JPH05332630A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPH05332630A
JPH05332630A JP4139013A JP13901392A JPH05332630A JP H05332630 A JPH05332630 A JP H05332630A JP 4139013 A JP4139013 A JP 4139013A JP 13901392 A JP13901392 A JP 13901392A JP H05332630 A JPH05332630 A JP H05332630A
Authority
JP
Japan
Prior art keywords
pressure
refrigerant
liquid
liquid pipe
indoor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4139013A
Other languages
Japanese (ja)
Other versions
JP2968392B2 (en
Inventor
Susumu Nakayama
進 中山
Kensaku Kokuni
小国研作
Kenji Togusa
戸草健治
Toshiyuki Hojo
北條俊幸
Hiroshi Takenaka
寛 竹中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4139013A priority Critical patent/JP2968392B2/en
Publication of JPH05332630A publication Critical patent/JPH05332630A/en
Application granted granted Critical
Publication of JP2968392B2 publication Critical patent/JP2968392B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/31Low ambient temperatures

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE:To provide a stable operation of an air conditioner in which a capability of a heating indoor unit in the air conditioner having one outdoor unit and a plurality of indoor units is assured, a cooling operation of the air conditioner under a low outdoor air temperature is stabilized or an inside part of a liquid pipe is formed to have two phase-flow of gas and liquid to save an amount of feeding refrigerant. CONSTITUTION:A pressure within a liquid pipe 111 is detected by a pressure sensor 17b. Indoor refrigerant flow rate control valves 22 and 23 are controlled by a control device 20 during a heating operation in such a manner that the detected pressure may become within a predetermined pressure range. In turn, during a cooling operation, the outdoor refrigerant flow rate control valve 21 is controlled. A pressure within the liquid pipe can be controlled, and either a heating operation under a condition in which there is a height difference between the indoor units or a cooling operation under a condition in which the outdoor air temperature is low or a concurrent cooling and heating operation can be carried out well. In addition, a stable operation can be carried out even in an air conditioner in which a refrigerant within the liquid pipe is formed to have two-phase flow of gas and liquid and the refrigerant feeding amount is reduced and saved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は空気調和機の冷凍サイク
ルの制御に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to control of a refrigeration cycle of an air conditioner.

【0002】[0002]

【従来の技術】室外ユニットに複数台の室内ユニットを
配管で接続した所謂マルチ空気調和機において、室外ユ
ニットが室内ユニットより上方(例えば屋上)に設置さ
れ、室内ユニット間に高低差がある場合には、これら室
内ユニットの暖房運転は、ユニット間の高低差分の液ヘ
ッドにより、下方に設置された室内ユニットの暖房能力
の低下を招く。これを防止するための従来技術として、
特開平03−294752号公報記載のように、各室内
ユニットの能力を比較し、能力が不足している室内ユニ
ットがあれば、他の上方の室内ユニットのうち能力が最
大の室内ユニットの液配管側に取り付けられている冷媒
流量制御弁を絞る様にしたものがある。
2. Description of the Related Art In a so-called multi-air conditioner in which a plurality of indoor units are connected to an outdoor unit by piping, when the outdoor unit is installed above the indoor unit (for example, on the roof) and there is a height difference between the indoor units. In the heating operation of these indoor units, the liquid head having a difference in height between the units causes a decrease in the heating capacity of the indoor unit installed below. As a conventional technique for preventing this,
As described in Japanese Patent Laid-Open No. 03-294752, the capacities of the indoor units are compared, and if there is an indoor unit with insufficient capacity, liquid piping of the indoor unit with the maximum capacity among other upper indoor units. There is one in which the refrigerant flow rate control valve attached to the side is throttled.

【0003】他方、冷房運転する空気調和機、または室
外熱交換器を凝縮器として冷暖房同時運転(複数の室内
ユニットのうち或るものを冷房運転しつつ同時に他のも
のを暖房運転する運転)をするマルチ空気調和機におい
て、外気温度が低いときに、凝縮器(室外熱交換器)の
凝縮能力が高まることに伴う圧縮機吐出圧力の低下を防
ぐために、特開平02−223776号または特開平0
3−140757号公報記載のように、室外熱交換器出
口の冷媒流量制御弁を絞って流路抵抗を大きくする方
式、又は、圧縮機の吐出ガスの一部をレシーバの入口に
導いてレシーバ内の液冷媒を室外熱交換器に移し、室外
熱交換器の伝熱面積を液冷媒で減少させ、凝縮能力を低
下させて圧縮機の吐出圧力を高める方式のものがあり、
これにより、外気低温時の冷房運転または冷暖房同時運
転が良好に行えるようにしている。
On the other hand, an air conditioner that performs cooling operation or an outdoor heat exchanger as a condenser is used for simultaneous cooling and heating operation (operation in which some of the plurality of indoor units are in cooling operation while others are in heating operation). In order to prevent a decrease in compressor discharge pressure due to an increase in the condensation capacity of a condenser (outdoor heat exchanger) when the outside air temperature is low, the multi-air conditioner described in JP-A-02-223776 or JP-A-02-237776.
As described in JP-A-3-140757, a method in which a refrigerant flow rate control valve at the outlet of the outdoor heat exchanger is throttled to increase flow passage resistance, or a part of discharge gas of the compressor is guided to an inlet of the receiver There is a system that transfers the liquid refrigerant of to the outdoor heat exchanger, reduces the heat transfer area of the outdoor heat exchanger with the liquid refrigerant, and reduces the condensation capacity to increase the discharge pressure of the compressor,
As a result, the cooling operation or the cooling / heating simultaneous operation when the outside air temperature is low can be favorably performed.

【0004】また、他方、空調機の冷凍サイクルの冷媒
封入量を節減することが近年望まれているが、それがで
きる空気調和機として、特開昭63−197853号公
報記載のように、凝縮器出口に設置した毛細管で冷媒を
減圧し、液配管内の冷媒を低圧の気液二相流にすること
によって封入冷媒量を節減しているものがある。
On the other hand, in recent years, it has been desired to reduce the amount of refrigerant enclosed in the refrigeration cycle of the air conditioner. As an air conditioner capable of achieving this, as described in Japanese Patent Laid-Open No. 63-197853, condensation is performed. In some cases, the amount of enclosed refrigerant is reduced by decompressing the refrigerant with a capillary tube installed at the outlet of the vessel and making the refrigerant in the liquid pipe into a low-pressure gas-liquid two-phase flow.

【0005】[0005]

【発明が解決しようとする課題】前記第1の従来技術で
は、暖房運転で室内ユニット間に高低差がある場合、下
方の室内ユニットの暖房能力を確保するために、上方の
室内ユニットのうち能力が最大の室内ユニットの冷媒流
量制御弁を絞る様にしているが、それが能力に影響を及
ぼすまでに時間がかかるために、該冷媒流量制御弁が絞
りすぎになって能力低下を招くことがある。
In the first prior art, when there is a height difference between the indoor units in the heating operation, in order to secure the heating capacity of the lower indoor unit, the capacity of the upper indoor unit is reduced. Squeezes the refrigerant flow rate control valve of the largest indoor unit, but it takes time to affect the capacity, so the refrigerant flow rate control valve may be too squeezed, leading to reduced capacity. is there.

【0006】よって、本発明の第1の目的は、室内ユニ
ット間に高低差があるマルチ空調機において、暖房運転
の場合に、各室内ユニットが常に暖房能力を確保し、安
定した運転ができる様にすることである。
Therefore, a first object of the present invention is to ensure that in a multi-air conditioner in which there is a difference in height between indoor units, each indoor unit always has a heating capacity and can be operated stably during heating operation. Is to

【0007】他方、冷房運転又は冷暖房同時運転で外気
温度が低い場合に室外熱交換器出口の冷媒流量制御弁を
絞る前記第2の従来技術の方式では、該弁を絞り過ぎた
とき、液配管内の圧力が異常に低下し、これが冷房室内
ユニットでさらに減圧されるために、圧縮機吸入圧力が
低下し、それに伴って圧縮機吐出圧力も低下する。圧縮
機吐出圧力が低下すると、室外熱交換器出口の冷媒流量
制御弁をさらに絞り、圧縮機の吸入圧力及び吐出圧力と
もさらに低下するという具合になって圧縮機の吸入圧力
および吐出圧力の異常低下を招き、運転不可能となる恐
れがある。
On the other hand, in the second prior art method in which the refrigerant flow rate control valve at the outlet of the outdoor heat exchanger is throttled when the outdoor air temperature is low in the cooling operation or the simultaneous heating and cooling operation, when the valve is excessively throttled, the liquid pipe Since the internal pressure is abnormally reduced and is further reduced in the cooling indoor unit, the compressor suction pressure is reduced, and the compressor discharge pressure is also reduced accordingly. When the compressor discharge pressure decreases, the refrigerant flow rate control valve at the outlet of the outdoor heat exchanger is further throttled to further decrease both the suction pressure and the discharge pressure of the compressor, resulting in an abnormal decrease in the suction pressure and the discharge pressure of the compressor. This may lead to driving failure.

【0008】よって、本発明の第2の目的は、冷房運転
中の空調機、又は室外熱交換器を凝縮器として冷暖房同
時運転中の空調機において、外気温度が低いとき、室外
熱交換器の凝縮能力が高まることに伴う圧縮機吐出圧力
の低下を防ぐために室外熱交換器出口の冷媒流量制御弁
を絞る場合にも、該冷媒流量制御弁の絞りすぎによる圧
縮機の吸入圧力及び吐出圧力の異常低下を招くことなく
安定した運転ができる様にすることである。
Therefore, a second object of the present invention is to provide an air conditioner during cooling operation, or an air conditioner during cooling / heating simultaneous operation using the outdoor heat exchanger as a condenser when the outdoor air temperature is low. Even when the refrigerant flow control valve at the outlet of the outdoor heat exchanger is throttled in order to prevent a decrease in the compressor discharge pressure due to an increase in the condensation capacity, the suction pressure and the discharge pressure of the compressor due to the throttle of the refrigerant flow control valve being excessively throttled. This is to enable stable operation without causing an abnormal decrease.

【0009】冷暖房同時運転で外気温度が低い場合に圧
縮機吐出ガスの一部をレシーバ入口に導いてレシーバ内
の液冷媒を室外熱交換器に移す前記第3の従来技術の方
式は、室外熱交換器出口の冷媒流量制御弁と組み合わせ
て使われる。すなわち、外気温度が非常に低いときは該
冷媒流量制御弁を絞り、外気温度がさほど低くないとき
は該冷媒流量制御弁をあまり絞らないようにしている。
該冷媒流量制御弁を絞っても圧縮機吐出ガスの一部が液
配管側にバイパスされているので液配管内の圧力は大き
く低下することはない。しかし、この方式では、外気温
度がさほど低くないときは、冷媒流量制御弁をあまり絞
らないので、液配管内の圧力は比較的高く、暖房室内ユ
ニットが室外ユニットより下方にある場合には、暖房室
内ユニットに液ヘッドが作用し、暖房室内ユニットの冷
媒出口圧力が上昇して、暖房室内ユニットに冷媒が流れ
にくくなり、暖房能力不足を生じる恐れがある。
When the outside air temperature is low in the simultaneous cooling and heating operation, a part of the compressor discharge gas is guided to the receiver inlet to transfer the liquid refrigerant in the receiver to the outdoor heat exchanger. Used in combination with the refrigerant flow control valve at the outlet of the exchanger. That is, when the outside air temperature is very low, the refrigerant flow rate control valve is throttled, and when the outside air temperature is not so low, the refrigerant flow rate control valve is not so throttled.
Even if the refrigerant flow rate control valve is throttled, a part of the compressor discharge gas is bypassed to the liquid pipe side, so that the pressure in the liquid pipe does not significantly decrease. However, in this method, when the outside air temperature is not so low, the refrigerant flow rate control valve is not throttled so much, so the pressure in the liquid pipe is relatively high, and when the heating indoor unit is below the outdoor unit, the heating The liquid head acts on the indoor unit, the refrigerant outlet pressure of the heating indoor unit rises, and it becomes difficult for the refrigerant to flow into the heating indoor unit, which may cause insufficient heating capacity.

【0010】よって、本発明の第3の目的は、室外熱交
換器を凝縮器として冷暖房同時運転中のマルチ空調機に
おいて、外気温が低いとき、室外熱交換器の凝縮能力が
高まることに伴う圧縮機吐出圧力の低下を防ぐために圧
縮機吐出ガスの一部をレシーバ入口に導いた場合にも、
暖房室内ユニットの能力を確保することである。
Therefore, a third object of the present invention is to increase the condensing capacity of the outdoor heat exchanger when the outdoor air temperature is low in a multi air conditioner that is simultaneously operating cooling and heating with the outdoor heat exchanger as a condenser. Even when a part of the compressor discharge gas is introduced to the receiver inlet to prevent the compressor discharge pressure from decreasing,
It is to secure the capacity of the heating indoor unit.

【0011】凝縮器出口に毛細管を設けて液配管内の冷
媒を低圧の気液二相流にして封入冷媒量を節減する前記
第4の従来技術による空気調和機は、液配管内が気液二
相流なので、液配管内での圧力損失が大きく、配管長に
よって蒸発圧力が大きく変動する。特に、配管長が長い
ときは圧力損失が大きく、蒸発圧力が大幅に低下し、蒸
発器が凍結して空気調和機が停止する恐れがある。だか
らといって、これを防止するために液配管を太くする
と、封入冷媒量節減の目的に反することになる。
In the air conditioner according to the fourth prior art in which a capillary tube is provided at the outlet of the condenser to make the refrigerant in the liquid pipe a low-pressure gas-liquid two-phase flow to reduce the amount of the enclosed refrigerant, the inside of the liquid pipe is gas-liquid. Since it is a two-phase flow, the pressure loss in the liquid pipe is large, and the evaporation pressure fluctuates greatly depending on the pipe length. In particular, when the pipe length is long, the pressure loss is large, the evaporation pressure is significantly reduced, and the evaporator may freeze and the air conditioner may stop. However, if the liquid pipe is made thick in order to prevent this, it is against the purpose of saving the amount of the enclosed refrigerant.

【0012】よって、本発明の第4の目的は、封入冷媒
量節減のための液配管内の冷媒を気液二相状態にする空
気調和機において、液配管内の圧力が所定値より低くな
らないようにして、蒸発器での蒸発圧力の低下を防止す
ることである。
Therefore, in a fourth object of the present invention, in an air conditioner for making a refrigerant in a liquid pipe a gas-liquid two-phase state for saving the amount of the enclosed refrigerant, the pressure in the liquid pipe does not become lower than a predetermined value. In this way, the evaporation pressure in the evaporator is prevented from decreasing.

【0013】[0013]

【課題を解決するための手段】前記第1の目的は、特許
請求の範囲の請求項1又は2記載の、また第2の目的は
請求項3記載の、また第3の目的は請求項4記載の、ま
た第4の目的は請求項5又は6記載の構成によって達成
することができる。
The first object is the claim 1 or 2 of the claims, the second object is the claim 3, and the third object is the claim 4. The stated and fourth objects can be achieved by the configurations according to claims 5 and 6.

【0014】[0014]

【作用】請求項2の空調機においては、室内ユニット間
に高低差がある暖房運転の場合、液ヘッド分の圧力を解
消して下方の室内ユニットの能力を確保するために、上
方の室内ユニットで能力が最大の室内ユニットの冷媒流
量制御弁を絞る。このとき、液冷媒圧力検出手段で液配
管内の圧力を検出しているので、この圧力が所定圧力よ
り下がったときは、上方の室内ユニットの冷媒流量制御
弁を絞らないようにする。これによって、上方の室内ユ
ニットの冷媒流量制御弁の絞りすぎによる能力低下を防
止できる。この場合、液冷媒圧力調整手段は上方室内ユ
ニットの冷媒流量制御弁である。
In the air conditioner according to claim 2, in the heating operation in which there is a difference in height between the indoor units, the upper indoor unit is eliminated in order to release the pressure of the liquid head and secure the capacity of the lower indoor unit. Squeeze the refrigerant flow control valve of the indoor unit with the maximum capacity. At this time, since the pressure inside the liquid pipe is detected by the liquid refrigerant pressure detecting means, the refrigerant flow rate control valve of the upper indoor unit is not throttled when this pressure falls below a predetermined pressure. As a result, it is possible to prevent performance deterioration due to excessive throttle of the refrigerant flow rate control valve of the upper indoor unit. In this case, the liquid refrigerant pressure adjusting means is the refrigerant flow rate control valve of the upper indoor unit.

【0015】請求項3の空調機においては、冷房運転又
は室外熱交換器が凝縮器となる冷暖房同時運転で外気温
度が低い場合、室外熱交換器出口の冷媒流量制御弁を絞
り、圧縮機吐出圧力の低下を防止する。このとき、液冷
媒圧力検出手段で液配管内の圧力を検出しているので、
この圧力が所定圧力より下がったときは、室外熱交換器
出口の冷媒流量制御弁を絞らないようにする。これによ
って、室外熱交換器出口の冷媒流量制御弁の絞りすぎに
よる液配管内圧力の異常低下が防止できる。
In the air conditioner of claim 3, when the outside air temperature is low in the cooling operation or the simultaneous heating and cooling operation in which the outdoor heat exchanger serves as a condenser, the refrigerant flow control valve at the outlet of the outdoor heat exchanger is throttled to discharge the compressor. Prevent pressure drop. At this time, since the pressure in the liquid pipe is detected by the liquid refrigerant pressure detection means,
When this pressure falls below a predetermined pressure, the refrigerant flow rate control valve at the outlet of the outdoor heat exchanger is not throttled. As a result, it is possible to prevent an abnormal decrease in the pressure inside the liquid pipe due to the refrigerant flow control valve at the outlet of the outdoor heat exchanger being excessively throttled.

【0016】請求項4の空調機においては、外気温度が
低いときに、圧縮機吐出ガスの一部をレシーバ入口にバ
イパスする。このとき、液配管内の圧力が所定圧力又は
所定圧力範囲になるように、バイパス回路の流路抵抗を
バイパス流量調整手段によって調整して、バイパス流量
を制御する。これによって、暖房室内ユニットに作用す
る液ヘッドの圧力分だけ液配管内圧力を下げることがで
き、液ヘッドによって生じる暖房能力不足が解消され
る。
In the air conditioner of claim 4, when the outside air temperature is low, a part of the compressor discharge gas is bypassed to the receiver inlet. At this time, the flow path resistance of the bypass circuit is adjusted by the bypass flow rate adjusting means to control the bypass flow rate so that the pressure in the liquid pipe becomes a predetermined pressure or a predetermined pressure range. As a result, the pressure in the liquid pipe can be reduced by the pressure of the liquid head acting on the heating indoor unit, and the insufficient heating capacity caused by the liquid head can be eliminated.

【0017】請求項5の空調機においては、液配管内の
冷媒を気液二相流にして冷媒封入量を節減している。こ
の場合、凝縮器出口の冷媒温度が検出手段によって検出
され、その温度から凝縮器出口の飽和圧力が推定でき
る。また、液冷媒圧力検出手段によって液配管内の圧力
が検出され、液配管内の圧力が前記飽和圧力より低く、
かつ、液配管出口圧力が蒸発器の目標蒸発圧力以上とな
るように、液配管内の圧力を液冷媒圧力調整手段で制御
する。これによって、液配管内を気液二相状態にでき、
しかも、液配管出口の圧力が目標蒸発圧力より高くでき
るので、蒸発器での圧力が大幅に低下することはなくな
る。
In the air conditioner of the fifth aspect, the refrigerant in the liquid pipe is made into a gas-liquid two-phase flow to reduce the amount of refrigerant enclosed. In this case, the refrigerant temperature at the outlet of the condenser is detected by the detecting means, and the saturation pressure at the outlet of the condenser can be estimated from the temperature. Further, the pressure in the liquid pipe is detected by the liquid refrigerant pressure detection means, the pressure in the liquid pipe is lower than the saturation pressure,
The pressure in the liquid pipe is controlled by the liquid refrigerant pressure adjusting means so that the liquid pipe outlet pressure becomes equal to or higher than the target evaporation pressure of the evaporator. This allows the liquid pipe to be in a gas-liquid two-phase state,
Moreover, since the pressure at the outlet of the liquid pipe can be made higher than the target evaporation pressure, the pressure in the evaporator will not drop significantly.

【0018】[0018]

【実施例】本発明の一実施例を図1に示す。本実施例は
暖房専用のマルチ空気調和機であり、その室外ユニット
1は建物の屋上に設置され、圧縮機81、室外熱交換器
11、室外冷媒流量制御弁21、室外ファン31で構成
されている。また、圧縮機81の出口には圧力センサ1
7cが取り付けられており、これにより圧縮機吐出圧力
が検知され、その信号が制御装置201に入力される。
室内ユニット2,3は、それぞれ、室内熱交換器12,
13、室内冷媒流量制御弁22,23、室内ファン3
2,33で構成されている。室外冷媒流量制御弁21及
び室内冷媒流量制御弁22,23の開度は室外ユニット
1内の制御装置201によって制御される。室内ユニッ
ト2は建物内の上方階に設置され、室内ユニット3は下
方階に設置されており、室内ユニット2,3間には高低
差がある。室内ユニット2,3と室外ユニット1とはガ
ス配管121と液配管111で接続されている。下方の
室内ユニット3においては、液配管111に液冷媒圧力
検出手段として圧力センサ17aが取り付けられてお
り、これにより室内ユニット3の液冷媒圧力が検出でき
るようになっている。圧力センサ17aで検出された液
冷媒圧力は室外ユニット1内の制御装置201に入力さ
れる。
FIG. 1 shows an embodiment of the present invention. This embodiment is a multi-air conditioner for heating only, and its outdoor unit 1 is installed on the roof of a building, and is composed of a compressor 81, an outdoor heat exchanger 11, an outdoor refrigerant flow control valve 21, and an outdoor fan 31. There is. The pressure sensor 1 is provided at the outlet of the compressor 81.
7c is attached to detect the compressor discharge pressure, and the signal is input to the control device 201.
The indoor units 2 and 3 respectively include the indoor heat exchanger 12 and
13, indoor refrigerant flow control valves 22, 23, indoor fan 3
It is composed of 2, 33. The opening degrees of the outdoor refrigerant flow rate control valve 21 and the indoor refrigerant flow rate control valves 22 and 23 are controlled by the control device 201 in the outdoor unit 1. The indoor unit 2 is installed on the upper floor in the building, and the indoor unit 3 is installed on the lower floor, and there is a difference in height between the indoor units 2 and 3. The indoor units 2 and 3 and the outdoor unit 1 are connected by a gas pipe 121 and a liquid pipe 111. In the lower indoor unit 3, a pressure sensor 17a is attached to the liquid pipe 111 as a liquid refrigerant pressure detecting means, so that the liquid refrigerant pressure in the indoor unit 3 can be detected. The liquid refrigerant pressure detected by the pressure sensor 17a is input to the control device 201 in the outdoor unit 1.

【0019】なお、本実施例では、室内ユニットは2台
であるが、3台以上の室内ユニットが設けられている場
合も構成は上記と同様である。
Although the number of indoor units is two in this embodiment, the configuration is the same as above even when three or more indoor units are provided.

【0020】次に、動作を説明する。圧縮機81から吐
出された高圧高温の冷媒ガスはガス配管121を通って
各室内ユニット2,3に送られ、室内熱交換器12,1
3で室内ファン22,23によって送風された室内空気
と熱交換され、冷媒は凝縮して液冷媒となり、室内空気
は温められ室内が暖房される。この液冷媒は室内ユニッ
ト2,3の室内冷媒流量制御弁22,23を通過し、液
配管111を通って室外ユニット2へ戻り、室外冷媒流
量制御弁21で減圧されて室外熱交換器11へ入り、室
外ファン31によって送風された室外空気と熱交換さ
れ、冷媒は蒸発して圧縮機81へ吸入され、再び圧縮さ
れ吐出される。このような動作によって暖房運転が行わ
れる。
Next, the operation will be described. The high-pressure and high-temperature refrigerant gas discharged from the compressor 81 is sent to each indoor unit 2, 3 through the gas pipe 121, and the indoor heat exchanger 12, 1
In 3, heat is exchanged with the indoor air blown by the indoor fans 22 and 23, the refrigerant condenses into a liquid refrigerant, the indoor air is warmed, and the room is heated. This liquid refrigerant passes through the indoor refrigerant flow control valves 22 and 23 of the indoor units 2 and 3, returns to the outdoor unit 2 through the liquid pipe 111, is decompressed by the outdoor refrigerant flow control valve 21, and is transferred to the outdoor heat exchanger 11. The heat enters and exchanges heat with the outdoor air blown by the outdoor fan 31, the refrigerant evaporates and is sucked into the compressor 81, and is compressed and discharged again. The heating operation is performed by such an operation.

【0021】ところで、液配管111中には液冷媒が流
れているため、下方の室内ユニット3には上方の室内ユ
ニット2との高低差分の液ヘッドが作用し、室内ユニッ
ト3の冷媒出口での液配管内の圧力は室内ユニット2の
冷媒出口での液配管内の圧力よりも高くなり、室内ユニ
ット2に比較して室内ユニット3には冷媒が流れにくく
なり、室内ユニット3の暖房能力が不足する。これを防
ぐため、本実施例では、例えば、各室内ユニット2,3
の吸い込み空気温度と吹き出し空気温度を不図示の温度
センサで検出して制御装置201に入力し、制御装置2
01でそれらの温度差から各室内ユニットの暖房能力を
求め、室内ユニット3の暖房能力が不足しているときに
は、制御装置201は上方の室内ユニット2の冷媒流量
制御弁22(三台以上の室内ユニットが設置されている
場合は、上方に位置する室内ユニットのうち能力が最大
の室内ユニットの冷媒流量制御弁)の開度を小さくする
ように操作信号を冷媒流量制御弁22へ送る。これによ
って、冷媒流量制御弁22は絞られ、該弁22での圧力
損失が増加し、液配管111内の圧力が下がり、これに
より室内ユニット3に冷媒が流れやすくなり、室内ユニ
ット3の暖房能力が確保される。この場合、室内ユニッ
ト3に設置した圧力センサ17aで室内ユニット3での
液配管111内の圧力が、また、圧力センサ17cで圧
縮機吐出圧力が検出され、それらの信号が制御装置20
1に入力されており、制御装置201は、圧力センサ1
7aで検出された液配管111内圧力が所定圧力、例え
ば、圧力センサ17cで検出された圧縮機吐出圧力より
所定圧力差ΔPだけ低い圧力、となるように、室内ユニ
ット2の冷媒流量制御弁22の開度を制御し、もし、上
記圧力センサ17aで検出された液配管111内の圧力
が上記所定圧力より下がったときは、制御装置201
は、室内ユニット2の冷媒流量制御弁22をそれ以上絞
らない様に制御する。この様な制御により、上方の室内
ユニットの冷媒流量制御弁の絞りすぎによる能力低下を
防止しつつ、各室内ユニットの暖房能力を常に充分確保
することが可能となる。
By the way, since the liquid refrigerant flows in the liquid pipe 111, a liquid head having a difference in height from the upper indoor unit 2 acts on the lower indoor unit 3 and the refrigerant outlet of the indoor unit 3 The pressure in the liquid pipe becomes higher than the pressure in the liquid pipe at the refrigerant outlet of the indoor unit 2, the refrigerant does not easily flow to the indoor unit 3 as compared to the indoor unit 2, and the heating capacity of the indoor unit 3 is insufficient. To do. In order to prevent this, in this embodiment, for example, each indoor unit 2, 3
The temperature of the intake air and the temperature of the blown air of the air are detected by a temperature sensor (not shown) and input to the control device 201.
In 01, the heating capacity of each indoor unit is obtained from the temperature difference, and when the heating capacity of the indoor unit 3 is insufficient, the control device 201 controls the refrigerant flow rate control valve 22 of the upper indoor unit 2 (three or more indoor units). When the unit is installed, an operation signal is sent to the refrigerant flow control valve 22 so as to reduce the opening degree of the refrigerant flow control valve of the indoor unit having the maximum capacity among the indoor units located above. As a result, the refrigerant flow control valve 22 is throttled, the pressure loss in the valve 22 increases, and the pressure in the liquid pipe 111 decreases, whereby the refrigerant easily flows into the indoor unit 3 and the heating capacity of the indoor unit 3 increases. Is secured. In this case, the pressure in the liquid pipe 111 in the indoor unit 3 is detected by the pressure sensor 17a installed in the indoor unit 3, and the compressor discharge pressure is detected by the pressure sensor 17c, and these signals are sent to the controller 20.
1 is input to the control device 201,
The refrigerant flow rate control valve 22 of the indoor unit 2 is set so that the internal pressure of the liquid pipe 111 detected by 7a becomes a predetermined pressure, for example, a pressure lower than the compressor discharge pressure detected by the pressure sensor 17c by a predetermined pressure difference ΔP. The opening degree of the control device 201 is controlled, and if the pressure in the liquid pipe 111 detected by the pressure sensor 17a falls below the predetermined pressure, the control device 201
Controls the refrigerant flow rate control valve 22 of the indoor unit 2 so as not to throttle it further. By such control, it becomes possible to always ensure a sufficient heating capacity of each indoor unit while preventing a decrease in capacity due to excessive restriction of the refrigerant flow rate control valve of the upper indoor unit.

【0022】本発明の他の実施例を図2に示す。本実施
例は複数の室内ユニットの冷房運転または暖房運転のい
ずれかに切換可能なマルチ空調機であり、室外ユニット
1には四方弁61が取り付けられており、冷房運転と暖
房運転が切り換えられるようになっている。圧縮機81
の吐出側配管には圧力センサ17cが取り付けられてい
る。また、室外ユニット1内には液配管111に圧力セ
ンサ17bが取り付けられ、室内ユニット3には液配管
111に圧力センサ17aが取り付けられている。他の
構成は図1と同様であり、室内ユニット2が室内ユニッ
ト3より高い所にあることも図1と同様である。
Another embodiment of the present invention is shown in FIG. The present embodiment is a multi air conditioner capable of switching between cooling operation and heating operation of a plurality of indoor units, and a four-way valve 61 is attached to the outdoor unit 1 so that the cooling operation and the heating operation can be switched. It has become. Compressor 81
A pressure sensor 17c is attached to the discharge side pipe. A pressure sensor 17b is attached to the liquid pipe 111 inside the outdoor unit 1, and a pressure sensor 17a is attached to the liquid pipe 111 inside the indoor unit 3. Other configurations are the same as in FIG. 1, and the indoor unit 2 is higher than the indoor unit 3 in the same manner as in FIG.

【0023】暖房運転時には、冷媒が実線矢印で示す流
れとなるように、四方弁61が切り換えられる。これに
より、冷媒の流れは図1の場合と同様になり、暖房運転
が行われる。この暖房運転時における室内ユニット間の
高低差分の液ヘッドに因る問題、および、それに対処す
るための制御は、図1の実施例で述べたのと同様であ
る。室内ユニット3での液配管111内の圧力は、液配
管111の高低差と圧力損失を考慮すれば、室外ユニッ
ト1に取り付けた圧力センサ17bで検出した圧力から
求めることができるので、これを用いれば、圧力センサ
17aは必ずしも必要でなく、コストダウンのためにこ
れを省いてもよい。なお、図1に示した実施例において
も、これと同様の考えに基づき、圧力センサ17aの代
りに図2に示した様に室外ユニット内の液配管圧力セン
サ17bを設け、この圧力センサ17bの検出圧力を用
いて前述と同様の制御を行うようにすることによっても
その目的を達し得る。
During the heating operation, the four-way valve 61 is switched so that the refrigerant has a flow indicated by a solid arrow. As a result, the flow of the refrigerant becomes the same as in the case of FIG. 1, and the heating operation is performed. The problem caused by the liquid head having the difference in height between the indoor units during the heating operation and the control for coping with the problem are the same as those described in the embodiment of FIG. The pressure in the liquid pipe 111 in the indoor unit 3 can be obtained from the pressure detected by the pressure sensor 17b attached to the outdoor unit 1 in consideration of the height difference of the liquid pipe 111 and the pressure loss. For example, the pressure sensor 17a is not always necessary and may be omitted for cost reduction. In the embodiment shown in FIG. 1 as well, based on the same idea, a liquid pipe pressure sensor 17b in the outdoor unit is provided as shown in FIG. 2 instead of the pressure sensor 17a, and the pressure sensor 17b The purpose can also be achieved by performing the same control as described above using the detected pressure.

【0024】次に、冷房運転について説明する。四方弁
61は冷媒が破線矢印で示す流れとなるように切り換え
られる。圧縮機から吐出された冷媒ガスは、室外熱交換
器11で室外ファン31で送風された室外空気と熱交換
され、凝縮して液冷媒となり、室外冷媒流量制御弁2
1、液配管111を通って、各室内ユニット2,3へ入
る。各室内ユニット2,3では室内冷媒流量制御弁2
2,23で液冷媒が減圧され、室内熱交換器12,13
へ入る。室内交換器12,13へ入った冷媒は、室内フ
ァンによって送風された室内空気と熱交換され蒸発す
る。これにより、室内空気は冷却され、室内が冷房され
る。蒸発した冷媒はガス配管121を通って、室外ユニ
ット1へ戻り、圧縮機81に吸入され、再び圧縮され吐
出される。
Next, the cooling operation will be described. The four-way valve 61 is switched so that the refrigerant has a flow indicated by a dashed arrow. The refrigerant gas discharged from the compressor is heat-exchanged with the outdoor air blown by the outdoor fan 31 in the outdoor heat exchanger 11, condensed and becomes a liquid refrigerant, and the outdoor refrigerant flow control valve 2
1. Enter each indoor unit 2, 3 through the liquid pipe 111. In each indoor unit 2 and 3, the indoor refrigerant flow control valve 2
The liquid refrigerant is decompressed by 2, 23, and the indoor heat exchangers 12, 13
Enter The refrigerant entering the indoor exchangers 12 and 13 is heat-exchanged with the indoor air blown by the indoor fan and evaporated. Thereby, the indoor air is cooled and the room is cooled. The evaporated refrigerant returns to the outdoor unit 1 through the gas pipe 121, is sucked into the compressor 81, is compressed again, and is discharged.

【0025】この冷房運転時に、外気温度が低いとき
は、室外熱交換器11での凝縮能力が大きくなるため、
圧縮機の吐出圧力が下がり、それに伴なって、吸入圧力
も下がり、室内熱交換器12,13内の蒸発圧力も低下
し、これによって、例えば、室内熱交換器12,13が
冷えすぎてその空気側に霜が付着し通風抵抗が大きくな
って冷房ができなくなるといった事態が起こる恐れがあ
る。そこで、外気温度が低いとき、室外熱交換器の凝縮
能力が高くなることに伴う圧縮機吐出圧力の低下を防ぐ
ために、室外冷媒流量制御弁21の開度を制御装置20
1によって絞り、圧縮機吐出圧力が所定値または所定範
囲になるように制御する。この場合、液配管111内の
圧力も圧力センサ17bで検出し、該圧力センサ17b
で検出される液冷媒圧力が所定圧力、例えば、圧力セン
サ17cで検出された圧縮機吐出圧力より所定圧力差Δ
Pだけ低い圧力、より下ったときは、制御装置201は
室外冷媒流量制御弁21を絞らないか、または、所定開
度だけ開く制御を行う。これにより、室外冷媒流量制御
弁21の絞りすぎによる液配管111内の圧力の異常低
下が起こらない様にする。
During this cooling operation, when the outside air temperature is low, the condensing capacity of the outdoor heat exchanger 11 becomes large.
The discharge pressure of the compressor is reduced, and the suction pressure is also reduced accordingly, and the evaporation pressure in the indoor heat exchangers 12, 13 is also reduced. As a result, for example, the indoor heat exchangers 12, 13 are too cold and Frost may adhere to the air side to increase ventilation resistance, which may prevent cooling. Therefore, when the outside air temperature is low, the opening degree of the outdoor refrigerant flow control valve 21 is set to the control device 20 in order to prevent a decrease in the compressor discharge pressure due to an increase in the condensation capacity of the outdoor heat exchanger.
The throttle valve is controlled by 1 so that the discharge pressure of the compressor is controlled to a predetermined value or a predetermined range. In this case, the pressure in the liquid pipe 111 is also detected by the pressure sensor 17b, and the pressure sensor 17b
The liquid refrigerant pressure detected at is a predetermined pressure, for example, a predetermined pressure difference Δ from the compressor discharge pressure detected by the pressure sensor 17c.
When the pressure is lower by P or lower, the control device 201 performs control such that the outdoor refrigerant flow control valve 21 is not throttled or is opened by a predetermined opening degree. This prevents the abnormal decrease in the pressure in the liquid pipe 111 due to the excessive restriction of the outdoor refrigerant flow control valve 21.

【0026】本実施例においては、以上述べた制御によ
り、暖房運転の場合には、図1の実施例の場合と同様の
作用効果が奏せられ、また、冷媒運転の場合には、外気
温が低いときに、室外熱交換器の凝縮能力の増大に伴う
圧縮機吐出圧力の低下を防止すると共に、室外流量制御
弁21の絞りすぎによる液配管111内の圧力の異常低
下、ひいては、圧縮機の吸入圧力および吐出圧力の異常
低下を防止する作用効果が奏せられる。
In the present embodiment, the above-described control provides the same operational effects as in the embodiment of FIG. 1 in the heating operation, and in the refrigerant operation in the outside temperature. When the value is low, the compressor discharge pressure is prevented from lowering due to the increase in the condensing capacity of the outdoor heat exchanger, and the pressure in the liquid pipe 111 is abnormally lowered due to the excessive throttle of the outdoor flow control valve 21, and thus the compressor. The action and effect of preventing an abnormal decrease in the suction pressure and the discharge pressure of the are obtained.

【0027】本発明のさらに他の実施例を図3に示す。
本実施例は、複数の室内ユニットの冷房運転、暖房運
転、または、或る室内ユニットを冷房運転しつつ他の室
内ユニットを暖房運転する所謂冷暖房同時運転、のいず
れにも切換え可能なマルチ空気調和機に関するものであ
るが、図3は室内ユニット2が冷房、室内ユニット3,
4が暖房される冷暖房同時運転状態を示している。室外
ユニット1の圧縮機81の吐出側は2つの四方弁61
a,61bに接続されている。四方弁61aは、圧縮機
81の吐出側と室外熱交換器11aの一端を連通し、圧
縮機81の吸入側とガス配管121を逆止弁71を介し
て接続するように切換えられている。四方弁61bは、
圧縮機81の吐出側とガス配管121の一端を連通し、
圧縮機81の吸入側と室外熱交換器11bの一端を連通
するように切換えられている。圧縮機81の吸入側には
アキュムレータ91が取り付けられている。室外熱交換
器11a,11bの他端にはそれぞれ室外冷媒流量制御
弁21a,21bの一端が接続され、室外冷媒制御弁2
1a,21bの他端同志は結合され、さらに、レシーバ
101に接続されている。レシーバ101には室内ユニ
ットにつながる液配管111の一端が接続されている。
室外冷媒流量制御弁21a,21bの他端同志の結合部
からレシーバ101までの液配管と、圧縮機81の吸入
側とは、液冷媒流量制御弁141を介装した液バイパス
回路151で接続されている。また、前記液バイパス回
路141の液配管側の接続部からレシーバ101までの
液配管と、圧縮機81の吐出側とは、流路の開度が可変
調整できるバイパス流量調整手段(本実施例では流量調
整弁)16を介装したバイパス回路171で接続されて
いる。圧縮機81の吐出側配管には圧力センサ17c
が、また、液配管111には圧力センサ17bが取り付
けられている。
Still another embodiment of the present invention is shown in FIG.
The present embodiment is a multi-air conditioner capable of switching between cooling operation and heating operation of a plurality of indoor units, or so-called simultaneous cooling and heating operation in which a certain indoor unit is cooled and operated while heating another indoor unit. As for the machine, in FIG. 3, the indoor unit 2 is for cooling, the indoor unit 3,
4 shows the simultaneous heating / cooling operation state. The discharge side of the compressor 81 of the outdoor unit 1 has two four-way valves 61.
a, 61b. The four-way valve 61a is switched so that the discharge side of the compressor 81 communicates with one end of the outdoor heat exchanger 11a, and the suction side of the compressor 81 and the gas pipe 121 are connected via the check valve 71. The four-way valve 61b is
The discharge side of the compressor 81 communicates with one end of the gas pipe 121,
The suction side of the compressor 81 and one end of the outdoor heat exchanger 11b are switched to communicate with each other. An accumulator 91 is attached to the suction side of the compressor 81. The other ends of the outdoor heat exchangers 11a and 11b are connected to one ends of the outdoor refrigerant flow control valves 21a and 21b, respectively.
The other ends of 1a and 21b are connected to each other and further connected to the receiver 101. One end of a liquid pipe 111 connected to the indoor unit is connected to the receiver 101.
The liquid piping from the joint between the other ends of the outdoor refrigerant flow control valves 21a and 21b to the receiver 101 and the suction side of the compressor 81 are connected by a liquid bypass circuit 151 having the liquid refrigerant flow control valve 141 interposed. ing. In addition, the liquid pipe from the liquid pipe side connection portion of the liquid bypass circuit 141 to the receiver 101 and the discharge side of the compressor 81 have a bypass flow rate adjusting means (in this embodiment, a variable opening degree of the flow path). They are connected by a bypass circuit 171 having a flow rate adjusting valve 16 interposed therebetween. A pressure sensor 17c is provided on the discharge side pipe of the compressor 81.
However, a pressure sensor 17b is attached to the liquid pipe 111.

【0028】液配管111の他端は室内ユニット2,
3,4の一端に接続されている。ガス配管121の他端
は、室内ユニット3,4の他端に接続されている。室内
ユニット2の他端は低圧ガス配管131の一端に接続さ
れており、低圧ガス配管131の他端は圧縮機81の吸
入側に接続されている。室内ユニット2,3,4は、夫
々、室内熱交換器12,13および14、液配管111
側に取り付けられた室内冷媒流量制御弁22,23およ
び24、ならびに室内ファン32,33および34で構
成されている。なお、室内ユニット2,3,4は室外ユ
ニット1よりも下方にあるとする。
The other end of the liquid pipe 111 is connected to the indoor unit 2,
It is connected to one end of 3, 4. The other end of the gas pipe 121 is connected to the other ends of the indoor units 3 and 4. The other end of the indoor unit 2 is connected to one end of the low pressure gas pipe 131, and the other end of the low pressure gas pipe 131 is connected to the suction side of the compressor 81. The indoor units 2, 3 and 4 respectively include the indoor heat exchangers 12, 13 and 14 and the liquid pipe 111.
The indoor refrigerant flow control valves 22, 23 and 24 mounted on the side, and the indoor fans 32, 33 and 34. It is assumed that the indoor units 2, 3, 4 are below the outdoor unit 1.

【0029】次に、動作について説明する。圧縮機81
から吐出された吐出ガス冷媒の一部は四方弁61aを通
って室外熱交換器11aへ入り、室外ファン31で送ら
れてきた室外空気と熱交換され、凝縮して液冷媒とな
り、室外冷媒流量制御弁21aを通って、レシーバ10
1へ入る。このとき、一部の液冷媒は液バイパス回路1
51を通って圧縮機81の吸入側へ送られ、圧縮機81
の吐出ガス温度制御に利用される。この液冷媒の流量制
御は液冷媒流量制御弁141で行われる。レシーバ10
1へ入った液冷媒は液配管111を通って室内ユニット
2へ送られる。圧縮機81から吐出された吐出ガス冷媒
の他部は、四方弁61bを通ってガス配管121へ入
り、室内ユニット3,4へ送られる。室内ユニット3,
4へ入った吐出ガス冷媒は、室内熱交換器13,14で
室内ファン33,34によって送られてきた夫々の室内
空気と熱交換され、凝縮して液冷媒となる。これによ
り、室内ユニット3,4の存在する室内の空気は温めら
れ、当該それぞれの室内が暖房される。凝縮した液冷媒
は、室内冷媒流量制御弁23,24を通って液配管11
1へ入り、室外ユニット1から送られてきた液冷媒と合
流して、室内ユニット2へ入る。室内ユニット2へ入っ
た液冷媒は室内冷媒流量制御弁22で減圧されて室内熱
交換器12へ入り、室内ファン32によって送られてき
た室内空気と熱交換され、蒸発する。これにより、室内
ユニット2の存在する室内の空気は冷却され、当該室内
が冷房される。室内熱交換器12で蒸発した冷媒は低圧
ガス配管131、アキュムレータ91を通って圧縮機8
1に吸入される。
Next, the operation will be described. Compressor 81
A part of the discharged gas refrigerant discharged from the air flows into the outdoor heat exchanger 11a through the four-way valve 61a, is heat-exchanged with the outdoor air sent by the outdoor fan 31, and is condensed to become the liquid refrigerant. The receiver 10 passes through the control valve 21a.
Enter 1. At this time, part of the liquid refrigerant is in the liquid bypass circuit 1
And is sent to the suction side of the compressor 81 through the compressor 51.
It is used to control the temperature of the discharged gas. The flow control of the liquid refrigerant is performed by the liquid refrigerant flow control valve 141. Receiver 10
The liquid refrigerant entering 1 is sent to the indoor unit 2 through the liquid pipe 111. The other part of the discharged gas refrigerant discharged from the compressor 81 passes through the four-way valve 61b, enters the gas pipe 121, and is sent to the indoor units 3 and 4. Indoor unit 3,
The discharged gas refrigerant that has entered 4 is heat-exchanged with the indoor air sent by the indoor fans 33 and 34 in the indoor heat exchangers 13 and 14, and is condensed to become a liquid refrigerant. As a result, the air in the room where the indoor units 3 and 4 are present is warmed, and the respective rooms are heated. The condensed liquid refrigerant passes through the indoor refrigerant flow control valves 23, 24 and the liquid pipe 11
1 and joins the liquid refrigerant sent from the outdoor unit 1 to enter the indoor unit 2. The liquid refrigerant that has entered the indoor unit 2 is decompressed by the indoor refrigerant flow control valve 22 and enters the indoor heat exchanger 12, where it is heat-exchanged with the indoor air sent by the indoor fan 32 and evaporated. As a result, the air in the room where the indoor unit 2 exists is cooled, and the room is cooled. The refrigerant evaporated in the indoor heat exchanger 12 passes through the low pressure gas pipe 131 and the accumulator 91, and then the compressor 8
Inhaled to 1.

【0030】この冷暖房同時運転において、外気温度が
低いときには、凝縮器としての室外熱交換器11aの凝
縮能力が高まることに伴う圧縮機吐出圧力の低下を防ぐ
ために、バイパス流量制御弁16を開いて圧縮機吐出ガ
スの一部をバイパス回路171を通してレシーバ101
の入口に導くことによりレシーバ101内の液冷媒を室
外熱交換器11aに移動させ、室外熱交換器11aを部
分的に液冷媒で埋めて、その有効伝熱面積を減少させて
凝縮能力を減らし、これにより、圧縮機吐出圧力の低下
を防止する。この場合、圧縮機吐出圧力は圧力センサ1
7cで検出され、制御装置201に入力され、制御装置
201は圧縮機吐出圧力が所定値となるように室外冷媒
流量制御弁21aを制御する(つまり、圧縮機吐出圧力
が所定値より低いときは室外冷媒流量制御弁21aを閉
じる方向に、また高いときは開く方向に制御する)。ま
た、この場合、本実施例においては、液配管111内の
圧力も圧力センサ17bで検出され制御装置201に入
力され、制御装置201は、液配管111内の圧力が暖
房中の室内ユニット3,4に所要量の冷媒を流すのに必
要な所定圧力となるようにバイパス流量調整手段16を
制御する。すなわち、液配管111内の圧力が該所定圧
力より低いときはバイパス流量調整手段16の開度を開
く方向に、また、高いときは閉じる方向に制御する。こ
れによって、暖房室内ユニットに作用する液冷媒ヘッド
の圧力分だけ液配管111内の圧力を下げることがで
き、液ヘッドによって生じる暖房室内ユニットの暖房能
力の低下を解消できる。
In this simultaneous cooling and heating operation, when the outside air temperature is low, the bypass flow control valve 16 is opened in order to prevent the compressor discharge pressure from decreasing due to the increase in the condensing capacity of the outdoor heat exchanger 11a as a condenser. A part of the compressor discharge gas is passed through the bypass circuit 171 to the receiver 101.
The liquid refrigerant in the receiver 101 is moved to the outdoor heat exchanger 11a by being guided to the inlet of the, and the outdoor heat exchanger 11a is partially filled with the liquid refrigerant to reduce the effective heat transfer area and reduce the condensation capacity. This prevents the compressor discharge pressure from decreasing. In this case, the compressor discharge pressure is measured by the pressure sensor 1.
7c and is input to the control device 201, and the control device 201 controls the outdoor refrigerant flow control valve 21a so that the compressor discharge pressure becomes a predetermined value (that is, when the compressor discharge pressure is lower than the predetermined value. The outdoor refrigerant flow rate control valve 21a is controlled in the closing direction, and when it is high, the opening direction is controlled). Further, in this case, in this embodiment, the pressure in the liquid pipe 111 is also detected by the pressure sensor 17b and input to the control device 201, and the control device 201 controls the indoor unit 3, during which the pressure in the liquid pipe 111 is being heated. The bypass flow rate adjusting means 16 is controlled so that the pressure becomes a predetermined pressure required to flow a required amount of the refrigerant to the valve 4. That is, when the pressure in the liquid pipe 111 is lower than the predetermined pressure, the opening degree of the bypass flow rate adjusting means 16 is controlled to open, and when it is higher, the control is controlled to close. As a result, the pressure in the liquid pipe 111 can be reduced by the pressure of the liquid refrigerant head acting on the heating indoor unit, and the decrease in the heating capacity of the heating indoor unit caused by the liquid head can be eliminated.

【0031】以上の様な制御により、室外熱交換器を凝
縮器とする冷暖房同時運転において、外気温度が低いと
き、室外熱交換器の凝縮能力が大きくなることに伴う圧
縮機吐出圧力の低下を防止しつつ、暖房室内ユニットに
能力不足が生じることを防止できる。
By the control as described above, in the simultaneous cooling and heating operation using the outdoor heat exchanger as the condenser, when the outside air temperature is low, the compressor discharge pressure is reduced due to the increase in the condensation capacity of the outdoor heat exchanger. It is possible to prevent the heating indoor unit from having insufficient capacity while preventing it.

【0032】本発明のさらに他の実施例を図4に示す。
この実施例の空調機は、液配管内の冷媒を気液二相流に
して冷凍サイクルの封入冷媒量の節減を図った空調機で
ある。図4は、図2に示す実施例から室内ユニット3を
取り除き、室内ユニットを一台としたものに相当する空
気調和機を示している。室外ユニット1と室内ユニット
2の構成は図2と同様である。なお、本実施例では、室
外ユニット1の室外熱交換器11と室外冷媒流量制御弁
21との間の配管には、温度センサ41が取り付けられ
ていて、そこを流れる冷媒温度が検出され、その温度が
制御装置201に入力されるようになっている。また、
室内ユニット2の室内熱交換器12と室内冷媒流量制御
弁22との間の配管には、温度センサ42が取り付けら
れており、そこを流れる冷媒温度が検出され、その温度
も制御装置201に入力されるようになっている。
Yet another embodiment of the present invention is shown in FIG.
The air conditioner of this embodiment is an air conditioner in which the refrigerant in the liquid pipe is made into a gas-liquid two-phase flow to reduce the amount of refrigerant enclosed in the refrigeration cycle. FIG. 4 shows an air conditioner corresponding to one in which the indoor unit 3 is removed from the embodiment shown in FIG. The configurations of the outdoor unit 1 and the indoor unit 2 are the same as in FIG. In this embodiment, a temperature sensor 41 is attached to the pipe between the outdoor heat exchanger 11 of the outdoor unit 1 and the outdoor refrigerant flow control valve 21, and the temperature of the refrigerant flowing therethrough is detected. The temperature is input to the control device 201. Also,
A temperature sensor 42 is attached to a pipe between the indoor heat exchanger 12 of the indoor unit 2 and the indoor refrigerant flow control valve 22, the temperature of the refrigerant flowing therethrough is detected, and the temperature is also input to the control device 201. It is supposed to be done.

【0033】次に、この実施例の動作について説明す
る。
Next, the operation of this embodiment will be described.

【0034】冷房運転の場合、冷媒は破線矢印で示す流
れとなり、室外熱交換器11は凝縮器、室内熱交換器1
2は蒸発器として働く。なお、冷房運転での冷媒の状態
を図5のモリエル線図で示す。圧縮機81を出た圧力P
d、温度Tdの冷媒は四方弁61を通って室外熱交換器
11へ入り、室外空気と熱交換されて、室外熱交換器1
1の出口では圧力Pc、温度Tcの液冷媒となる。室外
熱交換器11出口の冷媒温度Tcは温度センサ41で検
知され、制御装置201へ入力される。室外熱交換器1
1を出た冷媒は室外冷媒流量制御弁21で減圧されて該
弁21の出口では圧力P2、温度T2の冷媒となり、液
配管111へ入る。該弁21の出口すなわち液配管11
1の入口の圧力P2は圧力センサ17bで検知され、制
御装置201へ入力される。制御装置201では、温度
センサ41で検知した室外熱交換器11出口の冷媒温度
Tcから、室外熱交換器11出口の飽和圧力P1を算出
し、液配管111入口の圧力P2が、前記飽和圧力P1
より低く、かつ、室内ユニットの蒸発器12の目標蒸発
圧力P40(後記の蒸発圧力P4の目標値)に液配管1
11での圧力損失分ΔPLを加えた圧力以上の設定圧力
となるように、室外冷媒流量制御弁21を制御する。こ
こで、目標蒸発圧力P40は蒸発器12の凍結温度の飽
和圧力より高い圧力に設定する。液配管111での圧力
損失分ΔPLは、配管長から推定できる。液配管111
を出た圧力P3(=P2−ΔPL)、温度T3の冷媒は
室内ユニット2へ入り、室内冷媒流量制御弁22で減圧
されて圧力P4、温度T4の冷媒となり、室内熱交換器
12に入る。室内熱交換器12に入った冷媒は室内空気
と熱交換されて蒸発し、空気は冷却される。室内熱交換
器12入口の冷媒の温度T4は温度センサ42で検知さ
れ、制御装置201へ入力されている。また、図には示
されていないが、室内熱交換器12出口の冷媒温度また
は圧縮機吐出ガス温度Tdも検知され制御装置201に
入力されている。制御装置201は、室内熱交換器12
出口の温度または圧縮機吐出ガス温度Tdが所定の温度
になるように、また、室内熱交換器12入口の冷媒の温
度T4が凍結温度以上となるように、室内冷媒流量制御
弁22を制御する。室内熱交換器12で蒸発した冷媒
は、ガス配管121を通って室外ユニット1へ入り、四
方弁61を通って、圧力Ps、温度Tsの冷媒となり、
圧縮機81に吸入される。
In the cooling operation, the refrigerant flows as indicated by the broken line arrow, and the outdoor heat exchanger 11 is the condenser and the indoor heat exchanger 1
2 acts as an evaporator. The state of the refrigerant during the cooling operation is shown in the Mollier diagram of FIG. Pressure P exiting the compressor 81
The refrigerant having the temperature d and the temperature Td enters the outdoor heat exchanger 11 through the four-way valve 61 and is heat-exchanged with the outdoor air to generate the outdoor heat exchanger 1.
At the outlet of No. 1, the liquid refrigerant has a pressure Pc and a temperature Tc. The temperature Tc of the refrigerant at the outlet of the outdoor heat exchanger 11 is detected by the temperature sensor 41 and input to the control device 201. Outdoor heat exchanger 1
The refrigerant discharged from No. 1 is decompressed by the outdoor refrigerant flow control valve 21, becomes a refrigerant of pressure P2 and temperature T2 at the outlet of the valve 21, and enters the liquid pipe 111. The outlet of the valve 21, that is, the liquid pipe 11
The pressure P2 at the inlet of 1 is detected by the pressure sensor 17b and input to the control device 201. In the control device 201, the saturation pressure P1 at the outlet of the outdoor heat exchanger 11 is calculated from the refrigerant temperature Tc at the outlet of the outdoor heat exchanger 11 detected by the temperature sensor 41, and the pressure P2 at the inlet of the liquid pipe 111 is the saturation pressure P1.
The liquid pipe 1 is lower than the target evaporation pressure P40 of the evaporator 12 of the indoor unit (the target value of the evaporation pressure P4 described later).
The outdoor refrigerant flow control valve 21 is controlled so that the set pressure becomes equal to or higher than the pressure to which the pressure loss ΔPL at 11 is added. Here, the target evaporation pressure P40 is set to a pressure higher than the saturation pressure of the freezing temperature of the evaporator 12. The pressure loss amount ΔPL in the liquid pipe 111 can be estimated from the pipe length. Liquid piping 111
The refrigerant having the pressure P3 (= P2−ΔPL) and the temperature T3, which has exited, enters the indoor unit 2, is decompressed by the indoor refrigerant flow control valve 22 to become the refrigerant having the pressure P4 and the temperature T4, and enters the indoor heat exchanger 12. The refrigerant having entered the indoor heat exchanger 12 is heat-exchanged with the indoor air to evaporate, and the air is cooled. The temperature T4 of the refrigerant at the inlet of the indoor heat exchanger 12 is detected by the temperature sensor 42 and input to the control device 201. Although not shown in the figure, the refrigerant temperature at the outlet of the indoor heat exchanger 12 or the compressor discharge gas temperature Td is also detected and input to the control device 201. The control device 201 uses the indoor heat exchanger 12
The indoor refrigerant flow rate control valve 22 is controlled so that the outlet temperature or the compressor discharge gas temperature Td becomes a predetermined temperature, and the refrigerant temperature T4 at the inlet of the indoor heat exchanger 12 becomes the freezing temperature or higher. .. The refrigerant evaporated in the indoor heat exchanger 12 enters the outdoor unit 1 through the gas pipe 121, passes through the four-way valve 61, and becomes the refrigerant of pressure Ps and temperature Ts,
It is sucked into the compressor 81.

【0035】暖房運転の場合、冷媒は実線矢印で示す流
れとなり、室外熱交換器11は蒸発器、室内熱交換器1
2は凝縮器として働く。圧縮機81を出た冷媒は四方弁
61を通り、さらにガス配管121を通って、室内ユニ
ット2へ入る。室内ユニット2へ入った冷媒は、室内熱
交換器12で室内空気と熱交換されて液冷媒となり、室
内冷媒制御弁22で減圧されて液配管111に入り、さ
らに室外ユニット1へ入る。室内熱交換器12を出た液
冷媒の温度は温度センサ42で検知され、制御装置20
1に入力される。また、液配管111出口の圧力センサ
17bで検出され制御装置201に入力される。制御装
置201は、圧力センサ17bで検出された液配管11
1出口の圧力が所定圧力となるように室内冷媒制御弁2
2を制御する。ここで、所定圧力は、液配管111内の
冷媒が気液二相流となる圧力で、冷媒飽和温度が外気温
度程度となるような圧力とする。室外ユニット1に入っ
た冷媒は、室外冷媒流量制御弁21で減圧され、室外熱
交換器11へ入り、室外空気と熱交換されて蒸発し、四
方弁61を通って圧縮機81に吸入される。室外冷媒流
量制御弁21は、室外熱交換器出口温度または圧縮機吐
出温度が所定温度となるように、制御装置201で制御
される。
In the heating operation, the refrigerant flows as shown by the solid arrow, and the outdoor heat exchanger 11 is the evaporator and the indoor heat exchanger 1.
2 acts as a condenser. The refrigerant exiting the compressor 81 passes through the four-way valve 61, further passes through the gas pipe 121, and enters the indoor unit 2. The refrigerant that has entered the indoor unit 2 is heat-exchanged with indoor air in the indoor heat exchanger 12 to become a liquid refrigerant, is decompressed by the indoor refrigerant control valve 22, enters the liquid pipe 111, and further enters the outdoor unit 1. The temperature of the liquid refrigerant that has exited the indoor heat exchanger 12 is detected by the temperature sensor 42, and the control device 20
Input to 1. Further, it is detected by the pressure sensor 17b at the outlet of the liquid pipe 111 and input to the control device 201. The control device 201 uses the liquid pipe 11 detected by the pressure sensor 17b.
1 Indoor refrigerant control valve 2 so that the pressure at the outlet becomes a predetermined pressure
Control 2 Here, the predetermined pressure is a pressure at which the refrigerant in the liquid pipe 111 becomes a gas-liquid two-phase flow, and is a pressure at which the refrigerant saturation temperature becomes about the outside air temperature. The refrigerant that has entered the outdoor unit 1 is decompressed by the outdoor refrigerant flow control valve 21, enters the outdoor heat exchanger 11, exchanges heat with the outdoor air, evaporates, and is sucked into the compressor 81 through the four-way valve 61. .. The outdoor refrigerant flow control valve 21 is controlled by the control device 201 so that the outdoor heat exchanger outlet temperature or the compressor discharge temperature becomes a predetermined temperature.

【0036】なお、本実施例において、圧力センサ17
bによる液配管内圧力の検出の代わりに温度センサを用
いて液配管内の冷媒の飽和温度を検出して、その温度か
ら上記圧力を算出してもよい。また、上記液配管内の冷
媒温度が凝縮器出口の冷媒温度より所定値だけ低くなる
ように室外冷媒流量制御弁21または室内冷媒流量制御
弁22を制御してもよい。
In this embodiment, the pressure sensor 17
Instead of detecting the pressure in the liquid pipe by b, a temperature sensor may be used to detect the saturation temperature of the refrigerant in the liquid pipe, and the pressure may be calculated from the temperature. Further, the outdoor refrigerant flow rate control valve 21 or the indoor refrigerant flow rate control valve 22 may be controlled such that the refrigerant temperature in the liquid pipe is lower than the refrigerant temperature at the condenser outlet by a predetermined value.

【0037】本実施例では、以上のような制御により、
冷媒封入量節減のため液配管内の冷媒を気液二相流とす
ることが可能であり、しかも、蒸発器での蒸発圧力およ
び圧縮機吸入圧力の下りすぎの防止、ひいては、蒸発器
の凍結防止、冷房運転時の室内ユニットの着霜防止、暖
房運転時の充分な暖房能力の確保が可能になる。
In the present embodiment, by the above control,
The refrigerant in the liquid pipe can be made into a gas-liquid two-phase flow in order to save the amount of refrigerant enclosed, and moreover, the evaporation pressure in the evaporator and the compressor suction pressure are prevented from falling too much, and the evaporator is frozen. It is possible to prevent the formation of frost on the indoor unit during the cooling operation and to secure a sufficient heating capacity during the heating operation.

【0038】図6は、図3に示したバイパス流量調整手
段16の他の実施例を示す。図6に示したバイパス流量
調整手段16は、電磁弁161a,161bと、径の異
なるキャピラリチューブ162a,162bとで構成さ
れ、電磁弁161aと径の細いキャピラリチューブ16
2aが直列に接続され、電磁弁161bと径の太いキャ
ピラリチューブ162bが直列に接続され、さらに、こ
れらが並列に接続されている。それぞれの電磁弁161
a,161bは図3に示した制御装置201によって開
閉制御される。次に、動作について説明する。外気温度
が比較的高いとき、電磁弁161aを開き、電磁弁16
1bを閉じる。これによって、図3におけるバイパス回
路171を流れる圧縮機吐出ガス流量は少流量となり、
室外熱交換器11aに溜る液冷媒量も少量となる。外気
温度が上記より低いとき、電磁弁161aを閉じ、電磁
弁161bを開く。これによって、前記バイパス回路1
71を流れる圧縮機吐出ガス流量が増え、室外熱交換器
11aに溜る液冷媒量も増加する。外気温度が上記より
さらに低いとき、電磁弁161aおよび161bを開
く。これによって、前記バイパス回路171を流れる圧
縮機吐出ガス流量はさらに増え、室外熱交換器11aに
溜る液冷媒量もさらに増加する。このように、外気温度
によって、バイパス回路171を流れる圧縮機吐出ガス
流量を変えることにより室外熱交換器11aの有効伝熱
面積が制御でき、室外冷媒流量制御弁21aの開度をあ
まり変化させずに圧縮機吐出圧力を制御できる。
FIG. 6 shows another embodiment of the bypass flow rate adjusting means 16 shown in FIG. The bypass flow rate adjusting means 16 shown in FIG. 6 includes electromagnetic valves 161a and 161b and capillary tubes 162a and 162b having different diameters, and the electromagnetic valve 161a and the capillary tube 16 having a small diameter.
2a are connected in series, a solenoid valve 161b and a capillary tube 162b having a large diameter are connected in series, and further, these are connected in parallel. Each solenoid valve 161
Opening and closing of a and 161b are controlled by the control device 201 shown in FIG. Next, the operation will be described. When the outside air temperature is relatively high, the solenoid valve 161a is opened and the solenoid valve 16
Close 1b. As a result, the compressor discharge gas flow rate flowing through the bypass circuit 171 in FIG.
The amount of liquid refrigerant accumulated in the outdoor heat exchanger 11a also becomes small. When the outside air temperature is lower than the above temperature, the solenoid valve 161a is closed and the solenoid valve 161b is opened. Thereby, the bypass circuit 1
The compressor discharge gas flow rate flowing through 71 increases, and the amount of liquid refrigerant accumulated in the outdoor heat exchanger 11a also increases. When the outside air temperature is lower than the above temperature, the solenoid valves 161a and 161b are opened. As a result, the flow rate of gas discharged from the compressor flowing through the bypass circuit 171 is further increased, and the amount of liquid refrigerant accumulated in the outdoor heat exchanger 11a is further increased. In this way, the effective heat transfer area of the outdoor heat exchanger 11a can be controlled by changing the compressor discharge gas flow rate flowing through the bypass circuit 171 depending on the outside air temperature, and the opening degree of the outdoor refrigerant flow rate control valve 21a does not change so much. The compressor discharge pressure can be controlled.

【0039】また、図6に示したバイパス流量制御手段
16は、電磁弁の切り換えによって冷媒流量制御ができ
るので、バイパス流量の制御だけでなく、図1,図2,
図3,図4における室外冷媒流量制御弁21,21a,
21bや室内冷媒流量制御弁22,23,24としても
使用可能である。
Further, since the bypass flow rate control means 16 shown in FIG. 6 can control the refrigerant flow rate by switching the solenoid valve, not only the bypass flow rate control but also FIGS.
The outdoor refrigerant flow control valves 21, 21a in FIGS.
21b and the indoor refrigerant flow control valves 22, 23, 24 can also be used.

【0040】図7は、図2,図3,図4において室外ユ
ニット1の液冷媒圧力検出手段として取り付けられる圧
力センサ17bに関する他の実施例を示す。圧力センサ
17bは電磁弁18aと電磁弁18bの夫々の一端に接
続され、電磁弁18aの他端は図2,図3,図4に示し
た液配管111に接続されており、電磁弁18bの他端
は圧縮機81の吸入側または吐出側に接続されている。
したがって、電磁弁18a,18bの切り換えによっ
て、圧力センサ17bは液配管111内の圧力を検出し
たり、圧縮機81の吐出圧力または吸入圧力を検出する
ことができる。これによって図2,図3,図4におい
て、液冷媒圧力検出手段である圧力センサ17bを、圧
縮機の吐出圧力を検出する圧力センサ17cまたは吸入
圧力を検出する圧力センサとして共用でき、コスト低減
になる。
FIG. 7 shows another embodiment relating to the pressure sensor 17b mounted as the liquid refrigerant pressure detecting means of the outdoor unit 1 in FIGS. The pressure sensor 17b is connected to one end of each of the solenoid valve 18a and the solenoid valve 18b, and the other end of the solenoid valve 18a is connected to the liquid pipe 111 shown in FIG. 2, FIG. 3, and FIG. The other end is connected to the suction side or the discharge side of the compressor 81.
Therefore, by switching the solenoid valves 18a and 18b, the pressure sensor 17b can detect the pressure in the liquid pipe 111 and the discharge pressure or the suction pressure of the compressor 81. As a result, in FIGS. 2, 3 and 4, the pressure sensor 17b, which is the liquid refrigerant pressure detection means, can be shared as the pressure sensor 17c for detecting the discharge pressure of the compressor or the pressure sensor for detecting the suction pressure, which leads to cost reduction. Become.

【0041】[0041]

【発明の効果】【The invention's effect】

(1)1台の室外ユニットに室内ユニットが複数台接続
されている所謂マルチ空気調和機の暖房運転において、
室内ユニット間に高低差がある場合に、高低差分の液ヘ
ッドを解消し各室内ユニットの暖房能力を確保できる。
(1) In the heating operation of a so-called multi-air conditioner in which a plurality of indoor units are connected to one outdoor unit,
When there is a difference in height between the indoor units, it is possible to eliminate the liquid head having the difference in height and secure the heating capacity of each indoor unit.

【0042】(2)1台の室外ユニットに1台の室内ユ
ニットが接続されている空調機もしくは1台の室外ユニ
ットに複数台の室内ユニットが接続されているマルチ空
調機の冷房運転、又は、マルチ空調機で室外交換器を凝
縮器とする冷暖房同時運転において、外気温度が低いと
き、室外熱交換器の凝縮能力が大きくなることに伴う圧
縮器吐出圧力の低下の防止を室外熱交換器出口の冷媒流
量調整手段を絞ることによって行う場合に、該冷媒流量
調整手段の絞りすぎによる液配管内の圧力、ひいては、
圧縮機の吸入圧力および吐出圧力の異常低下を防止でき
る。
(2) Cooling operation of an air conditioner in which one indoor unit is connected to one outdoor unit or a multi air conditioner in which a plurality of indoor units are connected to one outdoor unit, or In simultaneous cooling and heating operation using an outdoor exchanger as a condenser in a multi-air conditioner, when the outside air temperature is low, the decrease in the compressor discharge pressure due to the increase in the condensation capacity of the outdoor heat exchanger is prevented. When the refrigerant flow rate adjusting means is squeezed, the pressure in the liquid pipe due to excessive squeezing of the refrigerant flow rate adjusting means, and by extension,
It is possible to prevent abnormal reduction in the suction pressure and the discharge pressure of the compressor.

【0043】(3)マルチ空気調和機で室外熱交換機を
凝縮器とする冷暖房同時運転において、外気温度が低い
とき、室外熱交換器の凝縮能力が大きくなることに伴う
圧縮機吐出圧力の低下を防止するために、圧縮機吐出ガ
スの1部をレシーバ入口にバイパスしてレシーバ内の液
冷媒を室外熱交換器に移すことによってその凝縮能力を
制御する場合にも、暖房室内ユニットの暖房能力を確保
できる。
(3) In the multi-air conditioner in the simultaneous cooling and heating operation using the outdoor heat exchanger as a condenser, when the outdoor air temperature is low, the compressor discharge pressure is reduced due to the increase in the condensation capacity of the outdoor heat exchanger. To prevent this, even when controlling the condensation capacity by bypassing a part of the compressor discharge gas to the receiver inlet and transferring the liquid refrigerant in the receiver to the outdoor heat exchanger, the heating capacity of the heating indoor unit is also reduced. Can be secured.

【0044】(4)空気調和機の冷媒封入量を減らすた
めに液配管内の冷媒を気液二相流とする空気調和機にお
いて、蒸発圧力の低下が防止でき、安定した運転ができ
る。
(4) In an air conditioner in which the refrigerant in the liquid pipe is in a gas-liquid two-phase flow in order to reduce the amount of refrigerant charged in the air conditioner, the evaporation pressure can be prevented from lowering and stable operation can be performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の冷凍サイクル構成図FIG. 1 is a configuration diagram of a refrigeration cycle according to an embodiment of the present invention.

【図2】本発明の他の実施例の冷凍サイクル構成図FIG. 2 is a refrigeration cycle configuration diagram of another embodiment of the present invention.

【図3】本発明のさらに他の実施例の冷凍サイクル構成
FIG. 3 is a refrigeration cycle configuration diagram of still another embodiment of the present invention.

【図4】本発明のさらに別の実施例の冷凍サイクル構成
FIG. 4 is a refrigeration cycle configuration diagram of still another embodiment of the present invention.

【図5】図4の実施例における冷凍サイクル内の冷媒状
態を示すモリエル線図
5 is a Mollier diagram showing the state of refrigerant in the refrigeration cycle in the embodiment of FIG.

【図6】本発明に用いるバイパス流量調整手段の他の実
施例を示す構成図
FIG. 6 is a configuration diagram showing another embodiment of the bypass flow rate adjusting means used in the present invention.

【図7】本発明に用いる液冷媒圧力検出手段に関する他
の実施例を示す構成図
FIG. 7 is a configuration diagram showing another embodiment of the liquid refrigerant pressure detection means used in the present invention.

【符号の説明】[Explanation of symbols]

1…室外ユニット 2,3,4…室内
ユニット 21,21a,21b…室外冷媒流量制御弁 22,23,24…室内冷媒流量制御弁 16…バイパス流量調整手段 17a,17b,
17c…圧力センサ 11,11a,11b…室外熱交換器 12,13,14…室内熱交換器 41,42…温度
センサ 61,61a,61b…四方弁 81…圧縮機 111…液配管 121…ガス配管 131…低圧ガス配管 161a,161
b…電磁弁 162a,162b…キャピラリチューブ 201…制御装置
1 ... Outdoor unit 2,3,4 ... Indoor unit 21,21a, 21b ... Outdoor refrigerant flow rate control valve 22,23,24 ... Indoor refrigerant flow rate control valve 16 ... Bypass flow rate adjusting means 17a, 17b,
17c ... Pressure sensor 11, 11a, 11b ... Outdoor heat exchanger 12, 13, 14 ... Indoor heat exchanger 41, 42 ... Temperature sensor 61, 61a, 61b ... Four-way valve 81 ... Compressor 111 ... Liquid pipe 121 ... Gas pipe 131 ... Low-pressure gas piping 161a, 161
b ... Solenoid valves 162a, 162b ... Capillary tube 201 ... Control device

───────────────────────────────────────────────────── フロントページの続き (72)発明者 北條俊幸 静岡県清水市村松390番地 株式会社日立 製作所清水工場内 (72)発明者 竹中 寛 静岡県清水市村松390番地 株式会社日立 製作所清水工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Toshiyuki Hojo, 390 Muramatsu, Shimizu City, Shizuoka Prefecture, Hitachi Shimizu Plant (72) Inventor, Hiroshi Takenaka, 390, Muramatsu, Shimizu City, Shizuoka Hitachi, Ltd., Shimizu Plant, Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機、室外熱交換器及び室外ファンで
構成された室外ユニットと、室内熱交換器及び室内ファ
ンで構成された一台または複数台の室内ユニットとを、
液冷媒が流れる液配管と、高圧ガス冷媒が流れるガス配
管および/または低圧ガス冷媒が流れるガス配管とによ
って接続した空気調和機において、前記液配管内の圧力
を検出する液配管圧力検出手段と、該液配管圧力検出手
段の検出値に基づいて液配管内の圧力を調整する液冷媒
圧力調整手段とを備えたことを特徴とする空気調和機。
1. An outdoor unit composed of a compressor, an outdoor heat exchanger and an outdoor fan, and one or a plurality of indoor units composed of an indoor heat exchanger and an indoor fan,
In an air conditioner connected by a liquid pipe through which a liquid refrigerant flows, a gas pipe through which a high-pressure gas refrigerant flows and / or a gas pipe through which a low-pressure gas refrigerant flows, liquid pipe pressure detection means for detecting the pressure in the liquid pipe, An air conditioner comprising: a liquid refrigerant pressure adjusting unit that adjusts the pressure in the liquid pipe based on the detection value of the liquid pipe pressure detecting unit.
【請求項2】 室内ユニットはその設置位置間に高低差
がある複数台であり、前記液冷媒圧力調整手段は上方の
室内ユニットの冷媒流量調整手段よりなる請求項1記載
の空気調和機。
2. The air conditioner according to claim 1, wherein the indoor units are a plurality of units having height differences between the installation positions, and the liquid refrigerant pressure adjusting means is a refrigerant flow rate adjusting means of the upper indoor unit.
【請求項3】 前記液冷媒圧力調整手段は室外ユニット
の室外熱交換器出口の冷媒流量調整手段よりなる請求項
1記載の空気調和機。
3. The air conditioner according to claim 1, wherein the liquid refrigerant pressure adjusting means comprises a refrigerant flow rate adjusting means at the outdoor heat exchanger outlet of the outdoor unit.
【請求項4】 前記液冷媒圧力調整手段は、圧縮機吐出
ガス冷媒の一部を室外ユニット中の液配管に設けたレシ
ーバに導くバイパス回路と該バイパス回路の流路抵抗を
調整するバイパス流量調整手段とからなることを特徴と
する請求項1記載の空気調和機。
4. A bypass circuit for guiding a part of a compressor discharge gas refrigerant to a receiver provided in a liquid pipe in an outdoor unit, and a bypass flow rate adjusting means for adjusting a flow path resistance of the bypass circuit. The air conditioner according to claim 1, wherein the air conditioner comprises:
【請求項5】 凝縮器出口の冷媒温度を検出する凝縮器
出口冷媒温度検出手段を備え、前記液配管圧力検出手段
で検出された液配管内の圧力が、凝縮器出口の冷媒温度
の飽和圧力より低く、且つ、液配管出口圧力が蒸発器の
目標蒸発圧力以上となるように、前記液冷媒圧力調整手
段によって液配管内の圧力を制御することを特徴とする
請求項1記載の空気調和機。
5. A condenser outlet refrigerant temperature detecting means for detecting a condenser outlet refrigerant temperature, wherein the pressure in the liquid pipe detected by the liquid pipe pressure detecting means is a saturation pressure of the condenser outlet refrigerant temperature. The air conditioner according to claim 1, wherein the pressure in the liquid pipe is controlled by the liquid refrigerant pressure adjusting means so that the pressure is lower and the liquid pipe outlet pressure is equal to or higher than the target evaporation pressure of the evaporator. ..
【請求項6】 液配管内の冷媒温度を検出する液配管内
冷媒温度検出手段と、凝縮器出口の冷媒温度を検出する
凝縮器出口冷媒温度検出手段とを備え、液配管内の冷媒
温度が凝縮器出口の冷媒温度より所定値だけ低くなるよ
うに前記液冷媒圧力調整手段によって液配管内の圧力を
制御することを特徴とする請求項1記載の空気調和機。
6. A refrigerant temperature detecting means in the liquid pipe for detecting a refrigerant temperature in the liquid piping, and a condenser outlet refrigerant temperature detecting means for detecting a refrigerant temperature in the condenser outlet are provided. The air conditioner according to claim 1, wherein the pressure inside the liquid pipe is controlled by the liquid refrigerant pressure adjusting means so as to be lower than the refrigerant temperature at the condenser outlet by a predetermined value.
JP4139013A 1992-05-29 1992-05-29 Air conditioner Expired - Fee Related JP2968392B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4139013A JP2968392B2 (en) 1992-05-29 1992-05-29 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4139013A JP2968392B2 (en) 1992-05-29 1992-05-29 Air conditioner

Publications (2)

Publication Number Publication Date
JPH05332630A true JPH05332630A (en) 1993-12-14
JP2968392B2 JP2968392B2 (en) 1999-10-25

Family

ID=15235444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4139013A Expired - Fee Related JP2968392B2 (en) 1992-05-29 1992-05-29 Air conditioner

Country Status (1)

Country Link
JP (1) JP2968392B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008116085A (en) * 2006-11-01 2008-05-22 Mitsubishi Heavy Ind Ltd Air conditioner
WO2008069066A1 (en) * 2006-12-04 2008-06-12 Daikin Industries, Ltd. Refrigeration device
JP2010196985A (en) * 2009-02-25 2010-09-09 Mitsubishi Heavy Ind Ltd Multi-unit air conditioner, outdoor unit thereof, and method of controlling the multi-unit air conditioner
JP2010271011A (en) * 2009-05-25 2010-12-02 Mitsubishi Electric Corp Air conditioner
WO2011052047A1 (en) * 2009-10-28 2011-05-05 三菱電機株式会社 Refrigeration cycle device
JP2012097922A (en) * 2010-10-29 2012-05-24 Mitsubishi Electric Corp Air conditioning device
JP2012193905A (en) * 2011-03-17 2012-10-11 Fujitsu General Ltd Air conditioner
WO2015063837A1 (en) * 2013-10-28 2015-05-07 三菱電機株式会社 Refrigeration cycle device
WO2015063838A1 (en) * 2013-10-28 2015-05-07 三菱電機株式会社 Refrigeration cycle device
JP2016156596A (en) * 2015-02-26 2016-09-01 株式会社富士通ゼネラル Air conditioner
JP6021955B2 (en) * 2013-01-31 2016-11-09 三菱電機株式会社 Refrigeration cycle apparatus and control method of refrigeration cycle apparatus
JP2016205772A (en) * 2015-04-28 2016-12-08 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Air conditioner
WO2016204194A1 (en) * 2015-06-18 2016-12-22 ダイキン工業株式会社 Air conditioner
CN113439188A (en) * 2019-02-27 2021-09-24 三菱电机株式会社 Air conditioner

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105571059B (en) * 2015-12-23 2018-11-09 广东美的暖通设备有限公司 Combined air conditioners indoor unit leaving air temp Detection of Stability method and multi-gang air conditioner

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008116085A (en) * 2006-11-01 2008-05-22 Mitsubishi Heavy Ind Ltd Air conditioner
WO2008069066A1 (en) * 2006-12-04 2008-06-12 Daikin Industries, Ltd. Refrigeration device
AU2007330102B2 (en) * 2006-12-04 2010-10-21 Daikin Industries, Ltd. Refrigeration system
US8047011B2 (en) 2006-12-04 2011-11-01 Daikin Industries, Ltd. Refrigeration system
JP2010196985A (en) * 2009-02-25 2010-09-09 Mitsubishi Heavy Ind Ltd Multi-unit air conditioner, outdoor unit thereof, and method of controlling the multi-unit air conditioner
JP2010271011A (en) * 2009-05-25 2010-12-02 Mitsubishi Electric Corp Air conditioner
US9822995B2 (en) 2009-10-28 2017-11-21 Mitsubishi Electric Corporation Refrigeration cycle apparatus
WO2011052047A1 (en) * 2009-10-28 2011-05-05 三菱電機株式会社 Refrigeration cycle device
JP5518089B2 (en) * 2009-10-28 2014-06-11 三菱電機株式会社 Air conditioner
JP2012097922A (en) * 2010-10-29 2012-05-24 Mitsubishi Electric Corp Air conditioning device
JP2012193905A (en) * 2011-03-17 2012-10-11 Fujitsu General Ltd Air conditioner
JP6021955B2 (en) * 2013-01-31 2016-11-09 三菱電機株式会社 Refrigeration cycle apparatus and control method of refrigeration cycle apparatus
JPWO2014118953A1 (en) * 2013-01-31 2017-01-26 三菱電機株式会社 Refrigeration cycle apparatus and control method of refrigeration cycle apparatus
JPWO2015063837A1 (en) * 2013-10-28 2017-03-09 三菱電機株式会社 Refrigeration cycle equipment
CN105683681A (en) * 2013-10-28 2016-06-15 三菱电机株式会社 Refrigeration cycle device
CN105705882A (en) * 2013-10-28 2016-06-22 三菱电机株式会社 Refrigeration cycle device
GB2534510A (en) * 2013-10-28 2016-07-27 Mitsubishi Electric Corp Refrigeration cycle device
GB2535051A (en) * 2013-10-28 2016-08-10 Mitsubishi Electric Corp Refrigeration cycle device
WO2015063838A1 (en) * 2013-10-28 2015-05-07 三菱電機株式会社 Refrigeration cycle device
GB2535051B (en) * 2013-10-28 2020-03-11 Mitsubishi Electric Corp Refrigeration cycle apparatus
GB2534510B (en) * 2013-10-28 2020-03-11 Mitsubishi Electric Corp Refrigeration cycle apparatus
WO2015063837A1 (en) * 2013-10-28 2015-05-07 三菱電機株式会社 Refrigeration cycle device
JPWO2015063838A1 (en) * 2013-10-28 2017-03-09 三菱電機株式会社 Refrigeration cycle equipment
JP2016156596A (en) * 2015-02-26 2016-09-01 株式会社富士通ゼネラル Air conditioner
JP2016205772A (en) * 2015-04-28 2016-12-08 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Air conditioner
JP2017009155A (en) * 2015-06-18 2017-01-12 ダイキン工業株式会社 Air conditioner
CN107683393A (en) * 2015-06-18 2018-02-09 大金工业株式会社 Air-conditioning device
AU2016279490B2 (en) * 2015-06-18 2019-01-31 Daikin Industries, Ltd. Air conditioner
WO2016204194A1 (en) * 2015-06-18 2016-12-22 ダイキン工業株式会社 Air conditioner
CN107683393B (en) * 2015-06-18 2020-08-04 大金工业株式会社 Air conditioner
US11199342B2 (en) 2015-06-18 2021-12-14 Daikin Industries, Ltd. Air conditioner
CN113439188A (en) * 2019-02-27 2021-09-24 三菱电机株式会社 Air conditioner

Also Published As

Publication number Publication date
JP2968392B2 (en) 1999-10-25

Similar Documents

Publication Publication Date Title
US8302413B2 (en) Air conditioner
US7607317B2 (en) Air conditioner with oil recovery function
US8424333B2 (en) Air conditioner
US20050066678A1 (en) Refrigerant circuit and heat pump type hot water supply apparatus
US20190383532A1 (en) Air-conditioning apparatus
KR930005666B1 (en) Air conditioner and operating method
JP2968392B2 (en) Air conditioner
US7171818B2 (en) System and method for controlling temperature of refrigerant in air conditioner
CN112050399B (en) Air conditioner
EP3088809A1 (en) Air conditioner
WO2022110761A1 (en) Air conditioner
CN101307964B (en) Refrigeration cycle apparatus
US20040098993A1 (en) Air conditioner and method for controlling the same
JP2557577B2 (en) Air conditioner
JPWO2012085965A1 (en) Air conditioner
US7624590B2 (en) Multi-type air conditioner
KR19990081638A (en) Multi type air conditioner and control method
JPH07332795A (en) Multiroom type air-conditioning system
JP3511161B2 (en) Air conditioner
JP2889762B2 (en) Air conditioner
JP3059886B2 (en) Refrigeration equipment
CN214501455U (en) Air conditioner
JP2755040B2 (en) Heat pump system
WO2022113166A1 (en) Refrigeration cycle device
KR100812780B1 (en) Heat-pump having inverter-type compressor for preventing heating overload and control method of the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070820

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070820

Year of fee payment: 8

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070820

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080820

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080820

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090820

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100820

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100820

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110820

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees