPH05339080A/en
Publication of JPH0788265B2 publication Critical patent/JPH0788265B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5053Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials non-oxide ceramics
    • C04B41/5057Carbides
    • C04B41/5059Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/80Optical properties, e.g. transparency or reflexibility

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To improve optical damage resistance and corrosion resistance by performing chemical vapor deposition of SiC on a surface of a specific base body to highten the purity of SiC on the surface. CONSTITUTION:0.03-0.06mum superfine SiC powders are sintered under high temp. and high pressure, and then the base body 1 consisting of a SiC sintered compact with alpha type or beta type crystal grains in which the SiC is 99.9wt.% and the density is >=3.12g/cm<3>, is obtained, B, Al and Fe <=200ppm are respectively incorporated in the base body 1 if necessary. Subsequently on a surface of the base body 1, a SiC coating film 2 with 200-500mum thickness is vapor-deposited by a low pressure CVD method to produce a composite material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は複合材に関し、より詳
しくは炭化ケイ素焼結体からなる基体の表面に、炭化ケ
イ素を化学蒸着している複合材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composite material, and more particularly to a composite material in which silicon carbide is chemically vapor-deposited on the surface of a substrate made of a silicon carbide sintered body.

【0002】[0002]

【従来の技術】従来、高出力レーザ反射鏡、X線レーザ
反射鏡、SOR光用レーザ反射鏡等の高密度エネルギー
光反射鏡の構成材として、炭化ケイ素焼結体からなる基
体の表面に、化学蒸着法(CVD法)によって炭化ケイ
素被膜を形成した複合材が用いられている(たとえば特
開平3−126671号公報参照)。
2. Description of the Related Art Conventionally, as a constituent material of a high-density energy light reflecting mirror such as a high-power laser reflecting mirror, an X-ray laser reflecting mirror, and a laser reflecting mirror for SOR light, a surface of a substrate made of a sintered silicon carbide is A composite material in which a silicon carbide coating film is formed by a chemical vapor deposition method (CVD method) is used (see, for example, JP-A-3-126671).

【0003】上記複合材からなる反射鏡は、炭化ケイ素
被膜の表面を、自乗平均平方根粗さ(RMS)が10オ
ングストローム以下となるように鏡面仕上げしたもので
あり、上記炭化ケイ素被膜が、耐熱性、熱伝導性等の物
理的性質に優れると共に、短波長域で高反射率を示し、
光学的性質に優れることから、鏡面の剥離、歪み、熱損
を生じ難いという利点がある。
The reflecting mirror made of the above composite material is obtained by mirror-finishing the surface of the silicon carbide coating so that the root mean square roughness (RMS) is 10 angstroms or less, and the silicon carbide coating is heat resistant. In addition to excellent physical properties such as thermal conductivity, it exhibits high reflectance in the short wavelength region,
Since it has excellent optical properties, it has the advantage that peeling, distortion, and heat loss of the mirror surface are unlikely to occur.

【0004】また、上記複合材としては、上記高密度エ
ネルギー光用反射鏡の他、軟X線用回析格子や、レンズ
用の精密金型の構成材としても用いられている。
Further, as the above-mentioned composite material, in addition to the above-mentioned reflecting mirror for high-density energy light, it is also used as a diffraction grating for soft X-rays and a constituent material of a precision mold for a lens.

【0005】[0005]

【発明が解決しようとする課題】上記複合材の基体を構
成する炭化ケイ素は、共有結合体の強い難焼結性物質で
あることから、これを焼結して緻密化するには、通常、
ホウ素、炭素、アルミニウム等の元素や、これらの化合
物の一種或いは二種以上を焼結助剤として、2〜5重量
%添加する必要がある。一方、基体の表面の炭化ケイ素
被膜は、一般に200〜500μmの膜厚を必要とする
ため、化学蒸着を、高温下(1300〜1700℃)で
長時間(数時間から数日)行う必要がある。このため、
上記化学蒸着工程において、基体を構成する焼結体に含
まれる焼結助剤等が、不純物として炭化ケイ素被膜中に
拡散移行し、当該被膜の純度が低下して、光損傷耐力や
耐食性等の性能が低下するという問題があった。
Since the silicon carbide constituting the substrate of the above composite material is a covalently bonded substance which is difficult to sinter, it is usually required to sinter and densify it.
It is necessary to add 2 to 5% by weight of an element such as boron, carbon or aluminum, or one or more of these compounds as a sintering aid. On the other hand, since the silicon carbide coating on the surface of the substrate generally requires a film thickness of 200 to 500 μm, it is necessary to perform chemical vapor deposition at a high temperature (1300 to 1700 ° C.) for a long time (several hours to several days). . For this reason,
In the chemical vapor deposition step, the sintering aid or the like contained in the sintered body forming the substrate diffuses and migrates into the silicon carbide coating film as an impurity, and the purity of the coating film is reduced, resulting in optical damage resistance and corrosion resistance. There was a problem that performance deteriorated.

【0006】このような問題は、特に炭化ケイ素焼結体
の密度が低い場合に顕著となる。これは、焼結体の空孔
部分(結晶粒界部分)に、上記焼結助剤等の不純物が高
濃度で堆積するためであると考えられる。この発明は、
上記問題点に鑑みてなされたものであり、高純度の炭化
ケイ素被膜を得ることができ、光損傷耐力や耐食性等の
諸性能に優れる複合材を提供することを目的とする。
[0006] Such a problem becomes remarkable especially when the density of the silicon carbide sintered body is low. It is considered that this is because impurities such as the above-mentioned sintering aid are deposited at a high concentration in the pores (crystal grain boundary portions) of the sintered body. This invention is
The present invention has been made in view of the above problems, and an object thereof is to provide a composite material which can obtain a high-purity silicon carbide coating film and is excellent in various properties such as optical damage resistance and corrosion resistance.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
のこの発明の複合材としては、炭化ケイ素焼結体からな
る基体の表面に、炭化ケイ素を化学蒸着している複合材
において、上記基体が、炭化ケイ素を99.9重量%以
上含み、密度が3.12g/cm3 以上の焼結体である
ことを特徴とするものである。
As a composite material of the present invention for achieving the above object, there is provided a composite material in which silicon carbide is chemically vapor-deposited on the surface of a base material made of a silicon carbide sintered body. Is a sintered body containing 99.9% by weight or more of silicon carbide and having a density of 3.12 g / cm 3 or more.

【0008】ただし、上記基体中のホウ素、アルミニウ
ム、及び鉄の含有量としては、それぞれ200ppm以
下であることが好ましい。
However, it is preferable that the contents of boron, aluminum and iron in the substrate are each 200 ppm or less.

【0009】[0009]

【作用】上記の構成の複合材によれば、炭化ケイ素焼結
体からなる基体が、炭化ケイ素を99.9重量%以上含
有する高純度のものであるため、この基体の表面に炭化
ケイ素を化学蒸着する際に、基体中に含まれる焼結助剤
等の不純物が炭化ケイ素被膜中に拡散移行するのを抑制
することができる。しかも、基体の密度が3.12g/
cm3 以上と高密度であり、空孔部分が少ないために、
その分高濃度の不純物が炭化ケイ素被膜中に拡散移行す
るのを抑制することができる。したがって、炭化ケイ素
被膜の純度が低下するのを抑制することができる。
According to the composite material having the above structure, since the base body made of the silicon carbide sintered body is of high purity containing 99.9% by weight or more of silicon carbide, the surface of the base body is provided with silicon carbide. It is possible to suppress impurities such as a sintering aid contained in the substrate from being diffused and transferred into the silicon carbide coating during the chemical vapor deposition. Moreover, the density of the substrate is 3.12 g /
Since it has a high density of cm 3 or more and has few holes,
Therefore, it is possible to suppress the diffusion of the high concentration of impurities into the silicon carbide coating film. Therefore, it is possible to prevent the purity of the silicon carbide coating film from decreasing.

【0010】即ち、この発明は、炭化ケイ素焼結体から
なる基体が、炭化ケイ素を99.9重量%以上含有し、
かつ密度が3.12g/cm3 以上である場合に、基体
中の不純物による炭化ケイ素被膜への悪影響が極めて少
ないという知見を得、かかる知見に基づいてなされたも
のである。なお、上記基体中のホウ素、アルミニウム、
及び鉄の含有量が、それぞれ200ppm以下である場
合には、特に有害な上記ホウ素等の不純物が、炭化ケイ
素被膜中に拡散移行するのを抑制することができる。
That is, according to the present invention, a substrate made of a silicon carbide sintered body contains 99.9% by weight or more of silicon carbide,
Moreover, it was made based on the finding that when the density is 3.12 g / cm 3 or more, the adverse effect of impurities in the substrate on the silicon carbide coating is extremely small. In addition, boron, aluminum,
When the iron content and the iron content are each 200 ppm or less, the particularly harmful impurities such as boron can be suppressed from diffusing and transferring into the silicon carbide coating film.

【0011】[0011]

【実施例】以下、実施例を示す添付図面により詳細に説
明する。図1は、この発明の複合材を示す断面図であ
る。この複合材は、炭化ケイ素焼結体からなる基体1の
表面に、化学蒸着法により、炭化ケイ素被膜2を形成し
たものである。
Embodiments will be described in detail below with reference to the accompanying drawings showing embodiments. FIG. 1 is a sectional view showing a composite material of the present invention. This composite material has a silicon carbide coating 2 formed on the surface of a substrate 1 made of a silicon carbide sintered body by a chemical vapor deposition method.

【0012】上記基体1は、炭化ケイ素を99.9重量
%以上含むと共に、密度が3.12g/cm3 以上の、
α型またはβ型結晶相の焼結体からなる。このような炭
化ケイ素焼結体は、従来の焼結助剤に代えて、0.03
〜0.06μm程度の炭化ケイ素の超微粉末を用い、そ
の表面滑性を利用して、高温高圧下で焼結を行うことに
より得ることができる(たとえば特公平2−19906
5号公報参照)。
The substrate 1 contains 99.9% by weight or more of silicon carbide and has a density of 3.12 g / cm 3 or more,
It is composed of an α-type or β-type crystal phase sintered body. Such a silicon carbide sintered body is replaced with the conventional sintering aid by 0.03.
It can be obtained by using ultra-fine powder of silicon carbide of about 0.06 μm and utilizing its surface smoothness to carry out sintering under high temperature and high pressure (for example, Japanese Patent Publication No. 2-19906).
(See Japanese Patent Publication No. 5).

【0013】また、上記炭化ケイ素被膜2は、上記高純
度焼結体からなる基体1の表面に、減圧熱CVD法によ
って、200〜500μmの厚みに蒸着されている。こ
のように、上記複合材においては、基体1を炭化ケイ素
を99.9重量%以上含む高純度の焼結体で構成してい
るので、その表面に炭化ケイ素被膜2を化学蒸着する際
に、基体1から炭化ケイ素被膜2中に不純物が拡散移行
するのを抑制することができる。
The silicon carbide coating 2 is vapor-deposited on the surface of the base 1 made of the high-purity sintered body to a thickness of 200 to 500 μm by the low pressure thermal CVD method. As described above, in the above composite material, since the substrate 1 is made of a high-purity sintered body containing 99.9% by weight or more of silicon carbide, when the silicon carbide coating 2 is chemically vapor-deposited on the surface thereof, Impurities can be suppressed from diffusing and transferring from the substrate 1 into the silicon carbide coating film 2.

【0014】また、基体1の密度が3.12g/cm3
以上と高密度であるので、空孔部分が少く、その分、高
濃度の不純物が炭化ケイ素被膜2中に拡散移行するのを
抑制することができる。したがって、上記炭化ケイ素被
膜2として高純度のものが得られ、これをRMS10オ
ングストローム以下に鏡面仕上げした反射鏡は、数倍か
ら数十倍(最大瞬間負荷、及び総エネルギー負荷)の光
損傷耐力を持つものとなる。これは、鏡面表面の結晶構
造が、不純物の介在がないことからより完全なものとな
り、結晶格子の歪みがなくなる結果、転移が極度に減少
し、(220)面に配向した安定した結晶構造となると
共に、鏡面仕上げに際し、結晶方位面の違いによる研磨
速度(被削性)の差に起因する微視的な段差の発生を抑
制することができるからであると推察される。したがっ
て、化学的にも不活性な表面となり、ガラスレンズ成形
型のようなケイ酸塩等による腐蝕に対する抵抗力も格段
に向上するものとなる。
The density of the substrate 1 is 3.12 g / cm 3.
Since the density is higher than that described above, the number of voids is small, and accordingly, high-concentration impurities can be suppressed from diffusing and transferring into the silicon carbide coating film 2. Therefore, a high-purity silicon carbide coating 2 can be obtained, and a mirror having a RMS of 10 angstroms or less can be used as a reflecting mirror to have a light damage resistance of several times to several tens of times (maximum instantaneous load and total energy load). Will have. This is because the crystal structure of the mirror surface is more complete because there is no inclusion of impurities, and as a result of eliminating the distortion of the crystal lattice, the transition is extremely reduced and a stable crystal structure oriented in the (220) plane is obtained. At the same time, it is presumed that it is possible to suppress the occurrence of microscopic step due to the difference in polishing rate (machinability) due to the difference in crystal orientation plane during mirror finishing. Therefore, the surface becomes chemically inactive, and the resistance to corrosion by silicate or the like such as the glass lens mold is remarkably improved.

【0015】なお、上記基体1を構成する炭化ケイ素焼
結体としては、ホウ素やアルミニウム等の焼結助剤を併
用して焼結したものであってもよいが、いずれにして
も、ホウ素、アルミニウム、及び鉄等の不純物の含有量
は、200ppm以下であることが、特に有害なこれら
不純物が、炭化ケイ素被膜2中に拡散移行するのを抑制
できることから好ましい。
The silicon carbide sintered body constituting the substrate 1 may be sintered with a sintering aid such as boron or aluminum, but in any case, boron, It is preferable that the content of impurities such as aluminum and iron is 200 ppm or less because it is possible to suppress particularly harmful impurities from diffusing and transferring into the silicon carbide coating 2.

【0016】評価試験 本願発明にかかる複合材及び従来の複合材を用いて反射
鏡を作成し、それぞれの耐力の評価試験を行った。ただ
し、いずれについても炭化ケイ素被膜は、フロートポリ
ッシングによって鏡面仕上げを施した。 (1) 本願発明品 基体の炭化ケイ素含有量 99.9重量% 密 度 3.12g/cm
3 ホウ素含有量 2ppm アルミニウム含有量 100ppm 鉄含有量 100ppm (2) 従来品 基体の炭化ケイ素含有量 95重量% 密 度 3.0g/cm
3 ホウ素含有量 1〜3重量% アルミニウム含有量 1重量% 鉄含有量 500〜5000p
pm (3) 試験条件 従来品と本願発明品とを、以下のの条件でアルゴン
エキシマレーザ光(波長126nm)のショットの重ね
打ちを繰り返し、当該レーザ光を合計36mJ及び67
mJ照射した。
Evaluation Test A reflecting mirror was prepared by using the composite material according to the present invention and the conventional composite material, and an evaluation test of each proof stress was conducted. However, in each case, the silicon carbide coating was mirror-finished by float polishing. (1) Inventive product Silicon carbide content of substrate 99.9% by weight Density 3.12 g / cm
3 Boron content 2ppm Aluminum content 100ppm Iron content 100ppm (2) Conventional product Substrate silicon carbide content 95wt% Density 3.0g / cm
3 Boron content 1-3 wt% Aluminum content 1 wt% Iron content 500-5000p
pm (3) Test conditions The conventional product and the product of the present invention were repeatedly shot repeatedly with argon excimer laser light (wavelength 126 nm) under the following conditions, and the total laser light was 36 mJ and 67 m.
It was irradiated with mJ.

【0017】アルゴンガス圧23atm時 最大出力11mJ/パルス幅(FWHM)〜10ns ピークパワー1.1MW アルゴンガス圧35atm時 最大出力12.5mJ/パルス幅(FWHM)〜4ns ピークパワー3.1MW (4) 評価試験結果 従 来 品:合計36mJの照射ではダメージは認めら
れず、合計67mJで白濁した点がみられた。
Maximum output 11 mJ / pulse width (FWHM) to 10 ns peak power 1.1 MW at argon gas pressure 23 atm Maximum output 12.5 mJ / pulse width (FWHM) to 4 ns peak power 3.1 MW at argon gas pressure 35 atm Peak power 3.1 MW (4) Evaluation test results Conventional product: No damage was observed at a total irradiation of 36 mJ, and a cloudy point was found at a total of 67 mJ.

【0018】本願発明品:合計67mJの照射でもダメ
ージは認められず、白濁した点もなかった。
Product of the present invention: No damage was observed even with irradiation of 67 mJ in total, and there was no cloudy point.

【0019】[0019]

【発明の効果】以上のように、この発明の複合材によれ
ば,基体が高純度の炭化ケイ素焼結体で構成されている
ので、当該基体に炭化ケイ素被膜を蒸着する際に、基体
に含まれる不純物が炭化ケイ素被膜中に拡散移動するの
を抑制することができる。しかも、基体の密度が3.1
2g/cm3 以上と高密度であり、高濃度の不純物が堆
積する空孔部分が少ないので、当該高濃度の不純物が炭
化ケイ素被膜中に拡散移行するのを抑制することができ
る。
As described above, according to the composite material of the present invention, since the substrate is made of the high-purity silicon carbide sintered body, when the silicon carbide coating is vapor-deposited on the substrate, the substrate is Impurities contained can be suppressed from diffusing and moving into the silicon carbide coating. Moreover, the density of the substrate is 3.1.
Since it has a high density of 2 g / cm 3 or more and there are few pores where high-concentration impurities are deposited, it is possible to suppress the high-concentration impurities from diffusing and transferring into the silicon carbide coating film.

【0020】したがって、炭化ケイ素被膜の純度が低下
するのを抑制することができ、光損傷耐力や耐食性等の
諸性能に優れる複合材となる。特に、上記基体中のホウ
素、アルミニウム、及び鉄の含有量が、それぞれ200
ppm以下である場合には、特に有害なこれら不純物
が、炭化ケイ素被膜中に拡散移行するのを抑制すること
ができるので、より一層光損傷耐力や耐食性等の諸性能
に優れる複合材となる。
Therefore, the deterioration of the purity of the silicon carbide coating can be suppressed, and the composite material is excellent in various performances such as optical damage resistance and corrosion resistance. In particular, the contents of boron, aluminum and iron in the substrate are each 200
When the content is less than or equal to ppm, particularly harmful impurities can be suppressed from diffusing and transferring into the silicon carbide coating film, so that the composite material is further excellent in various properties such as optical damage resistance and corrosion resistance.

【0021】[0021]

【図面の簡単の説明】[Brief description of drawings]

【0022】[0022]

【図1】この発明の複合材の一実施例を示す断面図であ
る。
FIG. 1 is a sectional view showing an embodiment of a composite material of the present invention.

【0023】[0023]

【符号の説明】[Explanation of symbols]

1 基体 2 炭化ケイ素被膜 1 substrate 2 silicon carbide coating

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】炭化ケイ素焼結体からなる基体の表面に、
炭化ケイ素を化学蒸着している複合材において、上記基
体が、炭化ケイ素を99.9重量%以上含み、密度が
3.12g/cm3 以上の焼結体であることを特徴とす
る複合材。
1. A surface of a substrate made of a silicon carbide sintered body,
A composite material in which silicon carbide is chemically vapor-deposited, wherein the substrate is a sintered body containing 99.9% by weight or more of silicon carbide and having a density of 3.12 g / cm 3 or more.
【請求項2】上記基体中のホウ素、アルミニウム、及び
鉄の含有量が、それぞれ200ppm以下である請求項
1記載の複合材。
2. The composite material according to claim 1, wherein the contents of boron, aluminum and iron in the substrate are each 200 ppm or less.
JP4147669A 1992-06-08 1992-06-08 Composite material Expired - Fee Related JPH0788265B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4147669A JPH0788265B2 (en) 1992-06-08 1992-06-08 Composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4147669A JPH0788265B2 (en) 1992-06-08 1992-06-08 Composite material

Publications (2)

Publication Number Publication Date
JPH05339080A true JPH05339080A (en) 1993-12-21
JPH0788265B2 JPH0788265B2 (en) 1995-09-27

Family

ID=15435599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4147669A Expired - Fee Related JPH0788265B2 (en) 1992-06-08 1992-06-08 Composite material

Country Status (1)

Country Link
JP (1) JPH0788265B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0980202A (en) * 1995-09-08 1997-03-28 Nippon Pillar Packing Co Ltd Optical element structural material
CN100418651C (en) * 2006-10-18 2008-09-17 合肥工业大学 Composite SiC and its making process

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02199065A (en) * 1989-01-30 1990-08-07 Kazumichi Kijima Sintered silicon carbide having high thermal conductivity and production thereof
JPH03126671A (en) * 1989-10-11 1991-05-29 Nippon Pillar Packing Co Ltd Composite material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02199065A (en) * 1989-01-30 1990-08-07 Kazumichi Kijima Sintered silicon carbide having high thermal conductivity and production thereof
JPH03126671A (en) * 1989-10-11 1991-05-29 Nippon Pillar Packing Co Ltd Composite material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0980202A (en) * 1995-09-08 1997-03-28 Nippon Pillar Packing Co Ltd Optical element structural material
CN100418651C (en) * 2006-10-18 2008-09-17 合肥工业大学 Composite SiC and its making process

Also Published As

Publication number Publication date
JPH0788265B2 (en) 1995-09-27

Similar Documents

Publication Publication Date Title
JPH03126671A (en) Composite material
US5865909A (en) Boron modified molybdenum silicide and products
WO2012098062A2 (en) Substrate for mirrors for euv lithography
US7012753B2 (en) Optical device with enhanced mechanical stability operating in the extreme ultraviolet and lithography mask comprising such a device
Mah et al. Characterization and properties of hot-pressed Si/sub 3/N/sub 4/with alkoxy-derived CeO/sub 2/or Y/sub 2/O/sub 3/as sintering aids
JPH05339080A (en) Composite material
US7632455B2 (en) High temperature niobium alloy
JP2021502476A (en) Alloy turbine parts containing MAX phase
JPH0336402B2 (en)
JPH09142996A (en) Reflection type mask substrate
Geisz et al. Film stress of sputtered W/C multilayers and strain relaxation upon annealing
CN112853287A (en) Protective coating with long-time high-temperature-resistant steam oxidation and preparation method thereof
Wenderoth et al. Isothermal oxidation behavior of a precipitation-hardened Pt-base alloy with additions of Al, Cr and Ni
JPH0413101A (en) Reflecting mirror for synchrotron radiation light
JP2020027677A (en) Soft magnetic film of heat-assisted magnetic recording medium and sputtering target for forming soft magnetic film of heat-assisted magnetic recording medium
Pickering et al. Effect of Process Conditions and Chemical Composition on the Microstructure and Properties of Chemically Vapor Deposited SiC, Si, ZnSe, ZnS and ZnSxSe1-x
JP2684927B2 (en) Optical element substrate
JPH01201480A (en) Diamond coated hydrogen embrittled metal and production thereof
JP3311472B2 (en) Mask membrane for X-ray and electron beam lithography
JPH0570267A (en) X ray reflecting mirror and its manufacture
JPH11103106A (en) Reflector mirror for laser
JPS6295802A (en) Thin film resistor
JPH033277A (en) Axis-oriented thin superconducting film
Noebe et al. Temperature and Orientation Dependence of Surface Film Effects in Single Crystal Nial
Howells Some ideas on the choice of designs and materials for cooled mirrors

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees