JPH05332311A - Pressure oil supply device - Google Patents

Pressure oil supply device

Info

Publication number
JPH05332311A
JPH05332311A JP16192792A JP16192792A JPH05332311A JP H05332311 A JPH05332311 A JP H05332311A JP 16192792 A JP16192792 A JP 16192792A JP 16192792 A JP16192792 A JP 16192792A JP H05332311 A JPH05332311 A JP H05332311A
Authority
JP
Japan
Prior art keywords
pressure
valve
port
check valve
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16192792A
Other languages
Japanese (ja)
Inventor
Tadao Karakama
忠雄 唐鎌
Mitsumasa Akashi
光正 明石
Teruo Akiyama
照夫 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP16192792A priority Critical patent/JPH05332311A/en
Publication of JPH05332311A publication Critical patent/JPH05332311A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fluid-Pressure Circuits (AREA)

Abstract

PURPOSE:To reduce a shock by gradually increasing the valve opening pressure of a check valve according to an external signal when pump delivery pressure is supplied from valve blocks on both sides to plurality of actuators. CONSTITUTION:When a boom cylinder and a turning motor are simultaneously operated, pilot pressure oil is supplied from a pilot pipe line 116 to a check valve 118, and valve opening pressure is therefore gradually increased in proportion to the force of the pilot pressure oil. Since the delivery pressure of a hydraulic pump 20 is not supplied to the port 42 of a valve block 30-2 on the other side from a passage 119, and the load pressure of the turning motor is therefore not detected from the third port 43 to a load pressure detecting path 82, the pressure compensating valve of a valve block 30-1 is set by the load pressure of a boom cylinder, and boom ascending speed does not lower. In addition, when pressure in a passage 117 exceeds the valve opening pressure of the check valve 118, since the pressure in the passage 117 flows into the second port 42 to gradually increase the load pressure, and a flow rate into the boom cylinder changes smoothly to check the occurrence of a shock.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は1つ又は複数の油圧ポン
プの吐出圧油を複数のアクチュエータ、特にパワーショ
ベルのブーム用シリンダと旋回用モータに供給する圧油
供給装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pressure oil supply device for supplying pressure oil discharged from one or a plurality of hydraulic pumps to a plurality of actuators, particularly a boom cylinder and a swing motor of a power shovel.

【0002】[0002]

【従来の技術】特開昭60−11706号公報に示す圧
油供給装置が知られている。すなわち、図1に示すよう
に油圧ポンプ1の吐出導管2に複数の圧力補償弁3,1
3を並列に接続し、各圧力補償弁3,13の出口導管
4,14に方向制御弁5,15をそれぞれ設けこの各方
向制御弁5,15の出力側をアクチュエータ6,16に
それぞれ接続し、前記圧力補償弁3,13をポンプ吐出
圧と方向制御弁出口圧で開き方向に押され、方向制御弁
入口圧と最も高い負荷圧で閉じ方向に押される構造とし
た圧油供給装置である。この圧油供給装置であれば、複
数の方向制御弁3,13を同時操作した時に各アクチュ
エータにポンプ吐出圧油を所定の分配比で供給できる。
2. Description of the Related Art A pressure oil supply device disclosed in Japanese Patent Laid-Open No. 60-11706 is known. That is, as shown in FIG. 1, a plurality of pressure compensating valves 3, 1 are provided in the discharge conduit 2 of the hydraulic pump 1.
3 are connected in parallel, and directional control valves 5 and 15 are provided on the outlet conduits 4 and 14 of the pressure compensating valves 3 and 13, respectively, and the output sides of the directional control valves 5 and 15 are connected to actuators 6 and 16, respectively. A pressure oil supply device having a structure in which the pressure compensating valves 3 and 13 are pushed in the opening direction by the pump discharge pressure and the directional control valve outlet pressure, and pushed in the closing direction by the directional control valve inlet pressure and the highest load pressure. .. With this pressure oil supply device, the pump discharge pressure oil can be supplied to each actuator at a predetermined distribution ratio when a plurality of directional control valves 3 and 13 are simultaneously operated.

【0003】かかる圧油供給装置であるとアクチュエー
タの負荷圧を比較して高い方の負荷圧を圧力補償弁に供
給するためにシャトル弁7が必ず必要であり、しかもこ
のシャトル弁7はアクチュエータの数より1つ少ない数
だけ必要であり、それだけコストが高くなる。また、前
述の図1に示す圧油供給装置であると2つのアクチュエ
ータ6,12をともに作動させ、それらの負荷圧のう
ち、アクチュエータ6側の負荷圧が大きいとする。この
ときは、導管8内の圧力が最高負荷圧としてシャトル弁
7によって導管9に導かれる。次に、負荷圧が変動し
て、アクチュエータ16側の負荷圧の方がアクチュエー
タ6側の負荷圧より大きくなったとする。その際、すな
わちシャトル弁7が切換わる際、シャトル弁7内の吹き
ぬけにより導管18内の圧力がぬけ、他方の導管8内の
圧力が押しこめられる。そのため、シャトル弁7の切換
え時、過渡的にアクチュエータ6は自然降下しアクチュ
エータ6は加速される。そこで、本出願人は先に前述の
課題を解決できるようにした圧油供給装置を出願した。
In such a pressure oil supply device, the shuttle valve 7 is indispensable for comparing the load pressure of the actuator and supplying the higher load pressure to the pressure compensating valve. Only one less than the number is needed, and the cost is higher. Further, in the above-described pressure oil supply device shown in FIG. 1, it is assumed that the two actuators 6 and 12 are both actuated, and the load pressure on the actuator 6 side is large among those load pressures. At this time, the pressure in the conduit 8 is guided to the conduit 9 by the shuttle valve 7 as the maximum load pressure. Next, it is assumed that the load pressure fluctuates and the load pressure on the actuator 16 side becomes larger than the load pressure on the actuator 6 side. At that time, that is, when the shuttle valve 7 is switched, the pressure in the conduit 18 is eliminated by the blow-through in the shuttle valve 7, and the pressure in the other conduit 8 is pushed in. Therefore, when the shuttle valve 7 is switched, the actuator 6 transiently descends naturally and the actuator 6 is accelerated. Therefore, the present applicant previously applied for a pressure oil supply device capable of solving the above-mentioned problems.

【0004】かかる圧油供給装置は図2に示すように、
油圧ポンプ20の吐出路21に複数の方向制御弁22を
設け、この各方向制御弁22の入口側にチェック弁部2
3と減圧弁部24より成る圧力補償弁25をそれぞれ設
けたものであり、この方向制御弁22と圧力補償弁25
は図3に示すように構成してある。
As shown in FIG. 2, such a pressure oil supply device is
A plurality of directional control valves 22 are provided in the discharge passage 21 of the hydraulic pump 20, and the check valve unit 2 is provided on the inlet side of each directional control valve 22.
3 and a pressure reducing valve portion 24 are provided respectively, and the directional control valve 22 and the pressure compensating valve 25 are provided.
Is configured as shown in FIG.

【0005】すなわち、図3に示すように、弁ブロック
30は略直方体形状となり、この弁ブロック30の上部
寄りにスプール孔31が左右側面32,33に開口して
形成され、このスプール31に開口した第1・第2アク
チュエータポート34,35が上面36に開口して形成
してあり、弁ブロック30の下部寄りには左側面32に
開口したチェック弁用孔37と右側面33に開口した減
圧弁用孔38が同心状に形成され、前記チェック弁用孔
37に開口した第1ポート39が前後面に開口して形成
され、前記減圧弁用孔38に開口した第2、第3ポート
42,43が前後面に開口して形成してあり、複数の弁
ブロック30の前後面を突き合せて連結すると各第1・
第2・第3ポート39,42,43が連通するようにし
てある。
That is, as shown in FIG. 3, the valve block 30 has a substantially rectangular parallelepiped shape, and a spool hole 31 is formed in the left and right side surfaces 32 and 33 near the upper portion of the valve block 30, and the spool 31 is opened. The first and second actuator ports 34 and 35 are formed to open on the upper surface 36, and a check valve hole 37 opened to the left side surface 32 and a depressurization opening to the right side surface 33 are formed near the lower part of the valve block 30. The valve hole 38 is formed concentrically, the first port 39 opened to the check valve hole 37 is opened to the front and rear surfaces, and the second and third ports 42 opened to the pressure reducing valve hole 38. , 43 are formed with openings in the front and rear surfaces, and when the front and rear surfaces of the plurality of valve blocks 30 are butted and connected to each other,
The second and third ports 39, 42, 43 communicate with each other.

【0006】前記弁ブロック30にはスプール孔31に
開口したポンプポート44、第1・第2負荷圧検出ポー
ト45,46、前記第1・第2アクチュエータポート3
4,35、第1、第2タンクポート47,48が形成さ
れ、そのスプール孔31に嵌挿した主スプール49には
第1・第2小径部50,51と連通用溝52が形成して
あり、主スプール49には第1・第2負荷圧検出ポート
45,46を常時連通する第1油路53及び第2負荷圧
検出ポート46と第2タンクポート48を連通・遮断す
る第2油路54が形成され、スプール49はスプリング
で各ポートを遮断し、第2油路54で第2負荷圧検出ポ
ート46と第2タンクポート48を連通する中立位置に
保持され、スプール49を右方に摺動すると第2小径部
51で第2アクチュエータポート35を第2タンクポー
ト48に連通し、連通用溝52でポンプポート44が第
2負荷圧検出ポート46に連通し、第1小径部50で第
1アクチュエータポート34が第1負荷圧検出ポート4
5に連通し、かつ第2負荷圧検出ポート46と第2タン
クポート48が遮断する第1圧油供給位置となり、スプ
ール49を左方に摺動すると第1小径部50で第1アク
チュエータポート34を第1タンクポート47に連通
し、連通用溝52でポンプポート44が第1負荷圧検出
ポート45に連通し、第2小径部51で第2アクチュエ
ータポート35が第2負荷圧検出ポート46に連通し、
かつ第2負荷圧検出ポート46と第2タンクポート48
が遮断する第2圧油供給位置となって方向制御弁22を
構成している。
The valve block 30 has a pump port 44 opened in the spool hole 31, first and second load pressure detection ports 45 and 46, and first and second actuator ports 3
4, 35, first and second tank ports 47, 48 are formed, and first and second small diameter portions 50, 51 and a communication groove 52 are formed in the main spool 49 fitted in the spool hole 31. Yes, the main spool 49 has a first oil passage 53 that constantly connects the first and second load pressure detection ports 45 and 46, and a second oil that connects and disconnects the second load pressure detection port 46 and the second tank port 48. A passage 54 is formed, the spool 49 blocks each port with a spring, and the second oil passage 54 holds the spool 49 in a neutral position where the second load pressure detection port 46 and the second tank port 48 communicate with each other. Sliding on the second small diameter portion 51 communicates the second actuator port 35 with the second tank port 48, the communication groove 52 allows the pump port 44 to communicate with the second load pressure detection port 46, and the first small diameter portion 50. With the first actuator Over door 34 is the first load pressure detection port 4
5 and the first pressure oil supply position where the second load pressure detection port 46 and the second tank port 48 are shut off and the spool 49 is slid to the left, the first small diameter portion 50 causes the first actuator port 34 to move. To the first tank port 47, the communication groove 52 connects the pump port 44 to the first load pressure detection port 45, and the second small diameter portion 51 connects the second actuator port 35 to the second load pressure detection port 46. Communication,
And the second load pressure detection port 46 and the second tank port 48
The directional control valve 22 is constituted by the second pressure oil supply position where the valve is shut off.

【0007】前記チェック弁用孔37は油路56でポン
プポート44に開口し、そのチェック弁用孔37には前
記第1ポート39とポンプポート44を連通遮断する弁
60が嵌挿され、その弁60はプラグ61に設けたスト
ッパ杆62で図示位置より左方に摺動しないように規制
されて遮断位置に保持されてチェック弁部23を構成し
ている。前記減圧弁用孔38は第4ポート57と油路5
8で第2負荷圧検出ポート46に連通し、この減圧弁用
孔38にはスプール64が嵌挿されて第1圧力室65と
第2圧力室66を形成し、第1圧力室65は第4ポート
57に連通し、第2圧力室66は第3ポート43に連通
し、前記スプール64の盲穴67に挿入したフリーピス
トン68と盲穴67底部との間にばね69が設けられて
フリーピストン68はプラグ70に当接し、かつスプー
ル64に一体的に設けた押杆71が透孔72より突出し
て前記弁60をストッパ杆62に当接しており、前記ス
プール64には第2ポート42を盲穴67に連通する細
孔73が形成されて減圧弁部24を構成し、この減圧弁
部24と前記チェック弁部23とで圧力補償弁25を構
成している。
The check valve hole 37 is opened to the pump port 44 through the oil passage 56, and the check valve hole 37 is fitted with a valve 60 for shutting off the communication between the first port 39 and the pump port 44. The valve 60 is restricted by a stopper rod 62 provided on the plug 61 so as not to slide leftward from the position shown in the figure, and is held at the shutoff position to form the check valve portion 23. The pressure reducing valve hole 38 is provided with the fourth port 57 and the oil passage 5.
8 communicates with the second load pressure detection port 46, the spool 64 is fitted into the pressure reducing valve hole 38 to form a first pressure chamber 65 and a second pressure chamber 66, and the first pressure chamber 65 is the first pressure chamber 65. The second pressure chamber 66 communicates with the third port 43, and the spring 69 is provided between the free piston 68 inserted into the blind hole 67 of the spool 64 and the bottom portion of the blind hole 67. The piston 68 abuts on the plug 70, and the push rod 71 integrally provided on the spool 64 projects from the through hole 72 to abut the valve 60 on the stopper rod 62. The spool 64 has a second port 42. The pressure reducing valve portion 24 and the check valve portion 23 form a pressure compensating valve 25 by forming a fine hole 73 communicating with the blind hole 67.

【0008】そして、図2に示すように油圧ポンプ20
の吐出路21を第1ポート39、第2ポート42に連通
し、第3ポート43に負荷圧検出路82を接続し、第1
・第2アクチュエータポート34,35にアクチュエー
タ88が接続してある。図2において、83は油圧ポン
プ80の吐出流量を制御する斜板、84はサーボシリン
ダ、85はポンプ調整用方向制御弁である。
Then, as shown in FIG. 2, the hydraulic pump 20
The discharge path 21 of the first port 39 and the second port 42 are communicated with each other, and the load pressure detection path 82 is connected to the third port 43.
-The actuator 88 is connected to the second actuator ports 34 and 35. In FIG. 2, 83 is a swash plate that controls the discharge flow rate of the hydraulic pump 80, 84 is a servo cylinder, and 85 is a directional control valve for pump adjustment.

【0009】次に作動を図2に基づいて説明する。 方向制御弁22が中立位置Aのとき。油圧ポンプ20
によってタンク86から吸上げられた油は、吐出路21
を通ってチェック弁部23の開く方向の圧力室aに案内
される。この時、減圧弁部24の圧力室65,66は、
ともにタンク86に通じているので、この圧力室65,
66の圧力はともにゼロで、よって減圧弁部24は、弱
いばね69によって押され杆体71がチェック弁部23
に当接しているだけである。一方、ポンプ吐出圧は、ポ
ンプ調整用方向制御弁85のばね87によって負荷圧検
出路82の圧力との差圧がある一定に保たれる。いま、
この差圧を20kg/cm2 とすると負荷圧検出路82
の圧力はゼロなので、ポンプ吐出圧は20kg/cm2
まで上昇し、同時にチェック弁部23の圧力室aにポン
プ吐出圧が流入して方向制御弁22の入口圧(チェック
弁部63の出口圧)がポンプ吐出圧と等しくなるまでス
トロークし、等しくなれば、弱いばね69によってレシ
ートする。減圧弁部24は、ストロークエンド時のみ、
ポンプ吐出路81と圧力室66を連通させる一方、チェ
ック弁部23は、ストロークエンドに達する前に、ポン
プ吐出路81と出口側を連通させるので、方向制御弁2
2が中立位置Aのときは、ポンプ吐出路21と圧力室6
6が連通することはなく、圧力室65の圧力はゼロのま
まである。
Next, the operation will be described with reference to FIG. When the directional control valve 22 is in the neutral position A. Hydraulic pump 20
The oil sucked up from the tank 86 by the discharge passage 21
And is guided to the pressure chamber a in the opening direction of the check valve portion 23. At this time, the pressure chambers 65 and 66 of the pressure reducing valve unit 24 are
Since both communicate with the tank 86, the pressure chamber 65,
The pressures of both 66 are zero, so that the pressure reducing valve portion 24 is pushed by the weak spring 69 and the rod 71 is pushed.
It just abuts. On the other hand, the pump discharge pressure is kept constant by the spring 87 of the pump adjusting directional control valve 85, which is a differential pressure from the pressure of the load pressure detection path 82. Now
If this differential pressure is 20 kg / cm 2 , the load pressure detection path 82
Since the pressure in the pump is zero, the pump discharge pressure is 20 kg / cm 2
And at the same time, the pump discharge pressure flows into the pressure chamber a of the check valve section 23, and strokes until the inlet pressure of the directional control valve 22 (the outlet pressure of the check valve section 63) becomes equal to the pump discharge pressure. For example, the receipt is made by the weak spring 69. The pressure reducing valve section 24 is
While the pump discharge passage 81 and the pressure chamber 66 are communicated with each other, the check valve portion 23 communicates the pump discharge passage 81 and the outlet side before reaching the stroke end.
When 2 is in the neutral position A, the pump discharge passage 21 and the pressure chamber 6
6 does not communicate with each other, and the pressure in the pressure chamber 65 remains zero.

【0010】方向制御弁22のいずれか一方のみ第1
圧油供給位置Bにストロークさせるとき。いま、左側の
方向制御弁22を第1圧油供給位置Bにストロークさ
せ、右側の方向制御弁22は、中立位置Aとする。方向
制御弁22をストロークさせポンプポート44と第1ア
クチュエータポート34を接続させ、同時に、第2アク
チュエータ35と第2タンクポート48を接続させる。
この時第1アクチュエータポート34とアクチュエータ
88を接続する導管89内の圧力(負荷圧)がポンプ吐
出圧(20kg/cm2 )より大きいときはチェック弁
部23が圧力室bの圧力でレシートするため、アクチュ
エータ88の自然降下を防止することができる。アクチ
ュエータ88の導管89の圧力、すなわち負荷圧が第1
油路53、通路58より減圧弁部24の一方の圧力室6
5に導かれる。他方の圧力室66の圧力はゼロであるた
め、減圧弁部24は、チェック弁部23から解離する方
向にストロークエンドまでストロークし、減圧弁部24
の絞りを介して、ポンプ吐出路21と負荷圧検出路82
が連通する。前記導管89内の圧力(負荷圧)がポンプ
吐出圧(=20kg/cm2 )より大きいときは、チェ
ック弁部23の圧力室bの圧力で閉じ、その圧力が、減
圧弁部24の一方の圧力室65に導かれるため、他方の
圧力室66とポンプ吐出路21が連通しても、減圧弁部
24はストロークしたままである。一方、導管41内の
圧力(負荷圧)がポンプ吐出圧(=20kg/cm2
より小さいときは、その負荷圧が減圧弁部24の一方の
圧力室65に導かれ、減圧弁部24が一方の圧力室65
の圧力でストロークするが、他方の圧力室66の圧力が
一方の圧力室65の圧力(すなわち負荷圧)まで上昇す
ると、弱いばね69によって閉じチェック弁部23に当
接する。いずれの場合でも、減圧弁部24は、一方の圧
力室65内の圧力と他方の圧力室66内の圧力が等しく
なるまで、ポンプ吐出路21と圧力室66を連通させ、
両圧力室65,66内の圧力が等しくなれば弱いばね6
9によって閉じチェック弁部23に当接する。結果とし
て負荷圧検出路82内の圧力は、負荷圧と等しくなり、
ポンプ吐出圧は、ポンプ調整用方向制御弁85によっ
て、ある差圧(ここでは20kg/cm2 )分だけ、負
荷圧検出路82内の圧力より高い圧力に制御される。こ
のポンプ吐出圧は、チェック弁部23を介して、ポンプ
ポート44に導かれているので、すなわち、方向制御弁
22の入口圧と出口圧(=負荷圧)の間には、差圧(=
20kg/cm2 )が保たれることになる。よって、方
向制御弁22のストロークに伴なう入口側と出口側の間
の絞りの開口面積の変化によってのみ、アクチュエータ
88へ供給される流量が制御される。方向制御弁22を
ストロークさせる際、アクチュエータ88の導管89あ
るいは90と負荷圧導入用の第2油路53が接続され、
一方、第2油路53は、減圧弁部24の一方の圧力室6
5と接続されているが、減圧弁部24において負荷圧
は、パイロット圧力(減圧弁部のセット圧力)としての
み使われるので、その圧力がぬけることはなく、すなわ
ち、方向制御弁22をストロークさせた際、負荷圧がぬ
けることによるアクチュエータ88の自然降下はない。
Only one of the directional control valves 22 is first
When making a stroke to the pressure oil supply position B. Now, the left directional control valve 22 is stroked to the first pressure oil supply position B, and the right directional control valve 22 is set to the neutral position A. The directional control valve 22 is stroked to connect the pump port 44 and the first actuator port 34, and at the same time, connect the second actuator 35 and the second tank port 48.
At this time, when the pressure (load pressure) in the conduit 89 connecting the first actuator port 34 and the actuator 88 is higher than the pump discharge pressure (20 kg / cm 2 ), the check valve portion 23 receives the pressure in the pressure chamber b. It is possible to prevent the actuator 88 from naturally descending. The pressure of the conduit 89 of the actuator 88, that is, the load pressure is the first
One of the pressure chambers 6 of the pressure reducing valve section 24 from the oil passage 53 and the passage 58.
Guided to 5. Since the pressure in the other pressure chamber 66 is zero, the pressure reducing valve unit 24 strokes in the direction of disengagement from the check valve unit 23 to the stroke end, and the pressure reducing valve unit 24
Pump discharge passage 21 and load pressure detection passage 82
Communicate with each other. When the pressure (load pressure) inside the conduit 89 is higher than the pump discharge pressure (= 20 kg / cm 2 ), the pressure is closed by the pressure in the pressure chamber b of the check valve portion 23, and the pressure is reduced by one of the pressure reducing valve portions 24. Since it is guided to the pressure chamber 65, even if the other pressure chamber 66 and the pump discharge passage 21 communicate with each other, the pressure reducing valve portion 24 remains stroked. On the other hand, the pressure (load pressure) in the conduit 41 is the pump discharge pressure (= 20 kg / cm 2 ).
When the pressure is smaller, the load pressure is guided to one pressure chamber 65 of the pressure reducing valve portion 24, and the pressure reducing valve portion 24 has one pressure chamber 65.
Although the stroke is caused by the pressure of, the pressure of the other pressure chamber 66 rises to the pressure of the one pressure chamber 65 (that is, the load pressure), and the weak spring 69 makes contact with the check valve portion 23. In any case, the pressure reducing valve section 24 connects the pump discharge passage 21 and the pressure chamber 66 until the pressure in the one pressure chamber 65 and the pressure in the other pressure chamber 66 become equal to each other,
If the pressures in both pressure chambers 65 and 66 become equal, the weak spring 6
9 and abuts against the check valve portion 23. As a result, the pressure in the load pressure detection path 82 becomes equal to the load pressure,
The pump discharge pressure is controlled by the pump adjusting directional control valve 85 to a pressure higher than the pressure in the load pressure detection passage 82 by a certain differential pressure (here, 20 kg / cm 2 ). This pump discharge pressure is guided to the pump port 44 via the check valve portion 23, that is, between the inlet pressure and the outlet pressure (= load pressure) of the directional control valve 22.
20 kg / cm 2 ) will be maintained. Therefore, the flow rate supplied to the actuator 88 is controlled only by the change in the opening area of the throttle between the inlet side and the outlet side due to the stroke of the directional control valve 22. When the directional control valve 22 is stroked, the conduit 89 or 90 of the actuator 88 and the second oil passage 53 for introducing load pressure are connected,
On the other hand, the second oil passage 53 is connected to one pressure chamber 6 of the pressure reducing valve portion 24.
5, the load pressure in the pressure reducing valve portion 24 is used only as pilot pressure (set pressure of the pressure reducing valve portion), so the pressure is not lost, that is, the directional control valve 22 is stroked. In this case, the actuator 88 does not naturally descend due to the load pressure being removed.

【0011】前記負荷圧検出路82はもう一方の方向制
御弁22に配設されている圧力補償弁25の減圧弁部2
4の他方の圧力室66にも接続されているが、減圧弁部
24の一方の圧力室65は、方向制御弁22の中立位置
Aによってタンク86と接続しているため、負荷圧導入
用の第1油路53内の圧力はゼロで、よって圧力室66
内の圧力によって減圧弁部24は、チェック弁部23を
閉じる方向に付勢する。一方、チェック弁部24を開く
方向の圧力室aには、ポンプ吐出路81よりポンプ吐出
圧が導かれるため、全体として、ポンプ吐出圧と負荷圧
検出路82内の圧力の差圧分(=20kg/cm2 )に
よってチェック弁部23及び減圧弁部24をチェック弁
部23の開く方向にストロークさせるが、わずかにスト
ロークしポンプポート44の圧力がその差圧(=20k
g/cm2 )になれば、弱いばね69によってレシート
し、結果として、ストロークエンドまで減圧弁部24が
ストロークすることはなく、方向制御弁22側の油圧制
御には、何ら影響することはない。
The load pressure detecting path 82 is provided with the pressure reducing valve section 2 of the pressure compensating valve 25 disposed in the other directional control valve 22.
4 is also connected to the other pressure chamber 66, but one pressure chamber 65 of the pressure reducing valve portion 24 is connected to the tank 86 by the neutral position A of the directional control valve 22, and therefore is used for introducing load pressure. The pressure in the first oil passage 53 is zero, so that the pressure chamber 66
The pressure reducing valve portion 24 urges the pressure reducing valve portion 24 in a direction to close the check valve portion 23. On the other hand, since the pump discharge pressure is introduced from the pump discharge path 81 to the pressure chamber a in the direction of opening the check valve portion 24, the difference between the pump discharge pressure and the pressure in the load pressure detection path 82 (= 20 kg / cm 2 ), the check valve portion 23 and the pressure reducing valve portion 24 are stroked in the opening direction of the check valve portion 23.
g / cm 2 ), the weak spring 69 causes a receipt, and as a result, the pressure reducing valve section 24 does not stroke to the stroke end, and there is no effect on the hydraulic control of the directional control valve 22 side. ..

【0012】方向制御弁22のいずれも第1圧油供給
位置Bにストロークさせるとき。 −各アクチュエータ88に必要とされる流量の合計
が油圧ポンプ20の最大吐出流量位置のとき。いま、方
向制御弁22をともに第1圧油供給位置Bにストローク
させ、各ポンプポート44と各導管89と各負荷圧導用
の第1油路53をそれぞれ接続させたとする。一方の減
圧弁部24は、圧力室66内の圧力が一方の圧力室65
内の圧力に等しくなるまで、また他方の減圧弁部24
は、圧力室66内の圧力が、一方の圧力室65内の圧力
に等しくなるまで、それぞれストロークエンドまでスト
ロークしたままである。いま、二つのアクチュエータ8
8,88の負荷圧のうち、左側のアクチュエータ88の
負荷圧がより大きいとする。仮に、左側アクチュエータ
26の負荷圧を100(kg/cm2 )、右側のアクチ
ュエータ27の負荷圧を10(kg/cm2 )とする。
負荷圧検出路82は、絞り91を介してタンク86と接
続されているので、方向制御弁ストローク前は負荷圧検
出路82内の圧力はゼロである。よって、各減圧弁部2
4は負荷圧検出用の第1油路53内の圧力によってもス
トロークし、ポンプ吐出圧が圧力検出導管34内の圧力
と連通させる。負荷圧検出路82内の圧力が低圧側であ
る右側のアクチュエータ88の導管90内の圧力(10
kg/cm2 )まで上昇すると、まず、右方の圧力補償
弁25の減圧弁部24が閉じる。左方の圧力補償弁25
の減圧弁部24はストロークしたままであり、負荷圧検
出路82内の圧力はポンプ吐出圧(20kg/cm2
と等しくなるまで上昇する。このとき高圧側である左側
のアクチュエータ88の方向制御弁55のポンプポート
44の圧力は100(kg/cm2 )であり、圧力補償
弁25のチェック弁部23は閉じていて、減圧弁部24
とは解離している。一方圧力補償弁25の減圧弁部24
は、二つの圧力室65と66内の圧力の差(20−10
=10kg/cm2 )でチェック弁部23を閉じる方向
に付勢する。一方、チェック弁部23の開く方向の圧力
室a内の圧力(ポンプ吐出圧)は20(kg/cm2
であるため、結果として方向制御弁22のポンプポート
44の圧力が10(kg/cm2 )になるまでチェック
弁部23が開いた後、弱いばね69によってレシートす
る。ポンプ調整用方向制御弁85によって、ある差圧
(20kg/cm2 )分だけ、負荷圧検出路82内の圧
力(20kg/cm2 )より高い圧力にポンプ吐出圧が
制御される(40kg/cm2 )。このときも高圧側の
圧力補償弁25のチェック弁部23は閉じたままで減圧
弁部24はストロークしたままで負荷圧検出路82内の
圧力は40(kg/cm2 )となり、一方、低圧側の圧
力補償弁25の減圧弁部24は、負荷圧検出路82と負
荷圧導入用の第1油路53内の圧力差(=30kg/c
2 )でチェック弁部23を閉じる方向に付勢し、結果
として方向制御弁22のポンプポート44の圧力は10
kg/cm2 のままである。このようにして、負荷圧検
出路82内の圧力とポンプ吐出圧が上昇し続け、やがて
ポンプ吐出圧が高圧側のアクチュエータ88の負荷圧
(100kg/cm2)と等しくなると、高圧側の圧力
補償弁25の減圧弁部23の二つの圧力室65と66内
の圧力はともに100kg/cm2 となり、弱いばね6
9によって、閉じチェック弁部23に当接する。このと
き低圧側の圧力補償弁25の減圧弁部24は負荷圧検出
路82と負荷圧導入用の第1油路53内の圧力差(10
0−10=90kg/cm2 )でチェック弁部23を閉
じる方向に付勢し、結果として低圧側の方向制御弁22
のポンプポート44の圧力は10kg/cm2 のままで
ある。再び、ポンプ調整用方向制御弁85によって、ポ
ンプ吐出圧が120(kg/cm2 )に制御される。こ
のとき高圧側の圧力補償弁25の減圧弁部23は、弱い
ばね69によってチェック弁部23に当接しているだけ
であり、チェック弁部23の二つの圧力室aとbの圧力
差によって、ここで始めてチェック弁部23が開き、ポ
ンプ吐出圧(120kg/cm2 )が方向制御弁22の
ポンプポート44に導かれる。一方、低圧側の圧力補償
弁25の減圧弁部24は負荷圧検出路82と負荷圧導入
用の第1油路53内の圧力差(=90kg/cm2 )分
でチェック弁部23を閉じる方向に付勢し続けるが、チ
ェック弁部23の開く方向の圧力室a内の圧力が120
(kg/cm2 )になったので方向制御弁22の入口ポ
ート44の圧力が30(kg/cm2 )(120−9
0)となる状態で、チェック弁部23及び減圧弁部24
が圧力バランスする。すなわち、チェック弁部23及び
減圧弁部24はわずかにストロークし、チェック弁部2
3において、120kg/cm2 から30kg/cm2
になるように絞っている状態となる。ここで初めて、こ
の油圧制御系はつり合い、高圧側の方向制御弁22のポ
ンプポート44の圧力が120kg/cm2 、低圧側の
方向制御弁22のポンプポート44の圧力が30kg/
cm2 となり、すなわち、二つの方向制御弁22,22
の入口圧と出口圧(負荷圧)の差は、ともに20kg/
cm2 に保たれることにより、二つの方向制御弁22,
22はともに、ストローク分だけで、アクチュエータ8
8,88に供給する流量を制御することができるように
なる。
When any of the directional control valves 22 is stroked to the first pressure oil supply position B. -When the total flow rate required for each actuator 88 is at the maximum discharge flow rate position of the hydraulic pump 20. Now, it is assumed that the directional control valve 22 is both stroked to the first pressure oil supply position B, and the pump ports 44, the conduits 89, and the first oil passages 53 for introducing the load pressure are connected to each other. In the pressure reducing valve portion 24, the pressure in the pressure chamber 66 is one pressure chamber 65.
Until it becomes equal to the internal pressure, and the other pressure reducing valve section 24
Respectively continue to stroke to the stroke end until the pressure in the pressure chamber 66 becomes equal to the pressure in one pressure chamber 65. Now two actuators 8
It is assumed that the load pressure of the left actuator 88 is larger than the load pressure of 8,88. It is assumed that the load pressure of the left actuator 26 is 100 (kg / cm 2 ) and the load pressure of the right actuator 27 is 10 (kg / cm 2 ).
Since the load pressure detection path 82 is connected to the tank 86 via the throttle 91, the pressure in the load pressure detection path 82 is zero before the stroke of the directional control valve. Therefore, each pressure reducing valve unit 2
4 also makes a stroke by the pressure in the first oil passage 53 for load pressure detection, so that the pump discharge pressure communicates with the pressure in the pressure detection conduit 34. The pressure in the conduit 90 of the actuator 88 on the right side where the pressure in the load pressure detection path 82 is the low pressure side (10
When the pressure is increased to (kg / cm 2 ), first, the pressure reducing valve portion 24 of the pressure compensating valve 25 on the right side is closed. Left pressure compensation valve 25
The pressure reducing valve section 24 of the No. 2 is still stroked, and the pressure in the load pressure detecting path 82 is the pump discharge pressure (20 kg / cm 2 ).
Rises up to. At this time, the pressure of the pump port 44 of the directional control valve 55 of the left side actuator 88 on the high pressure side is 100 (kg / cm 2 ), the check valve portion 23 of the pressure compensation valve 25 is closed, and the pressure reducing valve portion 24 is closed.
Is dissociated from. On the other hand, the pressure reducing valve section 24 of the pressure compensating valve 25
Is the pressure difference between the two pressure chambers 65 and 66 (20-10
= 10 kg / cm 2 ), the check valve portion 23 is urged in the closing direction. On the other hand, the pressure in the pressure chamber a in the opening direction of the check valve portion 23 (pump discharge pressure) is 20 (kg / cm 2 ).
Therefore, as a result, the check valve portion 23 is opened until the pressure of the pump port 44 of the directional control valve 22 becomes 10 (kg / cm 2 ), and then the receipt is made by the weak spring 69. By a pump adjusting direction control valve 85, there differential pressure (20kg / cm 2) amount corresponding, pump discharge pressure from the high pressure pressure (20kg / cm 2) of the load pressure Detchi 82 is controlled (40 kg / cm 2 ). Also at this time, the pressure in the load pressure detection path 82 becomes 40 (kg / cm 2 ) with the check valve portion 23 of the pressure compensation valve 25 on the high pressure side kept closed and the pressure reducing valve portion 24 still on the stroke, while the low pressure side The pressure reducing valve portion 24 of the pressure compensating valve 25 of No. 2 has a pressure difference (= 30 kg / c) between the load pressure detection path 82 and the first oil path 53 for introducing load pressure.
m 2 ), the check valve portion 23 is biased in the closing direction, and as a result, the pressure of the pump port 44 of the directional control valve 22 becomes 10
It remains kg / cm 2 . In this way, the pressure in the load pressure detection path 82 and the pump discharge pressure continue to rise, and when the pump discharge pressure eventually becomes equal to the load pressure (100 kg / cm 2 ) of the high-pressure side actuator 88, the high-pressure side pressure compensation is performed. The pressures in the two pressure chambers 65 and 66 of the pressure reducing valve portion 23 of the valve 25 are both 100 kg / cm 2 , and the weak spring 6
9, the closing check valve portion 23 is abutted. At this time, the pressure reducing valve portion 24 of the pressure compensating valve 25 on the low pressure side has the pressure difference (10) between the load pressure detecting passage 82 and the first oil passage 53 for introducing the load pressure.
0-10 = 90 kg / cm 2 ), the check valve portion 23 is biased in the closing direction, and as a result, the low-pressure side directional control valve 22
The pump port 44 pressure remains at 10 kg / cm 2 . Again, the pump adjusting directional control valve 85 controls the pump discharge pressure to 120 (kg / cm 2 ). At this time, the pressure reducing valve portion 23 of the pressure compensating valve 25 on the high pressure side is only in contact with the check valve portion 23 by the weak spring 69, and due to the pressure difference between the two pressure chambers a and b of the check valve portion 23, For the first time, the check valve portion 23 opens and the pump discharge pressure (120 kg / cm 2 ) is introduced to the pump port 44 of the directional control valve 22. On the other hand, the pressure reducing valve portion 24 of the pressure compensating valve 25 on the low pressure side closes the check valve portion 23 by the pressure difference (= 90 kg / cm 2 ) in the load pressure detecting passage 82 and the first oil passage 53 for introducing the load pressure. However, the pressure in the pressure chamber a in the opening direction of the check valve portion 23 is 120
(Kg / cm 2 ), the pressure of the inlet port 44 of the directional control valve 22 is 30 (kg / cm 2 ) (120-9
0), the check valve portion 23 and the pressure reducing valve portion 24
Balances pressure. That is, the check valve portion 23 and the pressure reducing valve portion 24 make a slight stroke, and the check valve portion 2
3 to 120 kg / cm 2 to 30 kg / cm 2
It will be in a state where it is squeezed to become. For the first time, this hydraulic control system is balanced so that the pressure at the pump port 44 of the directional control valve 22 on the high pressure side is 120 kg / cm 2 , and the pressure at the pump port 44 of the directional control valve 22 on the low pressure side is 30 kg / cm 2 .
cm 2 , that is, the two directional control valves 22, 22
The difference between the inlet pressure and the outlet pressure (load pressure) is 20 kg /
By being kept at cm 2 , the two directional control valves 22,
22 is the actuator 8
It becomes possible to control the flow rate supplied to 8,88.

【0013】−各アクチュエータ88,88に必要
とされる流量は合計が油圧ポンプ80の最大吐出流量以
上のとき。いま、アクチュエータ88,88の負荷圧お
よび必要流量を左側のアクチュエータ88が100kg
/cm2 、501/min、右側のアクチュエータ88
が10kg/cm2 、501/minとする。油圧ポン
プ80の最大吐出流量が1001/min以上のとき
は、前述の通り、方向制御弁22,22の入口圧と出口
圧の差が一定に保たれる(=20kg/cm2 )ため、
ストロークによって流量制御ができ、501/minず
つ流量分配することはできる。次に、油圧ポンプ80の
滞在吐出量が701/minになったとする。二つの方
向制御弁22,22の入口圧は前述の通り120kg/
cm2 、30kg/cm2 であるので、高圧側の方向制
御弁22への流量が501/minから201/min
に減る。低圧側の方向制御弁22への流量は、501/
minのままである。二つの方向制御弁22,22のス
トローク(開口面積)を変えないとすると、高圧側の方
向制御弁22の入口圧と出口圧の差圧が流量が減った
分、20kg/cm2 から下がる。いま、差圧が14k
g/cm2 、すなわち、入口圧が、120kg/cm2
から114(100+14)kg/cm2 に下がったと
する。この時圧力補償弁25の減圧弁部24の二つの圧
力室65,66の圧力は、ともに100kg/cm2
ままであるから、減圧弁部24は弱いばね69によって
チェック弁部23に当接しているだけであり、チェック
弁部23の閉じる方向の圧力室b内の圧力が120kg
/cm2 から114kg/cm2 に減少すれば、チェッ
ク弁部23が開いたまま(ストロークエンド)で、チェ
ック弁部23の開く方向の圧力室a内の圧力、すなわ
ち、ポンプ吐出圧が120kg/cm2 から114kg
/cm2 に減少する。この時(ポンプ吐出流量不足時)
にはポンプ吐出圧はポンプ調整用方向制御弁85の制御
によらなくなる。一方、低圧側の圧力補償弁25の減圧
弁部24の二つの圧力室65と66は、100kg/c
2 、10kg/cm2 のままで、その差圧90kg/
cm2 でチェック弁部63の閉じる方向に付勢し続け
る。一方、チェック弁部23の開く方向の圧力室a内の
圧力、すなわちポンプ吐出圧が114kg/cm2 に減
少したので、チェック弁部23の閉じる方向の圧力室b
内の圧力が30kg/cm2から24kg/cm2 に減
少した状態でチェック弁部23及び減圧弁部24が圧力
バランスする。よって、低圧側の方向制御弁22の入口
圧と出口圧の差圧は20kg/cm2 から14kg/c
2 (24−10)に減少する。方向制御弁22のこの
差圧の減少により低圧側のアクチュエータ88への供給
流量は501/minから減少し、その分高圧側のアク
チュエータ88への供給流量が201/minから増え
る。すなわち、方向制御弁22および22の入口圧と出
口圧の差圧が等しく、かつ、二つのアクチュエータ8
8,88への供給量がともに351/minずつに分配
される状態で、この油圧制御系がつり合う。
The total flow rate required for each actuator 88, 88 is greater than or equal to the maximum discharge flow rate of the hydraulic pump 80. Now, the load pressure and required flow rate of the actuators 88, 88 are set to 100 kg for the actuator 88 on the left side.
/ Cm 2 , 501 / min, right actuator 88
Is 10 kg / cm 2 and 501 / min. When the maximum discharge flow rate of the hydraulic pump 80 is 1001 / min or more, as described above, the difference between the inlet pressure and the outlet pressure of the directional control valves 22, 22 is kept constant (= 20 kg / cm 2 ),
The flow rate can be controlled by the stroke, and the flow rate can be distributed by 501 / min. Next, assume that the stay discharge amount of the hydraulic pump 80 becomes 701 / min. The inlet pressure of the two directional control valves 22, 22 is 120 kg /
Since it is cm 2 and 30 kg / cm 2 , the flow rate to the directional control valve 22 on the high pressure side is 501 / min to 201 / min.
Decrease to. The flow rate to the directional control valve 22 on the low pressure side is 501 /
It remains at min. If the strokes (opening areas) of the two directional control valves 22 and 22 are not changed, the differential pressure between the inlet pressure and the outlet pressure of the directional control valve 22 on the high pressure side is reduced from 20 kg / cm 2 by the amount of the reduced flow rate. Now the differential pressure is 14k
g / cm 2 , that is, the inlet pressure is 120 kg / cm 2.
To 114 (100 + 14) kg / cm 2 . At this time, the pressures of the two pressure chambers 65 and 66 of the pressure reducing valve portion 24 of the pressure compensating valve 25 both remain at 100 kg / cm 2 , so the pressure reducing valve portion 24 abuts against the check valve portion 23 by the weak spring 69. The pressure inside the pressure chamber b in the closing direction of the check valve portion 23 is 120 kg.
/ Cm 2 to 114 kg / cm 2 , the pressure in the pressure chamber a in the opening direction of the check valve portion 23, that is, the pump discharge pressure is 120 kg /, while the check valve portion 23 remains open (stroke end). cm 2 to 114 kg
Reduced to / cm 2. At this time (when pump discharge flow rate is insufficient)
Therefore, the pump discharge pressure does not depend on the control of the pump adjusting directional control valve 85. On the other hand, the two pressure chambers 65 and 66 of the pressure reducing valve portion 24 of the pressure compensating valve 25 on the low pressure side are 100 kg / c.
m 2 , 10 kg / cm 2 , the differential pressure is 90 kg /
Continue to urge the check valve portion 63 to close in cm 2 . On the other hand, since the pressure in the pressure chamber a in the opening direction of the check valve portion 23, that is, the pump discharge pressure is reduced to 114 kg / cm 2 , the pressure chamber b in the closing direction of the check valve portion 23 is reduced.
When the internal pressure is reduced from 30 kg / cm 2 to 24 kg / cm 2 , the check valve portion 23 and the pressure reducing valve portion 24 balance the pressure. Therefore, the differential pressure between the inlet pressure and the outlet pressure of the directional control valve 22 on the low pressure side is 20 kg / cm 2 to 14 kg / c.
m 2 (24-10). Due to the decrease in the differential pressure of the directional control valve 22, the supply flow rate to the low-pressure side actuator 88 decreases from 501 / min, and the supply flow rate to the high-pressure side actuator 88 increases from 201 / min. That is, the differential pressure between the inlet pressure and the outlet pressure of the directional control valves 22 and 22 is equal, and the two actuators 8 are
This hydraulic control system is balanced in a state where the supply amounts to 8 and 88 are both divided into 351 / min.

【0014】一つの油圧ポンプ80によって負荷され
るアクチュエータが3つ以上のとき。アクチュエータが
3つ以上のときも、方向制御弁と油圧ポンプの間に、同
じチェック弁部23及び減圧弁部24を備えた圧力補償
弁25を配設し、各減圧弁部の閉じる方向の圧力差を負
荷圧検出路82によってすべて連通するだけで、アクチ
ュエータが3つ以上のときも前述の作動原理による作動
が実現される。
When the number of actuators loaded by one hydraulic pump 80 is three or more. Even when there are three or more actuators, the pressure compensating valve 25 having the same check valve portion 23 and pressure reducing valve portion 24 is disposed between the directional control valve and the hydraulic pump, and the pressure in the closing direction of each pressure reducing valve portion is arranged. Even if the number of actuators is three or more, the operation according to the above-described operation principle can be realized only by communicating all the differences by the load pressure detection path 82.

【0015】[0015]

【発明が解決しようとする課題】前述の油圧回路である
と各圧力補償弁25は最も高い負荷圧によってセットさ
れるから、例えばパワーショベルの旋回用モータとブー
ム用シリンダに圧油を同時に供給して上部車体を旋回し
ながらブームを上昇させる場合、旋回初期に旋回用モー
タの駆動トルクが著しく大となって負荷圧が著しく高圧
となり、各圧力補償弁がその著しく高圧での負荷圧でセ
ットされて通過流量が減少するためにブーム用シリンダ
に供給される流量が減少してブーム上昇速度が著しく遅
くなる。このために、従来は旋回用モータ側の負荷圧検
出部に接続した回路に開閉弁を設け、旋回用モータ以外
のアクチュエータに圧油を供給する時には開閉弁を閉と
して旋回用モータの負荷圧が検出されないようにして圧
力補償弁を他のアクチュエータの負荷圧によってセット
している。
In the hydraulic circuit described above, each pressure compensating valve 25 is set by the highest load pressure. Therefore, for example, pressure oil is simultaneously supplied to the swing motor of the power shovel and the boom cylinder. When the boom is raised while turning the upper car body, the driving torque of the turning motor becomes extremely large and the load pressure becomes extremely high at the beginning of turning, and each pressure compensating valve is set with the load pressure at that extremely high pressure. As a result, the flow rate passing through the boom cylinder is reduced, so that the flow rate supplied to the boom cylinder is reduced and the boom rising speed is significantly reduced. For this reason, conventionally, an on-off valve was provided in the circuit connected to the load pressure detection unit on the swing motor side, and when supplying pressure oil to actuators other than the swing motor, the open / close valve was closed to reduce the load pressure of the swing motor. The pressure compensation valve is set by the load pressure of another actuator so that it will not be detected.

【0016】しかしながら前述の開閉弁を開閉して旋回
用モータの負荷圧を検出したり、検出しないようにする
と、開閉弁の開閉切替時に最高負荷圧が急激に変化する
ために圧力補償弁のセット圧が急激に変化して通過流量
も急激に変化してアクチュエータへの流量が急激に変化
するのでショックを発生する。
However, if the above-mentioned opening / closing valve is opened / closed to detect or not detect the load pressure of the swing motor, the maximum load pressure changes abruptly when switching the opening / closing valve. The pressure changes rapidly, the passing flow rate also changes rapidly, and the flow rate to the actuator changes rapidly, causing a shock.

【0017】そこで、本発明は前述の課題を解決できる
ようにした圧油供給装置を提供することを目的とする。
Therefore, an object of the present invention is to provide a pressure oil supply device which can solve the above-mentioned problems.

【0018】[0018]

【課題を解決するための手段】油圧ポンプ20の吐出路
21を一方の弁ブロック30−1の第1ポート39と第
2ポート42及びパワーショベルの旋回用モータ等の慣
性体駆動用のアクチュエータ88に圧油を供給する他方
の弁ブロック30−2の第1ポート39にそれぞれ接続
し、各弁ブロック30の第3ポート43を負荷圧検出路
82に接続し、一方の弁ブロック30−1の第2ポート
42をチェック弁118を介して他方の弁ブロック30
−2の第2ポート42に接続し、このチェック弁118
を外部信号によって開弁圧が漸増する形状として成る圧
油供給装置。
A discharge port 21 of a hydraulic pump 20 is provided with a first port 39 and a second port 42 of one valve block 30-1 and an actuator 88 for driving an inertial body such as a turning motor of a power shovel. Is connected to the first port 39 of the other valve block 30-2 that supplies pressure oil to each other, the third port 43 of each valve block 30 is connected to the load pressure detection passage 82, and one valve block 30-1 is connected. The second port 42 is connected to the other valve block 30 via the check valve 118.
-2 of the check valve 118 connected to the second port 42
A pressure oil supply device in which the valve opening pressure is gradually increased by an external signal.

【0019】[0019]

【作 用】一方の弁ブロック30−1と他方の弁ブロ
ック30−2より複数のアクチュエータにポンプ吐出圧
を供給する時にチェック弁118の開弁圧を外部信号で
漸増できるから、特定のアクチュエータの負荷圧を負荷
圧検出路82に圧力変動少なく滑らかに流入したり、停
止でき、特定のアクチュエータが旋回用モータの場合に
旋回初期に旋回用モータの負荷圧を検出せずに他のアク
チュエータ、例えばブーム用シリンダに圧油を多量に供
給できるし、その旋回用モータの負荷圧を検出する際に
圧力変動が滑らかになってアクチュエータへの流量変化
がなめらかになってショックを低減できる。
[Operation] When the pump discharge pressure is supplied from one valve block 30-1 and the other valve block 30-2 to a plurality of actuators, the valve opening pressure of the check valve 118 can be gradually increased by an external signal. The load pressure can smoothly flow into the load pressure detection path 82 with little pressure fluctuation or can be stopped, and when the specific actuator is the swing motor, the load pressure of the swing motor is not detected in the initial stage of the swing, and another actuator, for example, A large amount of pressure oil can be supplied to the boom cylinder, and the pressure fluctuation becomes smooth when the load pressure of the swing motor is detected, and the flow rate change to the actuator is smooth, and shock can be reduced.

【0020】[0020]

【実 施 例】本発明の実施例を図4と図5に基づいて
説明する。なお従来と同一部材は符号を同一とする。図
4に示すように減圧弁部24の第3ポート43と第2圧
力室66をスプール64で遮断し、第3ポート43と第
2ポート42を連通・遮断するスリット状の開口100
をスプール64に形成し、第2ポート42の圧油を第3
ポート43より負荷圧検出路82に直接供給する。第2
圧力室66はダンパ用絞り101を介して第3ポート4
3に連通し、フリーピストン68の圧力室102をダン
パ用絞り103で前記開口100に開口連通する。これ
により、スプール64が右方に摺動する時には第2圧力
室60内の圧油がダンパ用絞り101を通って第3ポー
ト43に流れ、圧力室102の圧油はダンパ用絞り10
3を通って第2ポート42に流れるのでスプール64が
急激に右方に摺動することを防止できるし、スプール6
4が左方に摺動する時には前述と反対に圧油が流れるか
ら左方に急激に摺動することを防止できる。
EXAMPLE An example of the present invention will be described with reference to FIGS. 4 and 5. It should be noted that the same members as the conventional ones have the same reference numerals. As shown in FIG. 4, the third port 43 of the pressure reducing valve unit 24 and the second pressure chamber 66 are blocked by the spool 64, and the slit-shaped opening 100 for communicating and blocking the third port 43 and the second port 42.
Is formed on the spool 64, and the pressure oil in the second port 42 is
It is directly supplied from the port 43 to the load pressure detection path 82. Second
The pressure chamber 66 is connected to the third port 4 through the damper throttle 101.
3, the pressure chamber 102 of the free piston 68 is opened and communicated with the opening 100 by the damper diaphragm 103. As a result, when the spool 64 slides to the right, the pressure oil in the second pressure chamber 60 flows through the damper throttle 101 to the third port 43, and the pressure oil in the pressure chamber 102 changes.
3 to the second port 42, the spool 64 can be prevented from suddenly sliding to the right, and the spool 6
When 4 slides to the left, pressure oil flows contrary to the above, so that it is possible to prevent sudden sliding to the left.

【0021】チェック弁23のスプール60に第1ポー
ト39とポンプポート44を連通・遮断する小径部10
4を形成してスプール60を右方に押す圧力室105を
第1ポート39と区画し、スプール60に形成したダン
パ用絞り106と連通孔108で第1ポート39に連通
する。これにより、スプール66が右方、左方に摺動す
る時に第1ポート39と圧力室105との間にダンパ用
絞り106を通して圧油が流れるから、スプール66が
急激に左方、右方に摺動することを防止できる。
The small diameter portion 10 for connecting / disconnecting the first port 39 and the pump port 44 to / from the spool 60 of the check valve 23.
4, the pressure chamber 105 that pushes the spool 60 to the right is partitioned from the first port 39, and the damper throttle 106 formed in the spool 60 and the communication hole 108 communicate with the first port 39. As a result, when the spool 66 slides to the right and left, pressure oil flows between the first port 39 and the pressure chamber 105 through the damper throttle 106, so that the spool 66 suddenly moves to the left and right. It is possible to prevent sliding.

【0022】図5において、一方の弁ブロック30−1
はアクチュエータ88としてパワーショベルのブーム用
シリンダに圧油を供給し、他方の弁ブロック30−2は
アクチュエータ88としてパワーショベルの旋回用モー
タに圧油を供給する。前記一方の弁ブロック30−1の
方向制御弁22の主スプール49はブーム用パイロット
圧供給弁110からのパイロット圧油で中立位置から第
1・第2圧油供給位置に切換えられ、他方の弁ブロック
30−2の方向制御弁22の主スプール49は旋回用パ
イロット圧供給弁111からのパイロット圧油で中立位
置から第1・第2圧油供給位置に切換えられる。前記ブ
ーム用パイロット圧供給弁110、旋回用パイロット圧
供給弁111は操作レバー112を操作することでパイ
ロット油圧ポンプ113の吐出圧油を減圧弁部114で
減圧して第1・第2パイロット管路115,116に供
給するものであり、ブーム用パイロット圧供給弁110
の操作レバー112を操作して第2パイロット管路11
6にパイロット圧油を供給すると主スプール49が左方
に摺動して油圧ポンプ20の吐出圧油を第2アクチュエ
ータポート35よりブーム用シリンダに供給してブーム
上動作する。
In FIG. 5, one valve block 30-1
Supplies pressure oil to the boom cylinder of the power shovel as the actuator 88, and the other valve block 30-2 supplies pressure oil to the swing motor of the power shovel as the actuator 88. The main spool 49 of the directional control valve 22 of the one valve block 30-1 is switched from the neutral position to the first and second pressure oil supply positions by the pilot pressure oil from the boom pilot pressure supply valve 110, and the other valve The main spool 49 of the directional control valve 22 of the block 30-2 is switched from the neutral position to the first and second pressure oil supply positions by the pilot pressure oil from the turning pilot pressure supply valve 111. The boom pilot pressure supply valve 110 and the swing pilot pressure supply valve 111 operate the operating lever 112 to reduce the pressure oil discharged from the pilot hydraulic pump 113 by the pressure reducing valve portion 114, and the first and second pilot pipelines. Boom pilot pressure supply valve 110 for supplying to 115 and 116.
The operating lever 112 of the second pilot pipe 11
When the pilot pressure oil is supplied to 6, the main spool 49 slides to the left and supplies the discharge pressure oil of the hydraulic pump 20 to the boom cylinder from the second actuator port 35 to operate on the boom.

【0023】油圧ポンプ20の吐出路21は通路117
で一方の弁ブロック30−1の第1ポート39、第2ポ
ート42、他方の弁ブロック30−2の第1ポート39
に接続し、この通路117はチェック弁118で通路1
19に接続し、その通路119が他方の弁ブロック30
−2の第2ポート42に接続している。前記チェック弁
118は通路117から通路119へ流れる時の通路1
17の圧力(つまり、開弁圧)が受圧部120に供給さ
れるパイロット圧(外部信号)によって制御され、その
受圧部120にはブーム用パイロット供給弁110の第
2パイロット管路116が接続している。例えば図6に
示すように、油孔121とポート122を開閉するポペ
ット123と、このポペット123を閉方向に押すばね
124と、そのばね124及びポペット123を押すピ
ストン125と、そのピストン125が当接するバラン
スピストン126と、ピストン125を押すばね127
より成り、ピストン125の受圧室128に供給される
圧油の圧力P0 がある値以上となるとポペット123の
開弁圧、つまりポペット123が解放する時のポート1
22の圧力P2 と油孔121の圧力P1 との差圧が油圧
力に比例して漸増するようにしてあり、油孔121が通
路119、ポート122が通路117に接続し、受圧室
128(受圧部120)が第2パイロット管路116に
接続している。以上の例ではバランスピストンを圧油で
押するようにしたが比例ソレノイドで押するようにして
も良い。つまり、チェック弁118の開弁圧を外部信号
によって漸増すれば良い。
The discharge passage 21 of the hydraulic pump 20 has a passage 117.
Then, the first port 39 and the second port 42 of the one valve block 30-1, and the first port 39 of the other valve block 30-2.
This passage 117 is connected to the check valve 118 and is connected to the passage 1
19, the passage 119 of which is connected to the other valve block 30.
-2 of the second port 42. The check valve 118 is provided in the passage 1 when flowing from the passage 117 to the passage 119.
The pressure of 17 (that is, the valve opening pressure) is controlled by the pilot pressure (external signal) supplied to the pressure receiving portion 120, and the second pilot pipeline 116 of the boom pilot supply valve 110 is connected to the pressure receiving portion 120. ing. For example, as shown in FIG. 6, the poppet 123 that opens and closes the oil hole 121 and the port 122, the spring 124 that pushes the poppet 123 in the closing direction, the piston 125 that pushes the spring 124 and the poppet 123, and the piston 125 are in contact. The balance piston 126 in contact with the spring 127 for pushing the piston 125
When the pressure P 0 of the pressure oil supplied to the pressure receiving chamber 128 of the piston 125 exceeds a certain value, the valve opening pressure of the poppet 123, that is, the port 1 when the poppet 123 is released.
The pressure difference between the pressure P 2 of 22 and the pressure P 1 of the oil hole 121 is gradually increased in proportion to the oil pressure. The oil hole 121 is connected to the passage 119 and the port 122 is connected to the passage 117. The (pressure receiving part 120) is connected to the second pilot pipe line 116. In the above example, the balance piston is pushed by the pressure oil, but it may be pushed by the proportional solenoid. That is, the valve opening pressure of the check valve 118 may be gradually increased by the external signal.

【0024】次に作動を説明する。ブーム用シリンダを
作動しない時にはチェック弁118の受圧部120にパ
イロット圧油が供給されないからチェック弁118の開
弁圧はごく低圧となり、通路117の低圧の圧油が通路
119より第2ポート42に供給されるから従来と同様
にして旋回用モータに圧油を供給できる。ブーム用シリ
ンダと旋回用モータを同時操作する時には第2パイロッ
ト管路116からチェック弁118の受圧部120にパ
イロット圧油が供給され、チェック弁118の開弁圧が
そのパイロット圧油力に比例して漸増される。これによ
って、通路117の圧力、つまり油圧ポンプ20の吐出
圧が通路119より他方の弁ブロック30−2の第2ポ
ート42に供給されないので、旋回用モータの負荷圧が
第3ポート43より負荷圧検出路82に検出されないか
ら一方の弁ブロック30−1の圧力補償弁25はブーム
シリンダの負荷圧によってセットされ通過流量が減少し
ないからブーム上速度が低下しない。しかも通路117
の圧力がチェック弁118の開弁圧以上になるとその圧
力がゆっくりと通路119より第2ポート42に流入し
て負荷圧がゆっくりと上昇するから、圧力補償弁25の
セット圧もゆっくりと変化してブーム用シリンダへの流
量が滑らかに変化してショックが発生しない。
Next, the operation will be described. When the boom cylinder is not operated, the pilot pressure oil is not supplied to the pressure receiving portion 120 of the check valve 118, so the valve opening pressure of the check valve 118 becomes very low, and the low pressure oil of the passage 117 flows from the passage 119 to the second port 42. Since it is supplied, pressure oil can be supplied to the turning motor in the same manner as in the conventional case. When the boom cylinder and the swing motor are simultaneously operated, pilot pressure oil is supplied from the second pilot conduit 116 to the pressure receiving portion 120 of the check valve 118, and the valve opening pressure of the check valve 118 is proportional to the pilot pressure oil force. Is gradually increased. As a result, the pressure in the passage 117, that is, the discharge pressure of the hydraulic pump 20 is not supplied from the passage 119 to the second port 42 of the other valve block 30-2, so that the load pressure of the turning motor is increased from the third port 43. Since it is not detected in the detection path 82, the pressure compensating valve 25 of the one valve block 30-1 is set by the load pressure of the boom cylinder and the passing flow rate does not decrease, so the boom speed does not decrease. Moreover, the passage 117
When the pressure in the pressure compensation valve 25 becomes equal to or higher than the opening pressure of the check valve 118, the pressure slowly flows into the second port 42 from the passage 119 and the load pressure rises slowly. Therefore, the set pressure of the pressure compensation valve 25 also slowly changes. The flow to the boom cylinder smoothly changes and no shock occurs.

【0025】[0025]

【発明の効果】一方の弁ブロック30−1と他方の弁ブ
ロック30−2より複数のアクチュエータにポンプ吐出
圧を供給する時にチェック弁118の開弁圧を外部信号
で漸増できるから、特定のアクチュエータの負荷圧を負
荷圧検出路82に圧力変動少なく滑らかに流入したり、
停止でき、特定のアクチュエータが旋回用モータの場合
に旋回初期に旋回用モータの負荷圧を検出せずに他のア
クチュエータ、例えばブーム用シリンダに圧油を多量に
供給できるし、その旋回用モータの負荷圧を検出する際
に圧力変動が滑らかになってアクチュエータへの流量変
化がなめらかになってショックを低減できる。
When the pump discharge pressure is supplied from one valve block 30-1 and the other valve block 30-2 to the plurality of actuators, the valve opening pressure of the check valve 118 can be gradually increased by an external signal. Of the load pressure smoothly flows into the load pressure detection path 82 with little pressure fluctuation,
When the specific actuator is a swing motor, a large amount of pressure oil can be supplied to another actuator, for example, a boom cylinder, without detecting the load pressure of the swing motor at the initial stage of swing, and the swing motor When the load pressure is detected, the pressure fluctuation becomes smooth, the flow rate change to the actuator becomes smooth, and the shock can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来の圧油供給装置の回路図である。FIG. 1 is a circuit diagram of a conventional pressure oil supply device.

【図2】先に出願した圧油供給装置の回路図である。FIG. 2 is a circuit diagram of a pressure oil supply device previously applied.

【図3】圧力補償弁と方向制御弁の具体例を示す断面図
である。
FIG. 3 is a cross-sectional view showing a specific example of a pressure compensation valve and a direction control valve.

【図4】本発明の実施例を示す弁ブロックの断面図であ
る。
FIG. 4 is a sectional view of a valve block showing an embodiment of the present invention.

【図5】複数の弁ブロックの接続状態を示す説明図であ
る。
FIG. 5 is an explanatory diagram showing a connection state of a plurality of valve blocks.

【図6】チェック弁の断面図である。FIG. 6 is a sectional view of a check valve.

【符号の説明】[Explanation of symbols]

20…油圧ポンプ、21…吐出路、22…方向制御弁、
23…チェック弁部、24…減圧弁部、25…圧力補償
弁、30…弁ブロック、31…スプール孔、34…第1
アクチュエータポート、35…第2アクチュエータポー
ト、37…チェック弁用孔、38…減圧弁用孔、39…
第1ポート、42…第2ポート、43…第3ポート、4
4…ポンプポート、45…第1負荷圧検出ポート、46
…第2負荷圧検出ポート、47…第1タンクポート、4
8…第2タンクポート、49…主スプール、53…第1
油路、54…第2油路、56…油孔、58…油孔、60
…スプール、64…スプール、65…第1圧力室、66
…第2圧力室、69…ばね、82…負荷圧検出路、88
…アクチュエータ、118…チェック弁。
20 ... Hydraulic pump, 21 ... Discharge passage, 22 ... Direction control valve,
23 ... Check valve part, 24 ... Pressure reducing valve part, 25 ... Pressure compensation valve, 30 ... Valve block, 31 ... Spool hole, 34 ... First
Actuator port, 35 ... Second actuator port, 37 ... Check valve hole, 38 ... Pressure reducing valve hole, 39 ...
1st port, 42 ... 2nd port, 43 ... 3rd port, 4
4 ... Pump port, 45 ... First load pressure detection port, 46
… Second load pressure detection port, 47… First tank port, 4
8 ... Second tank port, 49 ... Main spool, 53 ... First
Oil passage, 54 ... Second oil passage, 56 ... Oil hole, 58 ... Oil hole, 60
... Spool, 64 ... Spool, 65 ... First pressure chamber, 66
... second pressure chamber, 69 ... spring, 82 ... load pressure detection path, 88
... actuator, 118 ... check valve.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 弁ブロック30にスプール孔31とチェ
ック弁用孔37と減圧弁用孔38を形成し、前記弁ブロ
ック30にはスプール孔31に開口したポンプポート4
4、第1・第2負荷圧検出ポート45,46、第1・第
2アクチュエータポート34,35、第1・第2タンク
ポート47,48をそれぞれ形成し、このスプール孔3
1に各ポートを連通・遮断する主スプール49を嵌挿し
て方向制御弁22とし、 前記弁ブロック30にはチェック弁用孔37に開口した
第1ポート39及びチェック弁用孔37をポンプポート
44に連通する油路56を形成し、そのチェック弁用孔
37に第1ポート39と油路56を連通・遮断し、かつ
遮断位置でストップされるスプール60を挿入してチェ
ック弁部23とし、 前記弁ブロック30には減圧弁用孔38に開口する第2
・第3ポート42,43を形成し、この減圧弁用孔38
にスプール64を嵌挿して第1圧力室65と第2圧力室
66を形成し、その第1圧力室65を第2負荷圧検出ポ
ート46に連通し、第2圧力室66を第3ポート43に
連通し、前記スプール64をばね69で一方向に付勢し
て前記チェック弁部23のスプール60を遮断位置に押
しつけ保持して減圧弁部24とし、この減圧弁部24と
前記チェック弁部23で圧力補償弁25とし、 油圧ポンプ20の吐出路21を一方の弁ブロック30−
1の第1ポート39と第2ポート42及びパワーショベ
ルの旋回用モータ等の慣性体駆動用のアクチュエータ8
8に圧油を供給する他方の弁ブロック30−2の第1ポ
ート39にそれぞれ接続し、各弁ブロック30の第3ポ
ート43を負荷圧検出路82に接続し、一方の弁ブロッ
ク30−1の第2ポート42をチェック弁118を介し
て他方の弁ブロック30−2の第2ポート42に接続
し、 このチェック弁118を外部信号によって開弁圧が漸増
する形状として成る圧油供給装置。
1. A spool hole 31, a check valve hole 37 and a pressure reducing valve hole 38 are formed in a valve block 30, and a pump port 4 opened in the spool hole 31 in the valve block 30.
4, first and second load pressure detection ports 45 and 46, first and second actuator ports 34 and 35, and first and second tank ports 47 and 48, respectively.
The main spool 49 that connects and disconnects each port is fitted into the directional control valve 22 to form a directional control valve 22, and the valve block 30 includes a first port 39 opened in the check valve hole 37 and a check valve hole 37. Forming an oil passage 56 communicating with the first valve 39 and the oil passage 56 in the check valve hole 37, and inserting the spool 60 that is stopped at the cutoff position into the check valve portion 23, The valve block 30 is provided with a second opening 38 for reducing the pressure reducing valve.
-The third port 42, 43 is formed, and the pressure reducing valve hole 38 is formed.
The first pressure chamber 65 and the second pressure chamber 66 are formed by inserting the spool 64 into the first pressure chamber 65, the first pressure chamber 65 is communicated with the second load pressure detection port 46, and the second pressure chamber 66 is connected to the third port 43. And the spool 64 of the check valve portion 23 is pressed and held at the shut-off position to form the pressure reducing valve portion 24, and the pressure reducing valve portion 24 and the check valve portion are connected to each other. 23 as a pressure compensating valve 25, and the discharge passage 21 of the hydraulic pump 20 is connected to one valve block 30-
1st port 39 and 2nd port 42 of No. 1 and actuator 8 for driving inertial bodies, such as a motor for turning of a power shovel
8 is connected to the first port 39 of the other valve block 30-2 that supplies pressure oil to each other, the third port 43 of each valve block 30 is connected to the load pressure detection path 82, and one valve block 30-1 is connected. Is connected to the second port 42 of the other valve block 30-2 via the check valve 118, and the check valve 118 is shaped so that the valve opening pressure is gradually increased by an external signal.
JP16192792A 1992-05-29 1992-05-29 Pressure oil supply device Pending JPH05332311A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16192792A JPH05332311A (en) 1992-05-29 1992-05-29 Pressure oil supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16192792A JPH05332311A (en) 1992-05-29 1992-05-29 Pressure oil supply device

Publications (1)

Publication Number Publication Date
JPH05332311A true JPH05332311A (en) 1993-12-14

Family

ID=15744686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16192792A Pending JPH05332311A (en) 1992-05-29 1992-05-29 Pressure oil supply device

Country Status (1)

Country Link
JP (1) JPH05332311A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6082106A (en) * 1997-10-17 2000-07-04 Nachi-Fujikoshi Corp. Hydraulic device
CN108506265A (en) * 2018-06-12 2018-09-07 裕泰液压技术(上海)有限公司 A kind of fluid pressure type automatic adjusting balance valve group
CN110319068A (en) * 2018-03-29 2019-10-11 罗伯特·博世有限公司 Valve gear with main slide valve and two spool control valves

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6082106A (en) * 1997-10-17 2000-07-04 Nachi-Fujikoshi Corp. Hydraulic device
CN110319068A (en) * 2018-03-29 2019-10-11 罗伯特·博世有限公司 Valve gear with main slide valve and two spool control valves
CN108506265A (en) * 2018-06-12 2018-09-07 裕泰液压技术(上海)有限公司 A kind of fluid pressure type automatic adjusting balance valve group

Similar Documents

Publication Publication Date Title
KR100292544B1 (en) Pilot solenoid control valve and hydraulic control system using same
US5535663A (en) Operating valve assembly with pressure compensation valve
US5273069A (en) Operation valve with pressure compensation valve
WO1994010454A1 (en) Pressure oil supply system having a pressure compensating valve
JP3531758B2 (en) Directional control valve device with pressure compensating valve
JPH05332311A (en) Pressure oil supply device
JP3119317B2 (en) Pressure oil supply device
JP3119316B2 (en) Pressure oil supply device
JP2577676Y2 (en) Pressure oil supply device
JPH05332306A (en) Pressure oil supply device
JP2577675Y2 (en) Pressure oil supply device
JPH05332312A (en) Pressure oil supply device
JP3116564B2 (en) Pressure oil supply device
JP3454313B2 (en) Pressure oil supply device
JP3119315B2 (en) Pressure oil supply device
JP2575156Y2 (en) Pressure oil supply device
JPH05332305A (en) Pressure oil supply device
JP3511414B2 (en) Pressure oil supply device
JPH05332314A (en) Pressure oil supply device
JP2578622Y2 (en) Directional control valve device with pressure compensating valve
JP2550773Y2 (en) Direction control valve device
JPH05332307A (en) Suction safety structure for pressure oil supply device
JPH05332313A (en) Pressure oil supply device
JPH0643301U (en) Directional control valve device
JP2551546Y2 (en) Pressure oil supply device