JPH0533893A - Heating device for fluid - Google Patents

Heating device for fluid

Info

Publication number
JPH0533893A
JPH0533893A JP3210324A JP21032491A JPH0533893A JP H0533893 A JPH0533893 A JP H0533893A JP 3210324 A JP3210324 A JP 3210324A JP 21032491 A JP21032491 A JP 21032491A JP H0533893 A JPH0533893 A JP H0533893A
Authority
JP
Japan
Prior art keywords
tubular body
conductive member
voltage
pipe body
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3210324A
Other languages
Japanese (ja)
Inventor
Masaru Fukuyama
勝 福山
Masaaki Iguchi
正昭 井口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP3210324A priority Critical patent/JPH0533893A/en
Publication of JPH0533893A publication Critical patent/JPH0533893A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To attain heating in good efficiency by an equipment wherein miniaturization of an equipment total unit and reduction of the cost of equipment can be achieved further with high safety. CONSTITUTION:A pair of electrode parts 10a, 10b provided with a space along the lenthwise direction of a pipe body 10 are electrically connected by a conductive member 20 to arrange an annular transformer 30 in an external periphery of the pipe body 10 between both the electrode parts 10a, 10b. When primary voltage is applied to a primary coil 32 of the annular transformer 30 from an AC power supply 40, secondary voltage is induced in the pipe body 10. By setting a relation to where (electric resistance of pipe body 10)>>(electric resistance of conductive member 20), most of the secondary voltage is consumed for heating by a voltage drop of the pipe body 10 to generate voltage, applied to both the electrode parts 10a, 10b of the pipe body 10, only by a voltage drop of the conductive member 20. In this way, the pipe body 10 is efficiently heated and also generating very small voltage applied to both the electrode parts 10a, 10b.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば石油精製プラン
トや化学薬品製造プラント等において、各種の気体、液
体及び粉体などの流動体が送給される管体を通電加熱す
ることによって、その流動体を加熱して各種の熱処理や
保温などを行うようにした流動体の加熱装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to, for example, a petroleum refining plant or a chemicals manufacturing plant by electrically heating a pipe to which fluids such as various gases, liquids and powders are fed. The present invention relates to a heating device for a fluid, which heats the fluid to perform various heat treatments and heat retention.

【0002】[0002]

【従来の技術】従来から、各種の流動体を熱処理したり
保温したりするために、その流動体が送給される管体を
通電加熱することによって流動体を加熱する装置があ
る。図6は従来の加熱装置の基本的な構成を示す概略断
面図である。導電性を有する管体1の長手方向に沿って
間隔を隔てて一対の電極部1a、1bが設けられ、これ
ら両電極部1a、1bが給電線2a、2bによってトラ
ンス3に接続され、このトランス3が交流電源4に接続
されている。この装置において、交流電源4から供給さ
れる交流電圧をトランス3によって変圧し、給電線2
a、2bを介して両電極部1a、1bに印加する。これ
により、管体1が両電極部1a、1bの間において通電
加熱され、管体1内を矢印方向へ送給される流動体が加
熱されていく。また、この装置においては、両電極部1
a、1bに印加された電圧が、これら両電極部1a、1
b間の加熱ゾーンから管体1を通じて外側に漏れるのを
防止するために、両電極部1a、1bの外側にそれぞれ
チョーク5が設けられている。これらチョーク5は環状
鉄心によって構成され、管体1の外周囲に配置されてい
る。漏れ電圧がチョーク5部分の管体1に現れると、チ
ョーク5のリアクタンスによって管体1に逆向きの電圧
が発生し、電圧の漏れが阻止される。
2. Description of the Related Art Conventionally, in order to heat and keep heat of various fluids, there is a device for heating the fluids by electrically heating a pipe body to which the fluids are fed. FIG. 6 is a schematic sectional view showing the basic structure of a conventional heating device. A pair of electrode portions 1a and 1b are provided at intervals along the longitudinal direction of the tubular body 1 having conductivity, and both electrode portions 1a and 1b are connected to a transformer 3 by power supply lines 2a and 2b. 3 is connected to the AC power supply 4. In this device, an AC voltage supplied from an AC power source 4 is transformed by a transformer 3 to supply a power supply line 2
It is applied to both electrode portions 1a and 1b via a and 2b. As a result, the tubular body 1 is electrically heated between the electrode portions 1a and 1b, and the fluid fed in the tubular body 1 in the arrow direction is heated. Further, in this device, both electrode parts 1
The voltage applied to a and 1b is the same as the voltage applied to both electrode portions 1a and 1b.
In order to prevent leakage from the heating zone between b to the outside through the tube body 1, chokes 5 are provided on the outside of both electrode portions 1a and 1b. These chokes 5 are composed of an annular iron core and are arranged around the outer periphery of the tubular body 1. When a leakage voltage appears in the tube body 1 in the choke 5, the reactance of the choke 5 generates a voltage in the opposite direction in the tube body 1 to prevent the voltage from leaking.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上述し
たように管体1の両電極部1a、1bにトランス3から
の電圧を直接印加する、いわゆる外部トランス方式の加
熱装置には、次のような問題点があった。即ち、管体1
に供給する所定の電圧及び電流をトランス3の二次コイ
ルで発生させるので、著しく膨大な二次コイルが必要で
あり、トランス3が極めて大型かつ大重量となる。ま
た、トランス3を管体1の近傍に配置したとしても、ト
ランス3から管体1への給電線2a、2bは相当の長さ
になるので、ジュール損を極力少なくするために大断面
積の給電線2a、2bを使用する必要がある。さらに、
発生熱量を高めるために管体1に大電流を流すことはト
ランス3の大型化によって限度があるので、この場合に
は管体1の電気抵抗を大きく即ち管体1を長くする必要
がある。このように従来は、トランス3の大型大重量
化、給電線2a、2bの大断面積化、管体1の長尺化な
どによって、設備全体が極めて大型になると共に設備費
用が著しく増大するという問題があった。また、従来の
外部トランス方式の加熱装置の場合は、加熱のために管
体1で消費される電圧、即ち管体1で生じる電圧降下に
等しい電圧を、管体1の両電極部1a、1b間に直接印
加する必要がある。このため、両電極部1a、1bにか
かる電圧が非常に高電圧となり、付近の作業者の感電事
故や周辺機器の損傷など、安全性の面で大きな問題があ
った。さらに、従来は、上述のように管体1の両電極部
1a、1bに高電圧がかかるので、電圧の漏れを防止す
るためのチョーク5として、極めて大型かつ大重量のも
のを使用する必要があり、この点からも、設備全体の大
型化並びに設備費用の増加を招くという問題があった。
However, as described above, a so-called external transformer type heating device in which the voltage from the transformer 3 is directly applied to both electrode portions 1a and 1b of the tubular body 1 is as follows. There was a problem. That is, the tubular body 1
The secondary coil of the transformer 3 generates a predetermined voltage and current to be supplied to the transformer 3. Therefore, a remarkably huge secondary coil is required, and the transformer 3 becomes extremely large and heavy. Even if the transformer 3 is arranged in the vicinity of the pipe body 1, since the feeder lines 2a and 2b from the transformer 3 to the pipe body 1 have a considerable length, a large cross-sectional area is required to minimize Joule loss. It is necessary to use the power supply lines 2a and 2b. further,
Since there is a limit to the flow of a large current through the tube body 1 in order to increase the amount of heat generated due to the size increase of the transformer 3, in this case, it is necessary to increase the electrical resistance of the tube body 1, that is, to lengthen the tube body 1. As described above, conventionally, due to the large and heavy weight of the transformer 3, the large cross-sectional area of the power supply lines 2a and 2b, the long length of the tube 1, etc., the entire equipment becomes extremely large and the equipment cost significantly increases. There was a problem. Further, in the case of the conventional external transformer type heating device, the voltage consumed in the tube body 1 for heating, that is, the voltage equal to the voltage drop generated in the tube body 1, is applied to both electrode portions 1a, 1b of the tube body 1. It is necessary to apply the voltage directly between them. For this reason, the voltage applied to both electrode portions 1a and 1b becomes extremely high, which poses a serious problem in terms of safety, such as electric shock accidents to nearby workers and damage to peripheral equipment. Further, conventionally, since a high voltage is applied to both electrode portions 1a, 1b of the tubular body 1 as described above, it is necessary to use an extremely large and heavy choke 5 for preventing voltage leakage. However, from this point as well, there is a problem that the size of the entire facility is increased and the facility cost is increased.

【0004】そこで本発明は、設備全体の小型化並びに
設備費用の低減が可能でしかも安全性の高い設備で効率
の良い加熱を行うことができるようにした流動体の加熱
装置を提供することを目的とする。
Therefore, the present invention aims to provide a heating apparatus for a fluid, which can reduce the size of the entire equipment and reduce the equipment cost and can perform efficient heating in the equipment with high safety. To aim.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、本発明による流動体の加熱装置は、流動体を送給す
るための導電性材料からなる管体と、この管体の長手方
向に沿って所定間隔を隔てた一対の電極部の間を電気的
に接続する導電部材と、前記両電極部の間において前記
管体の外周囲に配置された環状トランスとを具備し、前
記環状トランスは交流電源に接続される一次コイルの環
内を前記管体の挿通部にて構成し、前記両電極部の間に
おける前記管体の電気抵抗R1と前記導電部材の電気抵
抗R2との関係をR1>>R2に設定してなるものであ
る。
In order to achieve the above object, a fluid heating apparatus according to the present invention comprises a tube made of an electrically conductive material for feeding the fluid, and a longitudinal direction of the tube. And a ring-shaped transformer arranged around the outer periphery of the tubular body between the two electrode parts, the conductive member electrically connecting between the pair of electrode parts at a predetermined distance along the ring-shaped ring. In the transformer, the inside of the ring of the primary coil connected to the AC power source is formed by the insertion portion of the tubular body, and the relation between the electrical resistance R1 of the tubular body and the electrical resistance R2 of the conductive member between the both electrode portions. Is set to R1 >> R2.

【0006】[0006]

【作用】上記のように構成された本発明の作用を、図1
及び図2に示す第1実施例を参照して説明する。交流電
源40から環状トランス30の一次コイル32に一次電
圧が印加されると、一次コイル32の環内に挿通された
管体10が二次コイルとして機能するので、その管体1
0に二次電圧が誘起される。管体10の両電極部10
a、10bの間が導電部材20によって電気的に接続さ
れているので、管体10及び導電部材20によって短絡
回路が形成され、管体10に発生した二次電流は導電部
材20を帰線として流れることになる。管体10に誘起
された二次電圧は、管体10における電圧降下と導電部
材20における電圧降下とによって消費されるが、(管
体10の電気抵抗)>>(導電部材20の電気抵抗)に
設定されているので、二次電圧の殆どが管体10の加熱
のために消費され、導電部材20における損失は極めて
少ない。これにより、管体10が極めて効率良く通電加
熱され、この管体10内に送給される流動体が効率的に
加熱される。このように環状トランス30によって管体
10に二次電圧を誘起させる、いわゆる内部トランス方
式の場合、まず、環状トランス30は膨大な二次コイル
が不要なので、環状トランス30の小型軽量化を図るこ
とができる。また、環状トランス30から管体10への
長い給電線が必要なく、導電部材20の長さは管体10
の両電極部10a、10bの間を接続するだけの最短距
離で済むので、その導電部材20におけるジュール損が
最少限になり、ある程度のジュール損が許容されるので
あれば断面積の小さな導電部材20を用いることが可能
になる。さらに、小型軽量の環状トランス30によって
管体10に極めて大きな二次電流を発生させることが可
能なので、所定の発生熱量を得る場合の管体10の長さ
を相対的に短縮することができる。そして、内部トラン
ス方式の場合、管体10の内部で発生した電圧が管体1
0自身の電圧降下により消費されるので、両電極部10
a、10bにかかる電圧は導電部材20の内部で発生す
る電圧降下に等しくなる。導電部材20の電気抵抗は極
めて小さいので、両電極部10a、10bにかかる電圧
は極めて小さな電圧になる。これにより、安全性が高め
られると共に、チョーク50の小型軽量化が可能とな
る。
The operation of the present invention configured as described above will be described with reference to FIG.
Also, description will be made with reference to the first embodiment shown in FIG. When a primary voltage is applied from the AC power supply 40 to the primary coil 32 of the annular transformer 30, the tubular body 10 inserted in the ring of the primary coil 32 functions as a secondary coil.
A secondary voltage is induced at 0. Both electrode parts 10 of the tubular body 10
Since a and 10b are electrically connected by the conductive member 20, a short circuit is formed by the tube 10 and the conductive member 20, and the secondary current generated in the tube 10 returns to the conductive member 20 as a return line. It will flow. The secondary voltage induced in the tubular body 10 is consumed by the voltage drop in the tubular body 10 and the voltage drop in the conductive member 20, but (electrical resistance of the tubular body 10) >> (electrical resistance of the conductive member 20) Since most of the secondary voltage is consumed for heating the tubular body 10, the loss in the conductive member 20 is extremely small. As a result, the pipe body 10 is electrically heated very efficiently, and the fluid fed into the pipe body 10 is efficiently heated. In the case of the so-called internal transformer method in which the secondary voltage is induced in the tubular body 10 by the annular transformer 30 as described above, first, since the annular transformer 30 does not need a huge secondary coil, the annular transformer 30 should be made compact and lightweight. You can In addition, a long power supply line from the annular transformer 30 to the pipe body 10 is not necessary, and the length of the conductive member 20 is equal to that of the pipe body 10.
Since the shortest distance for connecting the two electrode portions 10a and 10b is sufficient, the Joule loss in the conductive member 20 is minimized, and if a certain Joule loss is allowed, the conductive member having a small cross-sectional area is obtained. 20 can be used. Furthermore, since the extremely small secondary current can be generated in the tubular body 10 by the small and lightweight annular transformer 30, the length of the tubular body 10 when a predetermined amount of heat is generated can be relatively shortened. In the case of the internal transformer system, the voltage generated inside the tubular body 10 is
Since it is consumed by the voltage drop of 0 itself, both electrode parts 10
The voltage applied to a and 10b becomes equal to the voltage drop generated inside the conductive member 20. Since the electric resistance of the conductive member 20 is extremely small, the voltage applied to both electrode portions 10a and 10b is extremely small. As a result, safety is improved and the choke 50 can be made smaller and lighter.

【0007】[0007]

【実施例】以下、本発明による流動体の加熱装置の実施
例を図1〜図5を参照して説明する。なお、各実施例に
おいて実質的に同等な構成の部分には同一の符号を付し
てその重複説明を省略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a fluid heating apparatus according to the present invention will be described below with reference to FIGS. In addition, in each of the embodiments, the portions having substantially the same configurations are denoted by the same reference numerals, and the duplicate description thereof will be omitted.

【0008】まず、図1及び図2は第1実施例を示すも
のである。流動体を加熱するための管体10は導電性材
料にて円管状に形成されたものであり、例えば鋼管やス
テンレス管などが用いられる。管体10の両端にはフラ
ンジ10a、10bが設けられており、これらフランジ
10a、10bにおいて前後に別の管体11、12が連
接され、矢印方向へ向かう流動体の送給路が形成されて
いる。
First, FIGS. 1 and 2 show a first embodiment. The tubular body 10 for heating the fluid is formed of a conductive material into a circular tube shape, and for example, a steel tube or a stainless steel tube is used. Flange 10a, 10b is provided at both ends of the pipe body 10, and another pipe body 11, 12 is connected to the front and rear of these flanges 10a, 10b to form a fluid feed passage in the direction of the arrow. There is.

【0009】管体10の外周囲には、例えばFRP等の
非導電性で断熱性かつ耐熱性を有する保温材15が巻回
積層されている。
A heat insulating material 15 such as FRP, which is non-conductive, has heat insulating properties and heat resistance, is wound and laminated around the outer periphery of the tubular body 10.

【0010】そして、管体10の外周囲には環状トラン
ス30が配置されている。この環状トランス30は、例
えば磁路として好適な性質を有する珪素鋼板を円環状に
形成して所定の長さに積層した環状鉄心31と、この環
状鉄心31の内外周に沿って巻回させた一次コイル32
とによって構成されている。その環状鉄心31の環内に
前記管体10が同心状に挿通されている。そして、環状
トランス30の一次コイル32は、パワーコントロール
スイッチを有する交流電源40に接続されている。
An annular transformer 30 is arranged around the outer circumference of the tubular body 10. The ring-shaped transformer 30 is formed by, for example, a ring-shaped iron core 31 in which a silicon steel plate having a property suitable as a magnetic path is formed into a ring shape and laminated to a predetermined length, and the ring-shaped iron core 31 is wound along the inner and outer circumferences thereof. Primary coil 32
It is composed of and. The tubular body 10 is concentrically inserted in the ring of the annular core 31. The primary coil 32 of the annular transformer 30 is connected to the AC power supply 40 having a power control switch.

【0011】次に、管体10の前記フランジ10a、1
0bがそれぞれ電極部にて構成されており、これら両電
極部10a、10bの間に導電部材(いわゆるブスバ
ー)20が架設され、これによって両電極部10a、1
0bの間が電気的に接続されている。この導電部材20
は銅材などの良導電材が用いられる。ここで、両電極部
10a、10bの間における管体10の電気抵抗R1と
導電部材20の電気抵抗R2との関係は、R1>>R2
に設定されている。鋼管などからなる管体10は比較的
電気抵抗が大きく、銅材などからなる導電部材20は電
気抵抗が極めて小さい上に断面積などを任意に設定可能
であるので、R1>>R2にすることは極めて容易であ
る。なお、導電部材20は円筒状に形成され、環状トラ
ンス30の外周囲に近接してほぼ同心状に配置されると
共に、環状トランス30が配置されない部分においては
管体10の外周囲に近接してほぼ同心状に配置されてい
る。
Next, the flanges 10a, 1 of the tubular body 10 are
0b is composed of electrode portions, respectively, and a conductive member (so-called bus bar) 20 is installed between these electrode portions 10a, 10b, whereby both electrode portions 10a, 1b.
0b is electrically connected. This conductive member 20
Is made of a good conductive material such as copper. Here, the relationship between the electric resistance R1 of the tubular body 10 and the electric resistance R2 of the conductive member 20 between the two electrode portions 10a and 10b is R1 >> R2.
Is set to. Since the tubular body 10 made of a steel pipe or the like has a relatively large electric resistance, and the conductive member 20 made of a copper material or the like has an extremely small electric resistance and the cross-sectional area and the like can be set arbitrarily, set R1 >> R2. Is extremely easy. The conductive member 20 is formed in a cylindrical shape and is arranged substantially concentrically in the vicinity of the outer periphery of the annular transformer 30, and in the portion where the annular transformer 30 is not arranged, it is arranged in the vicinity of the outer periphery of the tubular body 10. Almost concentrically arranged.

【0012】また、管体10の電極部10b近傍の内表
面には温度センサ45が設けられている。この温度セン
サ45の出力信号は制御部41に入力され、制御部41
からの制御信号は交流電源40のパワーコントロールス
イッチに伝達される。
A temperature sensor 45 is provided on the inner surface of the tubular body 10 near the electrode portion 10b. The output signal of the temperature sensor 45 is input to the control unit 41, and the control unit 41
The control signal from is transmitted to the power control switch of the AC power supply 40.

【0013】なお、本実施例においては、管体10の電
極部10b側が接地されており、電極部10aの外側に
チョーク50が設けられている。チョーク50は珪素鋼
板などを積層した環状鉄心によって構成され、管体10
の外周囲に近接配置されている。
In the present embodiment, the electrode portion 10b side of the tubular body 10 is grounded, and the choke 50 is provided outside the electrode portion 10a. The choke 50 is composed of a ring-shaped iron core formed by laminating silicon steel plates, etc.
It is placed close to the outer periphery of.

【0014】上述のように構成された加熱装置の作用は
前記〔作用〕の項で述べた通りであり、管体10に誘起
される二次電圧の殆どが管体10の加熱のために消費さ
れるので、管体10が極めて効率良く通電加熱され、こ
の管体10内に送給される流動体を効率的に加熱するこ
とができる。また、このような内部トランス方式の場
合、環状トランス30の小型軽量化、導電部材20の小
断面積化、管体10の短縮化などによって、設備全体を
著しく小型化することができると共に設備費用を大幅に
低減することができる。そして、内部トランス方式の場
合、両電極部10a、10bにかかる電圧は、導電部材
20の電圧降下分だけの極めて小さな電圧になる。例え
ば、この実施例のように接地された電極部10b側を基
準にすると、電極部10aに現れる電圧は僅か数ボルト
である。従って、付近の作業者の感電事故や周辺機器の
損傷などを未然に防止することができ、安全性を著しく
向上させることができる。さらに、管体10の両電極部
10a、10bにかかる電圧が非常に低いので、電圧の
漏れを防止するためのチョーク50として、小型軽量の
ものを用いることができ、この点からも、設備全体の小
型化並びに設備費用の削減を図ることができる。
The operation of the heating device configured as described above is as described in the above [Operation], and most of the secondary voltage induced in the tube body 10 is consumed for heating the tube body 10. As a result, the pipe body 10 is heated with energization extremely efficiently, and the fluid fed into the pipe body 10 can be efficiently heated. Further, in the case of such an internal transformer system, the entire facility can be significantly downsized and the facility cost can be reduced by reducing the size and weight of the annular transformer 30, reducing the cross-sectional area of the conductive member 20, and shortening the tubular body 10. Can be significantly reduced. In the case of the internal transformer method, the voltage applied to both electrode portions 10a and 10b becomes an extremely small voltage corresponding to the voltage drop of the conductive member 20. For example, with reference to the grounded electrode portion 10b side as in this embodiment, the voltage appearing at the electrode portion 10a is only a few volts. Therefore, it is possible to prevent an electric shock accident of a worker in the vicinity and damage to peripheral devices, and it is possible to significantly improve safety. Furthermore, since the voltage applied to both electrode portions 10a and 10b of the tubular body 10 is extremely low, a small and lightweight choke 50 for preventing voltage leakage can be used. It is possible to reduce the size and cost of equipment.

【0015】上述した通電加熱によって管体10は均一
に加熱され、管体10内を矢印方向へ送給される流動体
は電極部10b側において最高温度に達する。そこで、
電極部10b近傍において温度センサ45によって管体
10或いは流動体の温度を検出し、この検出値と予定さ
れた温度との間に差異がある場合には、その検出値と予
定値とに基づいて制御部41が交流電源40のパワーコ
ントロールスイッチを制御して、差異に相当する電力、
電流、電圧の何れかを調整するフィードバック方式が採
られる。これによって、管体10即ち流動体に対する温
度制御が行われる。なお、管体10のサイズ、流動体の
送給速度、比熱、所定昇温温度などから予め求められる
所要電力、所要電流、所要電圧の何れかを管体10に与
えるように、環状トランス30への入力を予め所定の値
に設定して運転するプリセット方式が採られても良い。
The tube body 10 is uniformly heated by the above-mentioned electric heating, and the fluid fed in the tube body 10 in the direction of the arrow reaches the maximum temperature on the electrode portion 10b side. Therefore,
The temperature of the tube body 10 or the fluid is detected by the temperature sensor 45 in the vicinity of the electrode portion 10b, and if there is a difference between this detected value and the planned temperature, based on the detected value and the planned value. The control unit 41 controls the power control switch of the AC power supply 40 to generate electric power corresponding to the difference,
A feedback method of adjusting either current or voltage is adopted. As a result, temperature control is performed on the tube body 10, that is, the fluid. It should be noted that the annular transformer 30 is supplied with any one of a required power, a required current, and a required voltage which are obtained in advance based on the size of the pipe body 10, the fluid feed rate, the specific heat, the predetermined temperature rise temperature, and the like. A preset method may be adopted in which the input is set to a predetermined value in advance to operate.

【0016】なお、管体10の外周囲に巻回積層された
保温材15によって、管体10及び流動体の温度低下を
防止することができる。また、この保温材15によっ
て、管体10からの放射熱により一次コイル32が焼損
するような事態も防止することができる。
The heat insulating material 15 wound and laminated around the outer periphery of the pipe body 10 can prevent the temperature of the pipe body 10 and the fluid from decreasing. Further, the heat insulating material 15 can prevent a situation in which the primary coil 32 is burned by radiant heat from the tubular body 10.

【0017】ところで、上記第1実施例においては、円
筒状の導電部材20を環状トランス30及び管体10の
外周囲に近接してほぼ同心状に配置したが、本発明でい
う導電部材は、管体10の両電極部10a、10bの間
を電気的に接続すれば良いので、図1及び図2に一点鎖
線で示すような導電部材21であっても良い。
By the way, in the first embodiment, the cylindrical conductive member 20 is arranged substantially concentrically in the vicinity of the outer circumference of the annular transformer 30 and the tubular body 10. However, the conductive member in the present invention is Since it suffices to electrically connect the two electrode portions 10a and 10b of the tubular body 10 to each other, a conductive member 21 as shown by a chain line in FIGS. 1 and 2 may be used.

【0018】しかしながら、このように導電部材21を
環状トランス30の外方の一部に配置すると、管体10
と導電部材21との間に環状トランス30の一部が位置
することになるので、管体10及び導電部材21を流れ
る二次電流よる磁束を、環状トランス30の一次コイル
32を流れる一次電流による磁束の一部で打ち消すこと
になる。このため、上記二次電流による磁束と、この磁
束から離れた位置にあ上記一次電流による磁束との結合
が悪く、インダクタンスが大きくなる。この結果、力率
が悪くなって加熱の効率が低くなり、所定電流を流すた
めに余分の電圧を必要とする。これに対して、第1実施
例のように、導電部材20を環状トランス30の外周囲
に近接してほぼ同心状に配置すると、管体10及び導電
部材20を流れる二次電流による磁束の全体を、環状ト
ランス30の一次コイル32を流れる一次電流による磁
束の全体で均等に打ち消すため、一次回路と二次回路と
の磁気結合が良くなり、インダクタンスが小さくなる。
この結果、力率が良くなって加熱の効率が高くなる。従
って、所定電流を流すために余分の電圧を必要としない
ため、設備容量を低減することができると共に設備費用
も削減することができる。
However, when the conductive member 21 is arranged on a part of the outer side of the annular transformer 30 as described above, the tubular body 10 is formed.
Since a part of the annular transformer 30 is located between the annular member and the conductive member 21, the magnetic flux generated by the secondary current flowing through the tubular body 10 and the conductive member 21 is generated by the primary current flowing through the primary coil 32 of the annular transformer 30. It will be canceled by a part of the magnetic flux. For this reason, the magnetic flux due to the secondary current and the magnetic flux due to the primary current at a position apart from the magnetic flux are poorly coupled, and the inductance increases. As a result, the power factor deteriorates, the heating efficiency decreases, and an extra voltage is required to flow a predetermined current. On the other hand, when the conductive member 20 is arranged in the vicinity of the outer periphery of the annular transformer 30 and is substantially concentric as in the first embodiment, the entire magnetic flux generated by the secondary current flowing through the tubular body 10 and the conductive member 20 is reduced. Since the magnetic flux due to the primary current flowing through the primary coil 32 of the annular transformer 30 is canceled out uniformly, the magnetic coupling between the primary circuit and the secondary circuit is improved, and the inductance is reduced.
As a result, the power factor is improved and the heating efficiency is increased. Therefore, since an extra voltage is not required to flow the predetermined current, the equipment capacity can be reduced and the equipment cost can be reduced.

【0019】また、導電部材21を管体10の外方の一
部に配置すると、管体10及び導電部材21を流れる電
流によって生じる管体10と導電部材21との間の電磁
力のバランスが悪くなる。この結果、管体10及び導電
部材21の双方に振動が出易くなる。これに対して、第
1実施例のように、導電部材20を管体10の外周囲に
近接してほぼ同心状に配置すると、管体10及び導電部
材20を流れる電流によって生じる管体10と導電部材
20との間の電磁力が均等に釣り合うので、振動の発生
がない。
Further, when the conductive member 21 is arranged on a part of the outer side of the tube body 10, the electromagnetic force between the tube body 10 and the conductive member 21 caused by the current flowing through the tube body 10 and the conductive member 21 is balanced. become worse. As a result, vibration easily occurs in both the tubular body 10 and the conductive member 21. On the other hand, as in the first embodiment, when the conductive member 20 is disposed in the vicinity of the outer periphery of the pipe body 10 and is substantially concentric with the pipe body 10, the pipe body 10 and the pipe body 10 generated by the current flowing through the conductive member 20 are provided. Since the electromagnetic force between the conductive member 20 and the conductive member 20 is evenly balanced, vibration does not occur.

【0020】次に、図3及び図4は第2実施例を示すも
のである。この例においては、管体10が、円管状の外
側管体101と中実の内側棒体102とによって二重構
造に構成されている。内側棒体102は、一端部からほ
ぼ中央部に向かって次第に径が増加され、その中央部か
ら他端部までは一定の径に形成されている。そして、外
側管体101と内側棒体102とは、これらの両端部に
おいて径方向に設けられた連結部103によって機械的
かつ電気的に一体化されている。なお、この例において
は、導電部材22が複数例えば4枚に分割された円弧状
板によって構成され、環状トランス30及び管体10の
外周囲に近接してほぼ同心状に配置されている。
Next, FIGS. 3 and 4 show a second embodiment. In this example, the tubular body 10 has a double structure including an outer tubular body 101 having a circular tubular shape and a solid inner rod body 102. The inner rod 102 has a diameter that gradually increases from one end toward almost the center, and is formed to have a constant diameter from the center to the other end. The outer pipe body 101 and the inner rod body 102 are mechanically and electrically integrated by the connecting portions 103 provided in the radial direction at both ends thereof. In this example, the conductive member 22 is composed of a plurality of, for example, four arcuate plates, and is arranged substantially concentrically near the outer circumference of the annular transformer 30 and the tubular body 10.

【0021】この第2実施例によれば、管体10の横断
面積が、電極部10a側から次第に増加し、ほぼ中央部
から電極部10bまで一定となっているので、管体10
の電気抵抗が、電極部10a側から次第に低下し、ほぼ
中央部から電極部10bまで一定となる。この電気抵抗
の変化によって、通電加熱による管体10の発生熱量を
その管体10の長手方向に沿って変化させることができ
る。従って、例えば流動体の変質や溶解物の析出などが
生じないように、流動体の性質に応じて最適な加熱制御
が可能になる。なお、この例では管体10を外側管体1
01と内側棒体102との二重構造にして横断面積を変
化させたが、一本の管体で横断面積を変化させても良
い。ところで、前記第1実施例においては、導電部材2
0を円筒状に形成して、磁気結合及びインダクタンスに
関して最良の構成を示したが、この第2実施例において
は、導電部材22を複数に分割して配置したので、稼働
時における導電部材22の上記作用効果を損なうことな
く、装置の製造組立や保守点検を極めて容易に行うこと
ができる。
According to the second embodiment, the cross-sectional area of the tubular body 10 gradually increases from the electrode portion 10a side and becomes constant from the substantially central portion to the electrode portion 10b.
Of the electrode gradually decreases from the electrode portion 10a side and becomes constant from the substantially central portion to the electrode portion 10b. Due to this change in electrical resistance, the amount of heat generated by the tubular body 10 due to electrical heating can be varied along the longitudinal direction of the tubular body 10. Therefore, for example, optimal heating control can be performed according to the properties of the fluid so that the fluid is not deteriorated or the melt is not precipitated. In this example, the tubular body 10 is replaced with the outer tubular body 1
Although the cross-sectional area is changed by forming the double structure of 01 and the inner rod body 102, the cross-sectional area may be changed by one tube body. By the way, in the first embodiment, the conductive member 2
Although 0 is formed in a cylindrical shape to show the best configuration in terms of magnetic coupling and inductance, in the second embodiment, the conductive member 22 is divided into a plurality of parts, so that the conductive member 22 during operation is The manufacturing and assembling of the device and the maintenance and inspection can be extremely easily performed without impairing the above-mentioned effects.

【0022】次に、図5は第3実施例を示すものであ
る。この例では、管体10のほぼ中央部から電極部10
b側における外周囲が閉塞筒体105によって覆われて
おり、その閉塞筒体105に流出管106が接続されて
いる。従って、管体10の電極部10b側から流出した
流動体は、管体10と閉塞筒体105との間を通って流
出管106から流出される。なお、この例においては、
管体10の電極部10b近傍の温度センサ45の他に、
流出管106の入口近傍にも温度センサ46が設けられ
ている。また、管体10の外周囲の保温材15の他に、
閉塞筒体105の外周囲にも同様な保温材16を設ける
と良い。
Next, FIG. 5 shows a third embodiment. In this example, the electrode portion 10 is formed from the substantially central portion of the tubular body 10.
The outer periphery on the b side is covered with a closed tubular body 105, and the outflow pipe 106 is connected to the closed tubular body 105. Therefore, the fluid that has flowed out from the electrode portion 10 b side of the tubular body 10 passes through between the tubular body 10 and the closed tubular body 105 and flows out from the outflow pipe 106. In this example,
In addition to the temperature sensor 45 near the electrode portion 10b of the tubular body 10,
A temperature sensor 46 is also provided near the inlet of the outflow pipe 106. In addition to the heat insulating material 15 around the outer periphery of the tubular body 10,
A similar heat insulating material 16 may be provided on the outer periphery of the closed tubular body 105.

【0023】この第3実施例によれば、管体10が通電
加熱されると、流動体が管体10内を送給される際に加
熱され、さらに管体10と閉塞筒体105との間を送給
される際にも加熱される。従って、短い管体10によっ
て流動体を効率的に加熱することができるので、装置全
体のコンパクト化を図ることができる。
According to the third embodiment, when the pipe body 10 is electrically heated, it is heated when the fluid is fed through the pipe body 10, and the pipe body 10 and the closed cylinder body 105 are further heated. It is also heated when it is fed between. Therefore, since the fluid can be efficiently heated by the short tube body 10, the overall size of the device can be reduced.

【0024】以上、本発明の実施例に付き説明したが、
本発明は上記実施例に限定されることなく、本発明の技
術的思想に基づいて各種の有効な変更並びに応用が可能
である。例えば、実施例では円管状の管体を示したが、
矩形管状などの管体を用いることもでき、この場合には
矩形環状の環状トランス及び矩形筒状の導電部材を用い
ると良い。また、環状トランスを両電極部の間に複数個
配置しても良い。なお、本発明は、所定温度以上で変質
する液体(タール、重油など)の分溜装置、熱交換装
置、吸熱型ガス発生装置、各種試験用加熱装置など、各
種の流動体の様々な加熱装置に適用可能である。
The embodiments of the present invention have been described above.
The present invention is not limited to the above embodiments, and various effective modifications and applications are possible based on the technical idea of the present invention. For example, although the example shows a circular tubular body,
A tubular body such as a rectangular tubular shape may be used, and in this case, a rectangular annular annular transformer and a rectangular tubular conductive member may be used. Also, a plurality of annular transformers may be arranged between both electrode portions. The present invention is applicable to various heating devices for various fluids such as a distilling device for liquids (tar, heavy oil, etc.) that deteriorate at a predetermined temperature or higher, a heat exchange device, an endothermic gas generator, and various test heating devices. Is applicable to.

【0025】[0025]

【発明の効果】以上説明したように、本発明によれば、
管体の外周囲に配置された環状トランスによって管体に
二次電圧が誘起され、この二次電圧の殆どが管体の加熱
のために消費されるので、管体を極めて効率良く通電加
熱することができ、この管体内に送給される流動体を極
めて効率的に加熱することができる。そして、環状トラ
ンスによって管体に二次電圧を誘起させる構成は、環状
トランスの小型軽量化、導電部材の小断面積化、管体の
短縮化などが可能なので、極めて効率の良い加熱を行い
ながら、設備全体を著しく小型化することができると共
に設備費用を大幅に低減することができる。また、本発
明によれば、管体の両電極部にかかる電圧が、導電部材
の内部で発生する電圧降下分だけの極めて小さな電圧に
なるので、付近の作業者の感電事故や周辺機器の損傷な
どに対する安全性を著しく向上させることができる。さ
らに、両電極部の外側への漏れ電圧を防止するためのチ
ョークを大幅に小型軽量化することができるので、この
点からも、設備全体の小型化並びに設備費用の削減を図
ることができる。なお、管体の横断面積を変化させる
と、管体の電気抵抗の変化によって発生熱量をその管体
の長手方向に沿って変化させることができるので、流動
体の性質に応じて最適な加熱制御が可能になる。さら
に、導電部材を環状トランスの外周囲に近接して配置す
ると、インダクタンスを小さくすることができるので、
加熱効率をより向上させることができる。また、導電部
材を管体の外周囲に近接して配置すると、管体及び導電
部材に振動が発生することも防止できる。
As described above, according to the present invention,
A secondary voltage is induced in the tubular body by an annular transformer arranged around the outer periphery of the tubular body, and most of this secondary voltage is consumed for heating the tubular body, so that the tubular body is heated with high efficiency by energization. It is possible to heat the fluid fed into the pipe extremely efficiently. The configuration of inducing a secondary voltage in the tubular body by the annular transformer enables the annular transformer to be small and lightweight, the conductive member to have a small cross-sectional area, and the tubular body to be shortened. The entire equipment can be remarkably downsized, and the equipment cost can be significantly reduced. Further, according to the present invention, since the voltage applied to both electrode portions of the tubular body is an extremely small voltage corresponding to the voltage drop generated inside the conductive member, an electric shock accident to a worker in the vicinity and damage to peripheral equipment are caused. It is possible to remarkably improve the safety against. Further, since the choke for preventing the leakage voltage to the outside of both electrode parts can be significantly reduced in size and weight, the entire facility can be downsized and the facility cost can be reduced in this respect as well. If the cross-sectional area of the pipe is changed, the amount of heat generated can be changed along the longitudinal direction of the pipe due to the change in the electrical resistance of the pipe, so optimal heating control can be performed according to the properties of the fluid. Will be possible. Furthermore, if the conductive member is arranged close to the outer periphery of the annular transformer, the inductance can be reduced,
The heating efficiency can be further improved. Further, when the conductive member is arranged close to the outer periphery of the pipe body, it is possible to prevent vibration from occurring in the pipe body and the conductive member.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による流動体の加熱装置の第1実施例に
おける断面図である。
FIG. 1 is a cross-sectional view of a fluid heating device according to a first embodiment of the present invention.

【図2】図1のII−II線における断面図である。FIG. 2 is a sectional view taken along line II-II in FIG.

【図3】本発明による流動体の加熱装置の第2実施例に
おける断面図である。
FIG. 3 is a sectional view of a fluid heating device according to a second embodiment of the present invention.

【図4】図3のIV−IV線における断面図である。FIG. 4 is a sectional view taken along line IV-IV in FIG.

【図5】本発明による流動体の加熱装置の第3実施例に
おける断面図である。
FIG. 5 is a sectional view of a fluid heating apparatus according to a third embodiment of the present invention.

【図6】従来の流動体の加熱装置における基本的な構成
を示す概略断面図である。
FIG. 6 is a schematic cross-sectional view showing the basic structure of a conventional fluid heating device.

【符号の説明】[Explanation of symbols]

10 管体 10a、10b 電極部(フランジ) 20、21、22 導電部材 30 環状トランス 31 環状鉄心 32 一次コイル 40 交流電源 50 チョーク 101 外側管体 102 内側棒体 10 tubes 10a, 10b Electrode part (flange) 20, 21, 22 Conductive member 30 ring transformer 31 annular core 32 Primary coil 40 AC power supply 50 chalk 101 outer tube 102 inner rod

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 流動体を送給するための導電性材料から
なる管体と、この管体の長手方向に沿って所定間隔を隔
てた一対の電極部の間を電気的に接続する導電部材と、
前記両電極部の間において前記管体の外周囲に配置され
た環状トランスとを具備し、 前記環状トランスは交流電源に接続される一次コイルの
環内を前記管体の挿通部にて構成し、 前記両電極部の間における前記管体の電気抵抗R1と前
記導電部材の電気抵抗R2との関係をR1>>R2に設
定してなる流動体の加熱装置。
1. A conductive member for electrically connecting between a tubular body made of a conductive material for feeding a fluid and a pair of electrode portions spaced apart by a predetermined distance along the longitudinal direction of the tubular body. When,
An annular transformer arranged around the outer periphery of the tubular body between the both electrode portions, wherein the annular transformer is configured by an insertion portion of the tubular body inside a ring of a primary coil connected to an AC power source. A heating device for a fluid, wherein the relationship between the electric resistance R1 of the tubular body and the electric resistance R2 of the conductive member between the both electrode portions is set to R1 >> R2.
【請求項2】 前記管体の横断面積をその管体の長手方
向に沿って変化させたことを特徴とする請求項1記載の
流動体の加熱装置。
2. The fluid heating device according to claim 1, wherein the cross-sectional area of the pipe is changed along the longitudinal direction of the pipe.
【請求項3】 前記導電部材を前記環状トランスの外周
囲に近接して配置したことを特徴とする請求項1または
2記載の流動体の加熱装置。
3. The fluid heating device according to claim 1, wherein the conductive member is arranged close to the outer periphery of the annular transformer.
【請求項4】 前記導電部材を前記環状トランス及び前
記管体の外周囲に近接して配置したことを特徴とする請
求項1または2記載の流動体の加熱装置。
4. The fluid heating device according to claim 1, wherein the conductive member is arranged close to the outer periphery of the annular transformer and the tubular body.
JP3210324A 1991-07-26 1991-07-26 Heating device for fluid Withdrawn JPH0533893A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3210324A JPH0533893A (en) 1991-07-26 1991-07-26 Heating device for fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3210324A JPH0533893A (en) 1991-07-26 1991-07-26 Heating device for fluid

Publications (1)

Publication Number Publication Date
JPH0533893A true JPH0533893A (en) 1993-02-09

Family

ID=16587543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3210324A Withdrawn JPH0533893A (en) 1991-07-26 1991-07-26 Heating device for fluid

Country Status (1)

Country Link
JP (1) JPH0533893A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5904159A (en) * 1995-11-10 1999-05-18 Tokuyama Corporation Polishing slurries and a process for the production thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5904159A (en) * 1995-11-10 1999-05-18 Tokuyama Corporation Polishing slurries and a process for the production thereof

Similar Documents

Publication Publication Date Title
CA1185663A (en) Inductive heater
US2416047A (en) Combined reactor and induction preheater for use in electrode arc welding
US3731047A (en) Plasma heating torch
JP4786620B2 (en) Heating unit and tire heating device
HU214893B (en) Apparatus for heating a fluid
US2457843A (en) Flexible conductor for induction heating
CN210921360U (en) Superheated steam generator
JP6760637B2 (en) Fluid heating device
US4169351A (en) Electrothermal thruster
WO2018096718A1 (en) Electromagnetic induction-heating device
US4629844A (en) Induction heater having an alternating current conductor
CN100439790C (en) Petroleum heating device
JPH0533893A (en) Heating device for fluid
JP3642415B2 (en) Fluid heating device
US2868944A (en) Electric fluid heater
US3219786A (en) Induction heating device construction
WO2017186963A1 (en) Heating device for metal products
US2485843A (en) High-frequency heating arrangement
CN108513385B (en) Superheated steam generator and method for manufacturing conductor tube used for the same
US2515874A (en) Transformer
JP6760636B2 (en) Fluid heating device
US2542841A (en) High-frequency coupling apparatus
JP2024062105A (en) Electrical heating of fluids
JP2024062104A (en) Electrical heating of fluids
US2031435A (en) Electrode arrangement for controlling electric arcs

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19981008