JPH05332758A - Method for measuring thickness of concrete structure - Google Patents

Method for measuring thickness of concrete structure

Info

Publication number
JPH05332758A
JPH05332758A JP15728792A JP15728792A JPH05332758A JP H05332758 A JPH05332758 A JP H05332758A JP 15728792 A JP15728792 A JP 15728792A JP 15728792 A JP15728792 A JP 15728792A JP H05332758 A JPH05332758 A JP H05332758A
Authority
JP
Japan
Prior art keywords
wave
concrete
thickness
transmitter
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15728792A
Other languages
Japanese (ja)
Other versions
JP3156012B2 (en
Inventor
Tetsuo Yamaguchi
哲夫 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOUYOKO ERUMESU KK
Original Assignee
TOUYOKO ERUMESU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOUYOKO ERUMESU KK filed Critical TOUYOKO ERUMESU KK
Priority to JP15728792A priority Critical patent/JP3156012B2/en
Publication of JPH05332758A publication Critical patent/JPH05332758A/en
Application granted granted Critical
Publication of JP3156012B2 publication Critical patent/JP3156012B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)

Abstract

PURPOSE:To precisely measure the thickness of a concrete structure. CONSTITUTION:In a method for measuring the thickness of a concrete structure, a transmitter 2 and receiver 3 for ultrasonic oscillator are set on one surface of a concrete body 1 to be measured, the oscillating period is varied to add an electric signal to the transmitter 2. According to the electric signal, an ultrasonic wave is transmitted into the concrete body 1 from the transmitter 2, and the reflected wave reflected by the opposite surface of the concrete is received by the receiver 3. The received receipt signal is Fourier-analyzed by a spectrum analyzer 5 and converted into a frequency spectrum, and all the data of frequency spectrum obtained in each transmitting period are added and averaged followed by processing.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、コンクリート構造物の
厚さを超音波を利用して測定を行うコンクリート構造物
の厚さ測定方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a concrete structure thickness measuring method for measuring the thickness of a concrete structure using ultrasonic waves.

【0002】[0002]

【従来の技術】トンネル、原子力発電所、石油やLPG
地下備蓄タンク等の様な大型のコンクリート構造物の場
合、それらのコンクリートの片面からコンクリートの厚
さを測定し、検証を行うことは保守面や工法面から非常
に重要である。このように一方の面からコンクリートの
厚みを測定する方法として、従来超音波を用いるパルス
反射法が存在する。この方法はコンクリートの一方の表
面に超音波振動子の送波器と受波器とを一定の間隔をお
いて設置する。そして送波器からコンクリートに超音波
を送波し、この超音波はコンクリート内を透過してコン
クリートの不連続部分で反射するので、コンクリートの
対向面まで到達した後に反射して来る。この反射波を受
波器で捕らえ、反射波の到達時間を測定し、コンクリー
トの厚さを測定するものである。
2. Description of the Related Art Tunnels, nuclear power plants, oil and LPG
In the case of large-scale concrete structures such as underground storage tanks, it is very important in terms of maintenance and construction methods to measure and verify the thickness of concrete from one side of the concrete. As a method for measuring the thickness of concrete from one surface as described above, there is a conventional pulse reflection method using ultrasonic waves. In this method, a transmitter and a receiver of an ultrasonic transducer are installed on one surface of concrete with a constant interval. Then, an ultrasonic wave is transmitted from the wave transmitter to the concrete, and this ultrasonic wave transmits through the concrete and is reflected at a discontinuous portion of the concrete, so that the ultrasonic wave is reflected after reaching the facing surface of the concrete. This reflected wave is captured by a receiver, the arrival time of the reflected wave is measured, and the thickness of concrete is measured.

【0003】[0003]

【発明が解決しようとする問題点】前記の従来のコンク
リート構造物の厚さ測定技術には、次のような問題点が
ある。測定するコンクリートは粗骨材とモルタルの複合
材であることや、測定に使用可能な超音波は周波数が低
くコンクリート内での指向性が悪いことなどのため、測
定される受信波は送波器からの直接波、近くからの回折
波、戻り波、反射波が主であり、求める対面からの反射
波はこれらの受信波の中に小さな振幅として混在してお
り、その検出は容易でない。このため、従来の測定方法
を用いた測定装置では、誤った測定値を算出する場合な
どがあり、正確にコンクリート構造物の厚さを測定する
ことができない。
The above-mentioned conventional techniques for measuring the thickness of concrete structures have the following problems. Since the concrete to be measured is a composite material of coarse aggregate and mortar, and the ultrasonic waves that can be used for measurement have a low frequency and poor directivity in the concrete, the measured received wave is the transmitter. The main components are the direct wave from, the diffracted wave from the vicinity, the return wave, and the reflected wave, and the reflected wave from the face-to-face contact is mixed as a small amplitude in these received waves, and its detection is not easy. Therefore, the measuring device using the conventional measuring method may sometimes calculate an incorrect measured value, and cannot accurately measure the thickness of the concrete structure.

【0004】[0004]

【本発明の目的】本発明は以上の問題を解決するために
成されたもので、その目的は、正確にコンクリート構造
物の厚さを測定できるコンクリート構造物の厚さ測定方
法を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and an object of the present invention is to provide a method for measuring the thickness of a concrete structure capable of accurately measuring the thickness of the concrete structure. It is in.

【0005】[0005]

【問題点を解決するための手段】すなわち本発明は、被
測定物のコンクリート体の片面に超音波振動子の送波器
及び受波器を設置し、発振周期を可変して送波器に電気
信号を加え、その電気信号により送波器からコンクリー
ト体内に超音波を送波し、コンクリートの対面に反射す
る反射波を受波器により受波し、受波した受波信号をス
ペクトル解析器によりフーリエ解析して周波数スペクト
ルに変換し、各送波周期において得られた周波数スペク
トルのデータを全て加算し平均化して処理して行う、コ
ンクリート構造物の厚さ測定方法である。
[Means for Solving the Problems] That is, according to the present invention, a wave transmitter and a wave receiver of an ultrasonic transducer are installed on one surface of a concrete body of an object to be measured, and the oscillation cycle is varied to form a wave transmitter. An electric signal is added, ultrasonic waves are transmitted from the wave transmitter to the concrete body by the electric signal, the reflected wave reflected on the concrete facing surface is received by the wave receiver, and the received wave signal is received by the spectrum analyzer. It is a method of measuring the thickness of a concrete structure, which is performed by Fourier analysis to convert it into a frequency spectrum, adds all the frequency spectrum data obtained in each transmission cycle, averages them, and processes.

【0006】[0006]

【実施例1】以下図面を参照しながら本発明について説
明する。 <イ>測定装置の構成 本発明に係る測定装置を図1に示す。測定装置は、コン
クリート体1の片面に送波器2及び受波器3を配置し、
送波器2には発振器4が接続され、受波器3には増幅器
5及びスペクトル解析器6が接続されている。以下各部
について詳述する。
First Embodiment The present invention will be described below with reference to the drawings. <A> Configuration of Measuring Device A measuring device according to the present invention is shown in FIG. The measuring device arranges the wave transmitter 2 and the wave receiver 3 on one side of the concrete body 1,
An oscillator 4 is connected to the wave transmitter 2, and an amplifier 5 and a spectrum analyzer 6 are connected to the wave receiver 3. Each part will be described in detail below.

【0007】<ロ>送波部 送波部は送波器2と発振器4により構成される。送波器
2は発振器4からの電気信号を超音波に変換してコンク
リート体1内に超音波を送波する部位である。発振器4
は、パルス信号の発生装置であり、そのパルス周期を可
変できるように構成されている。
<B> Transmitting Unit The transmitting unit is composed of the transmitter 2 and the oscillator 4. The wave transmitter 2 is a part that converts an electric signal from the oscillator 4 into an ultrasonic wave and transmits the ultrasonic wave into the concrete body 1. Oscillator 4
Is a pulse signal generator, and is configured so that its pulse period can be varied.

【0008】<ハ>受波部 受波部は受波器3、増幅器5及びスペクトル解析器6を
順次接続して構成される。受波器3は前記送波器2が送
波した超音波を受波し、電気信号に変換する部位であ
る。増幅器5は前記受波器3から得た受信信号を増幅す
るものである。スペクトル解析器6は、増幅器5から得
た受信信号波形をフーリエ解析して不連続な周波数スペ
クトル信号として測定するものである。また、スペクト
ル解析器6は一定周期で得られる周波数スペクトル信号
に対し順次加算し平均化する機能を有する。
<C> Wave Receiving Section The wave receiving section is constructed by sequentially connecting the wave receiver 3, the amplifier 5, and the spectrum analyzer 6. The wave receiver 3 is a part that receives the ultrasonic wave transmitted by the wave transmitter 2 and converts it into an electric signal. The amplifier 5 amplifies the received signal obtained from the wave receiver 3. The spectrum analyzer 6 performs Fourier analysis on the received signal waveform obtained from the amplifier 5 and measures it as a discontinuous frequency spectrum signal. Further, the spectrum analyzer 6 has a function of sequentially adding and averaging the frequency spectrum signals obtained in a constant cycle.

【0009】[0009]

【作用】本発明に係るコンクリート体1の厚さ測定方法
の測定原理について説明する。 <イ>測定原理 送波周期を可変して送波器2により超音波パルスをコン
クリート内に送波し、受波器3により対面に反射した反
射波を受波する。そして、厚さの反射波を他の不要な波
と分離するために、受波した反射波の受信信号をスペク
トル解析器6によりフリーエ解析し、超音波の反射波の
到達時間の代わりに反射波の到達時間の逆数である周波
数としてを測定する。その周波数をf、コンクリート体
1の厚さをd、音速をcとすると、 2d/c=1/f の式で厚さdを求めることができる。
The operation principle of the method for measuring the thickness of the concrete body 1 according to the present invention will be described. <B> Measurement principle The ultrasonic wave pulse is transmitted into the concrete by the wave transmitter 2 by changing the wave transmission period, and the reflected wave reflected by the wave receiver 3 is received. Then, in order to separate the reflected wave of the thickness from other unnecessary waves, the received signal of the received reflected wave is subjected to a free analysis by the spectrum analyzer 6, and the reflected wave is used instead of the arrival time of the reflected wave of the ultrasonic wave. Is measured as the frequency that is the reciprocal of the arrival time of. When the frequency is f, the thickness of the concrete body 1 is d, and the sound velocity is c, the thickness d can be obtained by the formula of 2d / c = 1 / f.

【0010】次にコンクリート体1の厚さ測定方法につ
いて説明する。 <ロ>コンクリート体1の厚さ測定方法 (1)測定装置の設置 図1の様にコンクリート体1の片面に送波器2と受波器
3を隣接して配置する。 送波器2に発振器4を接続す
る。受波器3には増幅器5とスペクトル解析器6を接続
する。 (2)測定手順 測定は、コンクリート体1の厚さの基本周波数と高調波
の周波数を誤認しないように長い送波周期における厚さ
測定と、正確な値をするための短い送波周期(反射波の
到達時間に相当する周期)による測定とを二段階に分け
て行う。被測定物の大体の厚さが分かるときは、短い送
波周期による測定だけでも良い。 以下測定手順を詳述
する。発振器4を作動させ、所定範囲内で発振周期を可
変してパルス信号を送波器2に加える。そのパルス応じ
て、送波器2はコンクリート体1内に超音波を送波す
る。送波した超音波を受波器3で受波する。そして、受
波した信号を増幅器5で増幅する。増幅した受波信号を
図2に示す。その受波信号は、送波器2からの直接波や
近傍からの回折波などが主であり、その中に求めるべき
反射波が混在する形で得られる。次にその受波信号をス
ペクトル解析器6で周波数スペクトルに分離してメモリ
ーする。そして、次々に受波する受波信号の周波数スペ
クトルをスペクトル解析器6で加算し平均化して信号処
理を行う。そして、図3の様に周波数スペクトルのデー
タが得られる。得られたデータ中ピーク値を示す周波数
スペクトルがコンクリート体1の厚さを示すものであ
り、その周波数からコンクリート体1の厚さを算出すれ
ば、コンクリートの厚さを測定することができる。ま
た、裏面の形状を知りたい場合は、測定点をずらして、
上記測定を必要回数行い作図することにより、実施する
ことができる。
Next, a method of measuring the thickness of the concrete body 1 will be described. <B> Method for measuring thickness of concrete body 1 (1) Installation of measuring device As shown in FIG. 1, the wave transmitter 2 and the wave receiver 3 are arranged adjacent to each other on one side of the concrete body 1. The oscillator 4 is connected to the wave transmitter 2. An amplifier 5 and a spectrum analyzer 6 are connected to the wave receiver 3. (2) Measurement procedure The measurement consists of measuring the thickness of the concrete body 1 at a long transmission cycle so as not to misidentify the fundamental frequency of the thickness and the frequency of the harmonics, and a short transmission cycle (reflection) to obtain an accurate value. Measurement by the period corresponding to the arrival time of the wave) is performed in two steps. When the approximate thickness of the object to be measured is known, only the measurement with a short transmission period is sufficient. The measurement procedure will be described in detail below. The oscillator 4 is operated to vary the oscillation period within a predetermined range and apply a pulse signal to the wave transmitter 2. In response to the pulse, the wave transmitter 2 transmits ultrasonic waves into the concrete body 1. The ultrasonic wave transmitted is received by the wave receiver 3. Then, the received signal is amplified by the amplifier 5. The amplified received signal is shown in FIG. The received signal is mainly a direct wave from the transmitter 2 or a diffracted wave from the vicinity, and is obtained in a form in which reflected waves to be obtained are mixed. Next, the received signal is separated into a frequency spectrum by the spectrum analyzer 6 and stored in a memory. Then, the spectrum analysis unit 6 adds the frequency spectra of the received signals that are received one after another and averages them to perform signal processing. Then, frequency spectrum data is obtained as shown in FIG. The frequency spectrum showing the peak value in the obtained data indicates the thickness of the concrete body 1, and the thickness of the concrete can be measured by calculating the thickness of the concrete body 1 from the frequency. Also, if you want to know the shape of the back side, shift the measurement point,
The measurement can be performed by performing the above measurement a necessary number of times and plotting.

【0011】<ハ>超音波の送波周期を可変し順次得ら
れるデータを加算し平均化する理由 受波信号の周波数スペクトルは、反射波の到達時間と超
音波の送波周期とが一致した場合、すなわち共振した場
合、最大の値を示す。求めるべき対面からの反射波以外
の反射波(例えばコンクリート体1内に混入する異物や
ひび割れ等による反射波)でも、ある送波周期で共振す
るとその周波数スペクトルが受波信号の最大値となって
しまう。また、受波した信号が多重反射して到達したも
のである場合も考えられる。このため、送波周期を変え
て全てのデータを加算し平均化して処理することによ
り、ある送波周数だけで共振する周波数スペクトルと求
めるべき対面からの反射波による周波数スペクトルとを
識別でき、対面からの反射波を正確に測定することがで
きる。
<C> Reason for changing the ultrasonic wave transmission period and adding and averaging sequentially obtained data In the frequency spectrum of the received signal, the arrival time of the reflected wave and the ultrasonic wave transmission period match. In the case, that is, in the case of resonance, the maximum value is shown. Even if a reflected wave other than the reflected wave to be obtained (for example, a reflected wave caused by a foreign substance mixed in the concrete body 1 or a crack) is resonated at a certain transmission cycle, its frequency spectrum becomes the maximum value of the received signal. I will end up. In addition, it is also possible that the received signal is a signal that has arrived after multiple reflections. Therefore, by changing the transmission cycle and adding and averaging all the data and processing, it is possible to identify the frequency spectrum that resonates only with a certain transmission frequency and the frequency spectrum due to the reflected wave from the facing surface to be obtained, The reflected wave from the facing surface can be accurately measured.

【0012】[0012]

【実施例2】本実施例は、実施例1のようにスペクトル
解析器6でデータの加算及び平均化をせず、各周波数ス
ペクトルの最大値をメモリーしてゆく、いわゆるピーク
ホールド信号処理を行うものである。コンクリート体1
の厚さに相当する周波数スペクトルが最も高いレベルの
値を示すので、ピークホールド信号処理でもコンクリー
ト体1の厚さに相当する周波数スペクトルを測定でき、
その周波数からコンクリート体1の厚さを算出して、コ
ンクリート体1の厚さの測定を行うことができる。
[Embodiment 2] This embodiment performs so-called peak hold signal processing in which the maximum value of each frequency spectrum is stored in memory without adding and averaging data in the spectrum analyzer 6 as in Embodiment 1. It is a thing. Concrete body 1
Since the frequency spectrum corresponding to the thickness of indicates the highest level value, the frequency spectrum corresponding to the thickness of the concrete body 1 can be measured even by peak hold signal processing,
The thickness of the concrete body 1 can be measured by calculating the thickness of the concrete body 1 from the frequency.

【0013】[0013]

【測定例1】寸法厚さ約200×奥行580×幅880
mmのコンクリート供試体を用い、その表面で奥行方向
の中央、幅方向は端部より250mm(他の端部より3
30mm)の位置に送波器2及び受波器3を設置して、
測定を行った。長い送波周期で測定を行い、受波信号を
全てフーリエ解析し、各データを加算し平均化処理して
得られた周波数スペクトルの測定結果を図3に示す。求
める厚さの周波数fに相当する値でスペクトルは最大値
を示し、その周波数fから高域側に向けて、スペクトル
は上昇している。このように、スペクトルが上昇し始め
るあたりで最大値を示す周波数fが求める厚さの周波数
であることを一度認識してしまえば、測定は容易に行え
る。高域側で上昇したスペクトル群は、送波器からの直
接波、近くからの回折波、戻り波または反射波などであ
り、本測定には不要なものである。周波数fの低域側に
も小さなスペクトルのピークが見られるが、それぞれ短
い送波周期で正確な測定を行った結果、幅方向の下隅か
らの反射波、幅方向の側面からの反射波、対角線の反射
波などであった。
[Measurement Example 1] Dimension Thickness about 200 x Depth 580 x Width 880
Using a concrete specimen of mm, the center of the surface in the depth direction and the width direction is 250 mm from the end (3 mm from the other end).
Install the transmitter 2 and the receiver 3 at the position of 30 mm),
The measurement was performed. FIG. 3 shows the measurement result of the frequency spectrum obtained by performing the measurement with a long transmission period, performing Fourier analysis on all the received signals, adding each data and averaging the data. The spectrum shows the maximum value at a value corresponding to the frequency f of the thickness to be obtained, and the spectrum rises from the frequency f toward the high frequency side. Thus, once it is recognized that the frequency f showing the maximum value when the spectrum starts to rise is the frequency of the required thickness, the measurement can be easily performed. The spectrum group rising on the high frequency side is a direct wave from the transmitter, a diffracted wave from the vicinity, a return wave or a reflected wave, and is not necessary for this measurement. Small spectrum peaks are also seen on the low frequency side of the frequency f, but as a result of accurate measurement at each short transmission period, the reflected wave from the lower corner in the width direction, the reflected wave from the side surface in the width direction, and the diagonal line. It was a reflected wave of.

【0014】[0014]

【測定例2】寸法厚さ約220×奥行2000×幅35
00mmで鉄筋入りであり、底部に厚さ方向に大きな三
本のひび割れのあるコンクリート供試体を用いて測定を
行った。長い送波周期で測定を行い、受波信号を全てフ
ーリエ解析し、各データを加算し平均化処理して得られ
た周波数スペクトルの測定結果を図4に示す。図3と似
たスペクトル波形が得られ、スペクトル全体像を見て、
コンクリート供試体の厚さに相当する周波数fが容易に
測定できた。さらに、短い送波周期で正確に測定したと
ころ、図5に示す様に1本のスペクトルが得られた。こ
のコンクリート供試体は大きいので、図3のように周波
数fの低域側には、多数の小さなスペクトルのピークは
見られず、またひび割れもこの測定の障害にならないこ
とが分かる。
[Measurement example 2] Dimensions Thickness 220 x Depth 2000 x Width 35
The measurement was performed using a concrete specimen having a reinforcing bar of 00 mm and having three large cracks at the bottom in the thickness direction. FIG. 4 shows a measurement result of a frequency spectrum obtained by performing measurement with a long transmission period, performing Fourier analysis on all received signals, adding data, and averaging the data. A spectrum waveform similar to that in Fig. 3 was obtained,
The frequency f corresponding to the thickness of the concrete specimen was easily measured. Furthermore, accurate measurement with a short transmission period yielded one spectrum as shown in FIG. Since this concrete specimen is large, it is understood that many small spectral peaks are not seen on the low frequency side of the frequency f as shown in FIG. 3 and that cracks do not hinder this measurement.

【0015】[0015]

【測定例3】寸法厚さ約130×奥行270×幅330
mmで水平方向に鉄筋の入ったコンクリート供試体を用
いて、鉄筋から供試体表面までの距離、すなわち鉄筋の
かぶり厚さの測定を行った。供試体表面の送波器2及び
受波器3を設置位置は、鉄筋の真上に来る様に数mm単
位で移動し、スペクトル波形が最大になる位置に設定す
る。長い送波周期で測定を行い、受波信号を全てフーリ
エ解析し、各データを加算し平均化処理して得られた周
波数スペクトルの測定結果を図6に示す。中央やや低域
側に供試体の厚さを示すスペクトルの高いピークが見ら
れる。測定例1及び2では、供試体の厚さを示すスペク
トルよりも高域側は不要な波形としてきた。しかし、今
回の測定では表面から鉄筋までの距離が必要であり、そ
の距離は当然厚さの寸法より近い位置、すなわち厚さ測
定で不要としたスペクトルの範囲に注目する。鉄筋から
の反射波は図6の様に、ノイズ性の複雑な上下波でな
く、特徴のある幅広のスペクトルを示した。さらに、こ
の後短い送波周期で測定した結果、鉄筋までの距離を8
0mmと求め得た。
[Measurement Example 3] Dimension Thickness approximately 130 x depth 270 x width 330
The distance from the reinforcing bar to the surface of the test piece, that is, the cover thickness of the reinforcing bar was measured using a concrete test piece in which the reinforcing bar was horizontally inserted in mm. The installation positions of the wave transmitter 2 and the wave receiver 3 on the surface of the specimen are moved in units of several mm so that they are right above the reinforcing bar, and are set at positions where the spectrum waveform becomes maximum. FIG. 6 shows the measurement result of the frequency spectrum obtained by performing measurement with a long transmission period, performing Fourier analysis on all the received signals, adding each data, and averaging. A high peak of the spectrum showing the thickness of the sample is seen in the slightly lower center. In the measurement examples 1 and 2, the waveform higher than the spectrum showing the thickness of the specimen has an unnecessary waveform. However, in this measurement, the distance from the surface to the reinforcing bar is required, and that distance is naturally closer to the thickness dimension, that is, the range of the spectrum unnecessary for the thickness measurement. As shown in FIG. 6, the reflected wave from the reinforcing bar showed a characteristic wide spectrum instead of the complicated upper and lower noise waves. In addition, as a result of measuring with a short transmission period after this, the distance to the reinforcing bar was 8
It was possible to obtain 0 mm.

【0016】[0016]

【発明の効果】本発明は以上説明したようになるから次
のような効果を得ることができる。 <イ> 超音波の送波周期を変え、全てのデータを加算
し平均化して信号処理することにより、ある送波周数だ
けで共振する周波数スペクトルと求めるべき対面からの
反射波の周波数スペクトルとの誤認を防止でき、対面か
らの反射波を正確に測定することができる。したがっ
て、コンクリート構造物の厚さを正確に測定することが
できる。
Since the present invention is as described above, the following effects can be obtained. <B> By changing the ultrasonic wave transmission cycle, adding all data, averaging, and processing the signal, a frequency spectrum resonating only at a certain transmission frequency and a frequency spectrum of the reflected wave from the facing surface to be obtained are obtained. It is possible to prevent erroneous recognition of, and to accurately measure the reflected wave from the facing surface. Therefore, the thickness of the concrete structure can be accurately measured.

【0017】<ロ> コンクリート構造物の厚さだけで
なく、コンクリート構造物内に埋設された鉄筋等の構造
物表面からの距離を測定することができる。
<B> Not only the thickness of the concrete structure but also the distance from the surface of the structure such as a reinforcing bar embedded in the concrete structure can be measured.

【0018】<ハ> 測定点を移動することにより、コ
ンクリート構造物の裏面の形状を計測することができ
る。
<C> The shape of the back surface of the concrete structure can be measured by moving the measurement point.

【図面の簡単な説明】[Brief description of drawings]

【図1】 測定装置の説明図FIG. 1 is an explanatory diagram of a measuring device

【図2】 受波器で受波した受波信号の説明図FIG. 2 is an explanatory diagram of a received signal received by a wave receiver.

【図3】 測定例1の測定データの説明図FIG. 3 is an explanatory diagram of measurement data of measurement example 1.

【図4】 測定例2の測定データの説明図FIG. 4 is an explanatory diagram of measurement data of measurement example 2.

【図5】 測定例2の測定データの説明図FIG. 5 is an explanatory diagram of measurement data of measurement example 2.

【図6】 測定例3の測定データの説明図FIG. 6 is an explanatory diagram of measurement data of measurement example 3.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 被測定物のコンクリート体の片面に超音
波振動子である送波器及び受波器を設置し、 正弦波ではない電気信号により送波器を励振し、 その励振周期を可変しながら、送波器からコンクリート
体内に超音波を送波し、 コンクリートの対面に反射す
る反射波を受波器により受波し、 受波した受波信号をスペクトル解析器によりフーリエ解
析して周波数スペクトルに変換し、 各励振周期において得られた周波数スペクトルのデータ
を全て加算し平均化することにより、コンクリートの対
面からの反射波の周波数スペクトルを測定し、 その周波数からコンクリート体の厚さを算出して行う、
コンクリート構造物の厚さ測定方法。
1. A transmitter and a receiver, which are ultrasonic transducers, are installed on one side of a concrete body of the object to be measured, and the transmitter is excited by an electric signal that is not a sine wave, and the excitation period is variable. However, the ultrasonic wave is transmitted from the wave transmitter into the concrete body, the reflected wave that is reflected on the opposite side of the concrete is received by the wave receiver, and the received wave signal is Fourier-analyzed by the spectrum analyzer to obtain the frequency. The frequency spectrum of the reflected wave from the concrete facing surface is measured by converting it to a spectrum, adding all the frequency spectrum data obtained in each excitation cycle, and averaging, and calculating the concrete thickness from that frequency. Then do the
Thickness measurement method for concrete structures.
JP15728792A 1992-05-26 1992-05-26 Concrete structure thickness measurement method Expired - Fee Related JP3156012B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15728792A JP3156012B2 (en) 1992-05-26 1992-05-26 Concrete structure thickness measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15728792A JP3156012B2 (en) 1992-05-26 1992-05-26 Concrete structure thickness measurement method

Publications (2)

Publication Number Publication Date
JPH05332758A true JPH05332758A (en) 1993-12-14
JP3156012B2 JP3156012B2 (en) 2001-04-16

Family

ID=15646363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15728792A Expired - Fee Related JP3156012B2 (en) 1992-05-26 1992-05-26 Concrete structure thickness measurement method

Country Status (1)

Country Link
JP (1) JP3156012B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108931215A (en) * 2018-07-27 2018-12-04 山东大学 Concrete length measuring instrument and application method
JP2022504652A (en) * 2018-10-10 2022-01-13 ガイディド・ウルトラソニックス・リミテッド Methods and systems for determining the thickness of elongated or stretched structures

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4577957B2 (en) * 2000-08-10 2010-11-10 三菱電機株式会社 Tunnel diagnostic equipment
JP4553458B2 (en) * 2000-08-10 2010-09-29 三菱電機株式会社 Tunnel diagnostic apparatus and method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108931215A (en) * 2018-07-27 2018-12-04 山东大学 Concrete length measuring instrument and application method
CN108931215B (en) * 2018-07-27 2024-02-02 山东大学 Concrete length measuring instrument and use method thereof
JP2022504652A (en) * 2018-10-10 2022-01-13 ガイディド・ウルトラソニックス・リミテッド Methods and systems for determining the thickness of elongated or stretched structures

Also Published As

Publication number Publication date
JP3156012B2 (en) 2001-04-16

Similar Documents

Publication Publication Date Title
US5942688A (en) Apparatus and method for detecting a measurable quantity of an object
US4429575A (en) Method for inspecting a non-metallic object by means of impact elastic waves and its apparatus
CN109764986A (en) A kind of steel member plane stress detection method based on ultrasonic shear waves phase spectrum
CN103308012B (en) Concrete pavement thickness detection system and detection method
Kaczmarek et al. Noncontact ultrasonic nondestructive techniques: state of the art and their use in civil engineering
JP2010266378A (en) Ultrasonic diagnosis/evaluation system
US20210293947A1 (en) Continuous wave ultrasound or acoustic non-destructive testing
CN104833323A (en) Method for measuring the width of laser lapping welding seam by using reflected echo of S0 mode lamb wave
Stepinski Novel instrument for inspecting rock bolt integrity using ultrasonic guided waves
CN102788845A (en) Barker coding excitation ultrasonic detection method of concrete structure defect
US20220170888A1 (en) Evaluation Method for Reflected Wave
US4702112A (en) Ultrasonic phase reflectoscope
CN101393172A (en) Non-damage detection for cracks in solid by non-linear resonating sound spectrum method
JPH05332758A (en) Method for measuring thickness of concrete structure
US6360599B1 (en) Device for measuring liquid level preferably measuring tide level in sea
WO1988001054A1 (en) Measuring metal hardness utilizing ultrasonic wave time-of-flight
JP2011047763A (en) Ultrasonic diagnostic device
JP2581916B2 (en) Method of measuring concrete thickness or intrinsic crack depth
JP2697508B2 (en) Ultrasonic thickness measurement method of furnace wall
RU2673871C1 (en) Method of measuring sound surface reflection coefficient
US4823609A (en) Ultrasonic method and apparatus for determining crack opening load
CN114384525A (en) Target intensity self-testing method and system based on boundary acoustic reflection
CN108802195B (en) Test device and method for measuring transverse wave velocity of core sample
CN217521085U (en) Ultrasonic stress transducer directivity measuring device
SU1728658A1 (en) Method of ultrasound checking of thickness of plane parallel sample

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees