JPH05332128A - Exhaust emission control device - Google Patents

Exhaust emission control device

Info

Publication number
JPH05332128A
JPH05332128A JP4160287A JP16028792A JPH05332128A JP H05332128 A JPH05332128 A JP H05332128A JP 4160287 A JP4160287 A JP 4160287A JP 16028792 A JP16028792 A JP 16028792A JP H05332128 A JPH05332128 A JP H05332128A
Authority
JP
Japan
Prior art keywords
electrode
corona
exhaust gas
catalyst
insulating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4160287A
Other languages
Japanese (ja)
Inventor
Nagatoshi Suzuki
長利 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP4160287A priority Critical patent/JPH05332128A/en
Publication of JPH05332128A publication Critical patent/JPH05332128A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2086Activating the catalyst by light, photo-catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/28Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a plasma reactor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PURPOSE:To improve the elimination efficiency of hazardous compounds such as nitrogen oxide and so on by connecting the exhaust gas hole of a combustor to a catalytic reactor via a brush corona generator and arranging metal ion exchange zeolite catalyst inside of the catalytic reactor. CONSTITUTION:The exhaust gas hole 7a of a combustor 7 is connected to a catalytic reactor 8 via a brush corona generator 5. This brush corona generator 5 consists of the first electrode 1 composed of a conductor, whose surface is formed into a projecting shape, and the second electrode 2 composed of a conductor which is arranged to face the first electrode 1. It also consists of an insulating layer 3 sticking to the face at least on the first electrode 1 side of the second electrode 2, and a high voltage power supply 4 connected to both first electrode 1 and second electrode 2. A catalytic reactor 8 contains a metal ion exchange zeolite catalyst inside of it. In this way, metal ion exchange zeon is activated by energy charged particulates within exhaust gas to improve the elimination efficiency of hazardous compounds such as nitrogen oxide and so on.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、自動車のエンジンやボ
イラなどの各種燃焼器から排出される、排気ガス中に含
有した窒素酸化物(NOx)等の有害物質を除去する、
排気ガス浄化装置の改良に関するものである。
BACKGROUND OF THE INVENTION The present invention removes harmful substances such as nitrogen oxides (NOx) contained in exhaust gas discharged from various combustors such as automobile engines and boilers.
The present invention relates to improvement of an exhaust gas purification device.

【0002】[0002]

【従来の技術】近年、NOx等による大気汚染が問題に
なり、各種燃焼器から排出される排気ガスの、浄化処理
技術の開発が進められている。例えば、ガソリン自動車
においては、三元触媒法などが用いられ、触媒やシステ
ムの改良研究が進められている。一方、燃費の向上を図
るために、希薄燃焼エンジンの開発も進んでいるが、こ
の場合、空燃比が高いので排気ガス中に多量の酸素が残
留し、NOxの有効な除去が困難になってきている。こ
のような酸素過剰雰囲気下でNOxを除去するために、
例えば、特開平1−130735号公報に示す技術など
が存在する。これは、銅イオン交換ゼオライト等を触媒
として、NOxを除去するものである。
2. Description of the Related Art In recent years, air pollution due to NOx and the like has become a problem, and development of purification treatment technology for exhaust gas discharged from various combustors has been advanced. For example, in a gasoline vehicle, a three-way catalyst method or the like is used, and research for improving catalysts and systems is underway. On the other hand, a lean-burn engine is being developed to improve fuel efficiency, but in this case, since the air-fuel ratio is high, a large amount of oxygen remains in the exhaust gas, making it difficult to effectively remove NOx. ing. In order to remove NOx under such an oxygen excess atmosphere,
For example, there is a technique disclosed in JP-A-1-130735. This is for removing NOx using copper ion exchanged zeolite or the like as a catalyst.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記従
来の技術において、単に触媒を用いただけではこの触媒
を十分に活性化できず、排気ガスからNOx等の有害物
質を除去する効率が、低いものである。本発明は、上記
問題点に鑑み発明したものであり、金属イオン交換ゼオ
ライトの触媒を用い、この触媒の活性化を図ることによ
り、有害物質の除去を促進することを目的とする。
However, in the above-mentioned conventional technique, the catalyst cannot be sufficiently activated only by using the catalyst, and the efficiency of removing harmful substances such as NOx from the exhaust gas is low. is there. The present invention has been made in view of the above problems, and an object of the present invention is to promote the removal of harmful substances by using a catalyst of metal ion exchange zeolite and activating the catalyst.

【0004】[0004]

【課題を解決するための手段】本発明は上記目的を達成
するために、燃焼器の排気ガス口を、払子コロナ発生器
を介して触媒反応器と接続し、前記払子コロナ発生器
は、表面が凸部形状に形成された導電体からなる第1の
電極と、この第1の電極に対向して配設した導電体から
なる第2の電極と、この第2の電極の少なくとも前記第
1の電極側の面に被着する絶縁層と、前記第1の電極及
び第2の電極に接続する高圧電源で構成し、前記触媒反
応器は、金属イオン交換ゼオライトの触媒を内在したこ
とを特徴とする排気ガス浄化装置を構成する。
In order to achieve the above object, the present invention is to connect an exhaust gas port of a combustor to a catalytic reactor through a payout corona generator, and the payout corona generator has a surface area. A first electrode made of a conductor formed in a convex shape, a second electrode made of a conductor arranged so as to face the first electrode, and at least the first electrode of the second electrode. Characterized in that it comprises an insulating layer adhered to the electrode-side surface thereof and a high-voltage power source connected to the first electrode and the second electrode, and the catalytic reactor contains a metal ion-exchanged zeolite catalyst therein. The exhaust gas purifying device is configured as follows.

【0005】[0005]

【実施例】本発明に係る好適な一実施例を、添付図面に
基づき詳述する。当該実施例においては、この発明を自
動車の排気ガス中の有害ガスの解離除却装置として応用
した実施例を説示する。図1において、7は自動車のエ
ンジン等の燃焼器、5は払子コロナ発生器、8は触媒反
応器、10は消音器、9は排気ガス管である。しかし
て、燃焼器7の排気ガス口7aは、払子コロナ発生器5
を介して触媒反応器8と接続している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings. In this embodiment, an embodiment in which the present invention is applied as a dissociation / removal device for harmful gas in automobile exhaust gas will be described. In FIG. 1, 7 is a combustor of an automobile engine or the like, 5 is a blower corona generator, 8 is a catalytic reactor, 10 is a silencer, and 9 is an exhaust gas pipe. Then, the exhaust gas port 7a of the combustor 7 is
It is connected to the catalytic reactor 8 via.

【0006】図2は、上記払子コロナ発生器5の垂直断
面図である。払子コロナ発生器5において、第1の電極
1は、例えばステンレス棒をネジ切りした形状に加工し
たものである。ネジ切り形状の加工は、フライス盤等の
切削加工機を用いて行なう方法や、焼結等の型加工機を
用いて行なう方法等を適宜選択すればよい。また、ネジ
切りの山ピッチを変えることによって図3に示すごとく
第1の電極の表面における断面形状が三角形状の凸部1
1や、図4に示すごとく断面形状が台形状の凸部11を
形成できる。
FIG. 2 is a vertical sectional view of the payout corona generator 5. In the payee corona generator 5, the first electrode 1 is formed by, for example, processing a stainless rod into a threaded shape. The threaded shape may be processed by appropriately selecting a method using a cutting machine such as a milling machine or a method using a die processing machine such as sintering. Further, by changing the thread pitch of the thread cutting, as shown in FIG. 3, the convex portion 1 having a triangular cross section on the surface of the first electrode 1 is formed.
1 or a protrusion 11 having a trapezoidal sectional shape can be formed as shown in FIG.

【0007】なお、上記の実施例において、第1の電極
1の表面にネジ切りした形状により連続した凸部11を
形成しているが、これは図1に示すごとく広範囲に払子
コロナを発生させるためのものであり、他の形状、例え
ば、第1の電極1の表面の要所に突起を設けたものであ
ってもよい。
In the above-mentioned embodiment, the continuous convex portion 11 is formed on the surface of the first electrode 1 by the threaded shape, but this produces a brush corona in a wide range as shown in FIG. However, the shape may be another shape, for example, a shape in which protrusions are provided on important points on the surface of the first electrode 1.

【0008】該第1の電極1は、絶縁材料でなる支持具
6によって円筒状に形成された、例えば、セラミックス
や有機ガラスからなる材料で形成した絶縁層3の中央に
支持する。該絶縁層3の外側には、第2の電極2が被着
形成されている。この形成手順としては、例えば、先ず
セラミックス等の絶縁層3の表面に金属ペーストを印刷
し焼成して第2の電極を形成するか、予め金属パイプで
第2の電極2を作成し、次に、この第2の電極2の表面
に、有機ガラス等によって琺瑯加工を加えて、絶縁層3
を形成するようにする。なお、絶縁パイプと金属パイプ
の単なる組合せであってもよい。
The first electrode 1 is supported at the center of an insulating layer 3 formed in a cylindrical shape by a support 6 made of an insulating material, for example, made of a material made of ceramics or organic glass. A second electrode 2 is formed on the outside of the insulating layer 3 by deposition. As the forming procedure, for example, first, a metal paste is printed on the surface of the insulating layer 3 such as ceramics and fired to form the second electrode, or the second electrode 2 is previously formed by a metal pipe, and then the second electrode 2 is formed. , An enamel process is applied to the surface of the second electrode 2 using an organic glass or the like to form an insulating layer 3
To form. The insulating pipe and the metal pipe may be simply combined.

【0009】前記第1の電極1と第2の電極2とは、高
圧交番電源4を介して電気的結線されている。該高圧交
番電源4は、ある周波数で正負両極の高電圧を発生する
回路であり、その波形は、正弦波やパルス波等のいずれ
のものであってもよい。また、周波数は一定したもので
もよく、イグニションコイル出力等のエンジン回転数に
同期した周波数であってもよい。
The first electrode 1 and the second electrode 2 are electrically connected via a high voltage alternating power source 4. The high-voltage alternating power supply 4 is a circuit that generates a high voltage of positive and negative polarities at a certain frequency, and its waveform may be any of a sine wave, a pulse wave, and the like. The frequency may be constant or may be a frequency synchronized with the engine speed such as the ignition coil output.

【0010】上記構成の払子コロナ発生器5は、図5〜
図7で示す原理により作用する。すなわち、高圧交番電
源4によって第1の電極1及び第2の電極2間に高電圧
を印加すると、第2の電極2の内面部に被着する絶縁層
3と第1の電極1との間に、払子コロナが発生する。
The payout corona generator 5 having the above structure is shown in FIGS.
It operates according to the principle shown in FIG. That is, when a high voltage is applied between the first electrode 1 and the second electrode 2 by the high voltage alternating power source 4, the insulating layer 3 adhered to the inner surface portion of the second electrode 2 and the first electrode 1 are separated from each other. At the same time, Fusuko Corona occurs.

【0011】図5は、高圧交番電源4によって第1の電
極1にはプラス電圧が、第2の電極2にはマイナス電圧
が、それぞれ印加された状態を示す。図5中にEOで示
す矢印は、第1の電極1及び第2の電極2間に印加され
る高電圧によって発生する電界の方向を示し、ESで示
す矢印は絶縁層3の表面に蓄積された電荷によって生じ
る逆電界の方向を示し、Pは絶縁層3の表面に蓄積され
たプラス電荷を示し、C1は正極性コロナを示しここで
は特に正極性コロナが最も生長した払子コロナを示す。
FIG. 5 shows a state where a positive voltage is applied to the first electrode 1 and a negative voltage is applied to the second electrode 2 by the high voltage alternating power source 4. The arrow indicated by EO in FIG. 5 indicates the direction of the electric field generated by the high voltage applied between the first electrode 1 and the second electrode 2, and the arrow indicated by ES is accumulated on the surface of the insulating layer 3. Indicates the direction of the reverse electric field generated by the electric charge, P indicates the positive charge accumulated on the surface of the insulating layer 3, C1 indicates the positive corona, and here, in particular, the cornice corona in which the positive corona grows most.

【0012】この図5で示す状態では、払子コロナC1
が発生すると共に絶縁層3の表面にプラス電荷Pが蓄積
され、該プラス電荷Pの量に応じて逆電界ESが大きく
なり払子コロナC1を抑制し、時間の経過と共に払子コ
ロナC1は第1の電極1の近辺にだけ生じるブラシコロ
ナ若しくは膜状コロナへと変化してゆく。この払子コロ
ナC1の変化減衰現象は、結局、プラス電荷Pの蓄積量
が多く成りすぎたために生じるわけであり、この過剰な
プラス電荷Pを少なくする手段を講じることによって、
払子コロナC1は増加かつ生長できる。この発明におい
ては、後述する図6及び図7で示す段階を経て過剰なプ
ラス電荷Pを中和し、減少することによって、払子コロ
ナC1の発生を確保している。
In the state shown in FIG. 5, the payout corona C1
Occurs, the positive electric charge P is accumulated on the surface of the insulating layer 3, the reverse electric field ES increases in accordance with the amount of the positive electric charge P, and the payoff corona C1 is suppressed. It changes into a brush corona or a film corona that occurs only in the vicinity of the electrode 1. This change damping phenomenon of the payout corona C1 is eventually caused by the excessive accumulation of the positive charges P, and by taking measures to reduce the excessive positive charges P,
Fusuko Corona C1 can increase and grow. In the present invention, the generation of the payout corona C1 is ensured by neutralizing and reducing the excessive positive charge P through the steps shown in FIGS. 6 and 7 which will be described later.

【0013】図6は、高圧交番電源4の出力の極性が切
換わる、いわゆる零点の状態を示す。この図6に示す状
態では、コロナの発生は一旦停止する。図7は、上記図
5に示す状態とは逆極性であり、高圧交番電源4によっ
て、第1の電極1にはマイナス電圧が、第2の電極2に
はプラス電圧がそれぞれ印加された状態を示す。図7中
のeは電子を示し、C2は負極性コロナを示す。この図
7で示す状態では、第1の電極1から負極性コロナC2
及び電子eが生じ、電子eは絶縁層3の表面に蓄積した
プラス電荷Pと結合し、中和する。このことによって過
剰なプラス電荷Pは減少され、再び図5で示す状態に進
行したとき、払子コロナC1は発生できる。以上、図5
〜図7に示す状態の繰返しによって払子コロナC1の継
続的な発生が維持、確保できる。
FIG. 6 shows a so-called zero state in which the polarity of the output of the high voltage alternating power source 4 is switched. In the state shown in FIG. 6, the generation of corona is temporarily stopped. FIG. 7 shows a state in which a negative voltage is applied to the first electrode 1 and a positive voltage is applied to the second electrode 2 by the high-voltage alternating power source 4, which has a polarity opposite to that shown in FIG. Show. In FIG. 7, e represents an electron and C2 represents a negative corona. In the state shown in FIG. 7, the negative electrode corona C2 from the first electrode 1
And electrons e are generated, and the electrons e combine with the positive charges P accumulated on the surface of the insulating layer 3 to neutralize them. As a result, the excess positive charge P is reduced, and when the state again shown in FIG. 5 is reached, the paying corona C1 can be generated. Above, FIG.
~ By repeating the state shown in Fig. 7, continuous generation of the payout corona C1 can be maintained and ensured.

【0014】実験によれば、図1に示す高圧交番電源4
によって周波数が50Hzの交流を10〜15KV位に
昇圧し、第1の電極1及び第2の電極2間に印加したと
ころ、広範囲にわたって大規模な払子コロナ放電現象が
惹起され観測された。また、得られた払子コロナも減衰
することなく、安定維持かつ確保することが確認され
た。なお、上記高圧交番電源4の代りに高圧直流電源を
使用した場合にも同様の作用効果が得られた。
According to experiments, the high voltage alternating power supply 4 shown in FIG.
When an alternating current having a frequency of 50 Hz was boosted to about 10 to 15 KV and applied between the first electrode 1 and the second electrode 2, a large-scale frustrated corona discharge phenomenon was induced and observed over a wide range. In addition, it was confirmed that the obtained Tokoro corona could be maintained and secured stably without being attenuated. Similar effects were obtained when a high-voltage DC power supply was used instead of the high-voltage alternating power supply 4.

【0015】触媒反応器8は、所定厚の触媒層8aに金
属イオン交換ゼオライトを触媒として内在している。こ
の金属イオン交換ゼオライトとしては、例えば、銅イオ
ン交換ゼオライトなどがあり、特にCu−ZSM−5ゼ
オライトは、低温においても分解活性が極めて高いと共
に、酸素濃度が高い場合の酸素阻害にも強いという特徴
がある。銅イオン交換ゼオライトは、例えば、ゼオライ
ト粉末を酢酸銅溶液に浸漬して銅イオン交換し、その後
に種々の後加工によって製造される。
The catalytic reactor 8 has a metal ion-exchanged zeolite as a catalyst in a catalyst layer 8a having a predetermined thickness. Examples of this metal ion-exchanged zeolite include copper ion-exchanged zeolite, and in particular, Cu-ZSM-5 zeolite has a very high decomposition activity even at a low temperature and is also highly resistant to oxygen inhibition when the oxygen concentration is high. There is. The copper ion-exchanged zeolite is produced, for example, by immersing zeolite powder in a copper acetate solution for copper ion exchange, and then by various post-processing.

【0016】次に、上記構成における排気ガス浄化装置
の作用を説明する。燃焼器7から排出された排気ガスA
は、払子コロナ発生器5に導入される。払子コロナ発生
器5の第1の電極1と絶縁層3とで形成した空間には、
大規模な払子コロナC1が安定維持して発生しており、
この中を排気ガスAが通過するとNOxやSOx等の有害
ガスは払子コロナの作用によって活性化され、かつ、除
塵または解離された排気ガスBとして排出される。しか
して、排気ガスA中に含有するHC,CO,H2O等の
微粒子は、払子コロナ発生器5を通過する際にイオンエ
ネルギーを荷電される。
Next, the operation of the exhaust gas purifying device having the above structure will be described. Exhaust gas A discharged from the combustor 7
Are introduced into the pays corona generator 5. In the space formed by the first electrode 1 of the payee corona generator 5 and the insulating layer 3,
A large-scale Toshiko Corona C1 is being stably generated,
When the exhaust gas A passes through this, harmful gases such as NOx and SOx are activated by the action of the shoveling corona, and are discharged as the exhaust gas B which has been removed or dissociated. Then, the fine particles of HC, CO, H 2 O, etc. contained in the exhaust gas A are charged with ion energy when passing through the paying corona generator 5.

【0017】排気ガスBは、触媒反応器8に導入され、
金属イオン交換ゼオライトからなる触媒層8aを通過す
る。この時、金属イオン交換ゼオライトは、上述の荷電
された微粒子によって活性化され、排気ガスB中のNO
xをN2とO2に分解する。しかして、排気ガスB中のN
Oxは触媒層8aを通過することにより極めて低減して
除去される。また、排気ガスB中のSOxも同様に分解
されて、除去される。
The exhaust gas B is introduced into the catalytic reactor 8,
It passes through the catalyst layer 8a made of metal ion-exchanged zeolite. At this time, the metal ion-exchanged zeolite is activated by the charged fine particles, and NO in the exhaust gas B is
Decompose x into N 2 and O 2 . Then, the N in the exhaust gas B
Ox is extremely reduced and removed by passing through the catalyst layer 8a. Also, SOx in the exhaust gas B is similarly decomposed and removed.

【0018】また、エンジン7の起動直後においては、
触媒層8aがほぼ常温以下の状態にあり、金属イオン交
換ゼオライトは高温時と比較して不活性である。しか
し、前段に払子コロナ発生器5を介在させたことによ
り、起動時点から、排気ガスB中のエネルギー荷電され
た微粒子が金属イオン交換ゼオライトを活性化するの
で、NOxやSOx等を分解する効率が高い。
Immediately after starting the engine 7,
Since the catalyst layer 8a is in a state of almost room temperature or lower, the metal ion-exchanged zeolite is inactive as compared with that at high temperature. However, by interposing the Toshiko corona generator 5 in the preceding stage, the energy-charged fine particles in the exhaust gas B activate the metal ion-exchanged zeolite from the start-up time, so that the efficiency of decomposing NOx, SOx, etc. is improved. high.

【0019】[0019]

【発明の効果】以上詳述したように本発明の構成によれ
ば、金属イオン交換ゼオライトの触媒層の前段に払子コ
ロナ発生部を介在したことにより、エネルギー荷電され
た排気ガス中の微粒子によって金属イオン交換ゼオライ
トが活性化されるので、NOx等の有害物質の除去効率
が向上し、酸素過剰雰囲気下においても有効に除去でき
る。
As described above in detail, according to the structure of the present invention, the metal particles are exchanged with the fine particles in the exhaust gas which are charged due to the fact that the payer corona generating portion is provided in the preceding stage of the catalyst layer of the metal ion-exchanged zeolite. Since the ion-exchanged zeolite is activated, the efficiency of removing harmful substances such as NOx is improved and can be effectively removed even in an oxygen excess atmosphere.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る一実施例を示す接続構成図であ
る。
FIG. 1 is a connection configuration diagram showing an embodiment according to the present invention.

【図2】図1で示す払子コロナ発生器の組立断面図であ
る。
FIG. 2 is an assembled cross-sectional view of the brush corona generator shown in FIG.

【図3】図2で示す第1の電極の表面に断面形状が三角
形状とする凸部を形成した要部斜視図である。
FIG. 3 is a perspective view of a main part in which a protrusion having a triangular cross section is formed on the surface of the first electrode shown in FIG.

【図4】図2で示す第1の電極の表面に断面形状が台形
状とする凸部を形成した要部斜視図である。
FIG. 4 is a perspective view of a main part in which a convex portion having a trapezoidal cross section is formed on the surface of the first electrode shown in FIG.

【図5】図2で示す払子コロナ発生器において正極性コ
ロナ発生状態を説明する説明図である。
FIG. 5 is an explanatory diagram illustrating a positive corona generation state in the brush corona generator shown in FIG. 2.

【図6】図2で示す払子コロナ発生器において零点状態
を説明する説明図である。
FIG. 6 is an explanatory diagram illustrating a zero-point state in the payout corona generator illustrated in FIG. 2.

【図7】図2で示す払子コロナ発生器において負極性コ
ロナ発生状態を説明する説明図である。
FIG. 7 is an explanatory diagram illustrating a negative corona generation state in the brush corona generator shown in FIG. 2.

【符号の説明】 5 払子コロナ発生器 7 燃焼器 8 触媒反応器 8a 触媒層 9 排気ガス管[Explanation of Codes] 5 Futon Corona Generator 7 Combustor 8 Catalytic Reactor 8a Catalyst Layer 9 Exhaust Gas Pipe

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成4年7月21日[Submission date] July 21, 1992

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】全文[Name of item to be corrected] Full text

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【書類名】 明細書[Document name] Statement

【発明の名称】 排気ガス浄化装置Exhaust gas purification device

【特許請求の範囲】[Claims]

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、自動車のエンジンやボ
イラなどの各種燃焼器から排出される、排気ガス中に含
有した窒素酸化物(NO)等の有害物質を除去する、
排気ガス浄化装置の改良に関するものである。
BACKGROUND OF THE INVENTION The present invention removes harmful substances such as nitrogen oxides (NO x ) contained in exhaust gas discharged from various combustors such as automobile engines and boilers.
The present invention relates to improvement of an exhaust gas purification device.

【0002】[0002]

【従来の技術】近年、NO等による大気汚染が問題に
なり、各種燃焼器から排出される排気ガスの、浄化処理
技術の開発が進められている。例えば、ガソリン自動車
においては、三元触媒法などが用いられ、触媒やシステ
ムの改良研究が進められている。一方、燃費の向上を図
るために、希薄燃焼エンジンの開発も進んでいるが、こ
の場合、空燃比が高いので排気ガス中に多量の酸素が残
留し、NOの有効な除去が困難になってきている。こ
のような酸素過剰雰囲気下でNOを除去するために、
例えば、特開平1−130735号公報に示す技術など
が存在する。これは、銅イオン交換ゼオライト等を触媒
として、NOを除去するものである。
2. Description of the Related Art In recent years, air pollution due to NO x and the like has become a problem, and development of purification treatment technology for exhaust gas discharged from various combustors has been advanced. For example, in a gasoline vehicle, a three-way catalyst method or the like is used, and research for improving catalysts and systems is underway. On the other hand, a lean-burn engine is being developed to improve fuel efficiency, but in this case, since the air-fuel ratio is high, a large amount of oxygen remains in the exhaust gas, making it difficult to effectively remove NO X. Is coming. In order to remove NO X under such an oxygen excess atmosphere,
For example, there is a technique disclosed in JP-A-1-130735. This is for removing NO X using copper ion-exchanged zeolite or the like as a catalyst.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記従
来の技術において、単に触媒を用いただけではこの触媒
を十分に活性化できず、排気ガスからNO等の有害物
質を除去する効率が、低いものである。本発明は、上記
問題点に鑑み発明したものであり、触媒を用いると共
、この触媒の活性化を図ることにより、有害物質の除
去を促進することを目的とする。
However, in the above-mentioned conventional technique, the catalyst cannot be sufficiently activated only by using the catalyst, and the efficiency of removing harmful substances such as NO X from exhaust gas is low. Is. The present invention has been made in view of the above problems, and can be achieved by using a catalyst.
In addition, the purpose is to promote the removal of harmful substances by activating the catalyst.

【0004】[0004]

【課題を解決するための手段】本発明は上記目的を達成
するために、燃焼器の排気ガス口を、払子コロナ発生器
を介して触媒反応器と接続し、前記払子コロナ発生器
は、表面が凸部形状に形成された導電体からなる第1の
電極と、この第1の電極に対向して配設した導電体から
なる第2の電極と、この第2の電極の少なくとも前記第
1の電極側の面に被着する絶縁層と、前記第1の電極及
び第2の電極に接続する高圧電源で構成し、前記触媒反
応器は、金属イオン交換ゼオライトの触媒を内在したこ
とを特徴とする排気ガス浄化装置を構成する。また、本
発明は上記目的を達成するために、燃焼器の排気ガス口
を、払子コロナ発生器に接続し、前記払子コロナ発生器
は、表面が凸部形状に形成された導電体からなる第1の
電極と、この第1の電極に対向して配設した導電体から
なる第2の電極と、この第2の電極の少なくとも前記第
1の電極側の面に被着する絶縁層と、前記第1の電極及
び第2の電極に接続する高圧電源で構成し、前記第1の
電極と前記絶縁層との間に、触媒を配設したことを特徴
とする排気ガス浄化装置を構成する。
In order to achieve the above object, the present invention is to connect an exhaust gas port of a combustor to a catalytic reactor through a payout corona generator, and the payout corona generator has a surface area. A first electrode made of a conductor formed in a convex shape, a second electrode made of a conductor arranged so as to face the first electrode, and at least the first electrode of the second electrode. Characterized in that it comprises an insulating layer adhered to the electrode-side surface thereof and a high-voltage power source connected to the first electrode and the second electrode, and the catalytic reactor contains a metal ion-exchanged zeolite catalyst therein. The exhaust gas purifying device is configured as follows. Also books
In order to achieve the above object, the invention provides an exhaust gas port of a combustor.
Is connected to a payer corona generator, and the payer corona generator is connected.
Is a first conductor made of a conductor whose surface is formed in a convex shape.
From the electrode and the conductor disposed opposite to the first electrode
A second electrode, and at least the second electrode of the second electrode
An insulating layer deposited on the surface of the first electrode and the first electrode and
And a high-voltage power supply connected to the second electrode,
A catalyst is arranged between the electrode and the insulating layer.
The exhaust gas purifying device is configured as follows.

【0005】[0005]

【実施例】本発明に係る好適な一実施例を、添付図面に
基づき詳述する。当該実施例においては、この発明を自
動車の排気ガス中の有害ガスの解離除却装置として応用
した実施例を説示する。先ず、図1〜図7に基づき、第
1実施例を説明する。図1において、7は自動車のエン
ジン等の燃焼器、5は払子コロナ発生器、8は触媒反応
器、10は消音器、9は排気ガス管である。しかして、
燃焼器7の排気ガス口7aは、払子コロナ発生器5を介
して触媒反応器8と接続している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings. In this embodiment, an embodiment in which the present invention is applied as a dissociation / removal device for harmful gas in automobile exhaust gas will be described. First, based on FIGS. 1 to 7,
One embodiment will be described. In FIG. 1, 7 is a combustor of an automobile engine or the like, 5 is a blower corona generator, 8 is a catalytic reactor, 10 is a silencer, and 9 is an exhaust gas pipe. Then,
The exhaust gas port 7 a of the combustor 7 is connected to the catalytic reactor 8 via the payout corona generator 5.

【0006】図2は、上記払子コロナ発生器5の垂直断
面図である。払子コロナ発生器5において、第1の電極
1は、例えばステンレス棒をネジ切りした形状に加工し
たものである。ネジ切り形状の加工は、フライス盤等の
切削加工機を用いて行なう方法や、焼結等の型加工機を
用いて行なう方法等を適宜選択すればよい。また、ネジ
切りの山ピッチを変えることによって図3に示すごとく
第1の電極の表面における断面形状が三角形状の凸部1
1や、図4に示すごとく断面形状が台形状の凸部11を
形成できる。
FIG. 2 is a vertical sectional view of the payout corona generator 5. In the payee corona generator 5, the first electrode 1 is formed by, for example, processing a stainless rod into a threaded shape. The threaded shape may be processed by appropriately selecting a method using a cutting machine such as a milling machine or a method using a die processing machine such as sintering. Further, by changing the thread pitch of the thread cutting, as shown in FIG. 3, the convex portion 1 having a triangular cross section on the surface of the first electrode 1 is formed.
1 or a protrusion 11 having a trapezoidal sectional shape can be formed as shown in FIG.

【0007】なお、上記の実施例において、第1の電極
1の表面にネジ切りした形状により連続した凸部11を
形成しているが、これは図1に示すごとく広範囲に払子
コロナを発生させるためのものであり、他の形状、例え
ば、第1の電極1の表面の要所に突起を設けたものであ
ってもよい。
In the above-mentioned embodiment, the continuous convex portion 11 is formed on the surface of the first electrode 1 by the threaded shape, but this produces a brush corona in a wide range as shown in FIG. However, the shape may be another shape, for example, a shape in which protrusions are provided on important points on the surface of the first electrode 1.

【0008】該第1の電極1は、絶縁材料でなる支持具
6によって円筒状に形成された、例えば、セラミックス
や有機ガラスからなる材料で形成した絶縁層3の中央に
支持する。該絶縁層3の外側には、第2の電極2が被着
形成されている。この形成手順としては、例えば、先ず
セラミックス等の絶縁層3の表面に金属ペーストを印刷
し焼成して第2の電極を形成するか、予め金属パイプで
第2の電極2を作成し、次に、この第2の電極2の表面
に、有機ガラス等によって琺瑯加工を加えて、絶縁層3
を形成するようにする。なお、絶縁パイプと金属パイプ
の単なる組合せであってもよい。
The first electrode 1 is supported at the center of an insulating layer 3 formed in a cylindrical shape by a supporting member 6 made of an insulating material, for example, made of a material made of ceramics or organic glass. A second electrode 2 is formed on the outside of the insulating layer 3 by deposition. As the forming procedure, for example, first, a metal paste is printed on the surface of the insulating layer 3 such as ceramics and fired to form the second electrode, or the second electrode 2 is formed in advance by a metal pipe, and then the second electrode 2 is formed. , The surface of the second electrode 2 is treated with an enamel using an organic glass or the like to form an insulating layer 3
To form. Note that a simple combination of an insulating pipe and a metal pipe may be used.

【0009】前記第1の電極1と第2の電極2とは、高
圧交番電源4を介して電気的結線されている。該高圧交
番電源4は、ある周波数で正負両極の高電圧を発生する
回路であり、その波形は、正弦波やパルス波等のいずれ
のものであってもよい。また、周波数は一定したもので
もよく、イグニションコイル出力等のエンジン回転数に
同期した周波数であってもよい。
The first electrode 1 and the second electrode 2 are electrically connected via a high voltage alternating power source 4. The high-voltage alternating power supply 4 is a circuit that generates a high voltage of positive and negative polarities at a certain frequency, and its waveform may be any of a sine wave, a pulse wave, and the like. The frequency may be constant or may be a frequency synchronized with the engine speed such as the ignition coil output.

【0010】上記構成の払子コロナ発生器5は、図5〜
図7で示す原理により作用する。すなわち、高圧交番電
源4によって第1の電極1及び第2の電極2間に高電圧
を印加すると、第2の電極2の内面部に被着する絶縁層
3と第1の電極1との間に、払子コロナが発生する。
The payout corona generator 5 having the above structure is shown in FIGS.
It operates according to the principle shown in FIG. That is, when a high voltage is applied between the first electrode 1 and the second electrode 2 by the high voltage alternating power source 4, the insulating layer 3 adhered to the inner surface portion of the second electrode 2 and the first electrode 1 are separated from each other. At the same time, Fusuko Corona occurs.

【0011】図5は、高圧交番電源4によって第1の電
極1にはプラス電圧が、第2の電極2にはマイナス電圧
が、それそれ印加された状態を示す。図5中にEOで示
す矢印は、第1の電極1及び第2の電極2間に印加され
る高電圧によって発生する電界の方向を示し、ESで示
す矢印は絶縁層3の表面に蓄積された電荷によって生じ
る逆電界の方向を示し、Pは絶縁層3の表面に蓄積され
たプラス電荷を示し、C1は正極性コロナを示しここで
は特に正極性コロナが最も生長した払子コロナを示す。
FIG. 5 shows a state where a positive voltage is applied to the first electrode 1 and a negative voltage is applied to the second electrode 2 by the high voltage alternating power source 4. The arrow indicated by EO in FIG. 5 indicates the direction of the electric field generated by the high voltage applied between the first electrode 1 and the second electrode 2, and the arrow indicated by ES is accumulated on the surface of the insulating layer 3. Indicates the direction of the reverse electric field generated by the electric charge, P indicates the positive charge accumulated on the surface of the insulating layer 3, C1 indicates the positive corona, and here, in particular, the cornice corona in which the positive corona grows most.

【0012】この図5で示す状態では、払子コロナC1
が発生すると共に絶縁層3の表面にプラス電荷Pが蓄積
され、該プラス電荷Pの量に応じて逆電界ESが大きく
なり払子コロナC1を抑制し、時間の経過と共に払子コ
ロナC1は第1の電極1の近辺にだけ生じるブラシコロ
ナ若しくは膜状コロナへと変化してゆく。この払子コロ
ナC1の変化減衰現象は、結局、プラス電荷Pの蓄積量
が多く成りすぎたために生じるわけであり、この過剰な
プラス電荷Pを少なくする手段を講じることによって、
払子コロナC1は増加かつ生長できる。この発明におい
ては、後述する図6及び図7で示す段階を経て過剰なプ
ラス電荷Pを中和し、減少することによって、払子コロ
ナC1の発生を確保している。
In the state shown in FIG. 5, the payout corona C1
Occurs, the positive electric charge P is accumulated on the surface of the insulating layer 3, the reverse electric field ES increases in accordance with the amount of the positive electric charge P, and the payoff corona C1 is suppressed. It changes into a brush corona or a film corona that occurs only in the vicinity of the electrode 1. This change damping phenomenon of the payout corona C1 is eventually caused by the excessive accumulation of the positive charges P, and by taking measures to reduce the excessive positive charges P,
Fusuko Corona C1 can increase and grow. In the present invention, the generation of the payout corona C1 is ensured by neutralizing and reducing the excessive positive charge P through the steps shown in FIGS. 6 and 7 which will be described later.

【0013】図6は、高圧交番電源4の出力の極性が切
換わる、いわゆる零点の状態を示す。この図6に示す状
態では、コロナの発生は一旦停止する。図7は、上記図
5に示す状態とは逆極性であり、高圧交番電源4によっ
て、第1の電極1にはマイナス電圧が、第2の電極2に
はプラス電圧がそれそれ印加された状態を示す。図7中
のeは電子を示し、C2は負極性コロナを示す。この図
7で示す状態では、第1の電極1から負極性コロナC2
及び電子eが生じ、電子eは絶縁層3の表面に蓄積した
プラス電荷Pと結合し、中和する。このことによって過
剰なプラス電荷Pは減少され、再び図5で示す状態に進
行したとき、払子コロナC1は発生できる。以上、図5
〜図7に示す状態の繰返しによって払子コロナC1の継
続的な発生が維持、確保できる。
FIG. 6 shows a so-called zero state in which the polarity of the output of the high voltage alternating power source 4 is switched. In the state shown in FIG. 6, the generation of corona is temporarily stopped. FIG. 7 shows a state in which the polarity is opposite to the state shown in FIG. 5, and a negative voltage is applied to the first electrode 1 and a positive voltage is applied to the second electrode 2 by the high voltage alternating power source 4. Indicates. In FIG. 7, e represents an electron and C2 represents a negative corona. In the state shown in FIG. 7, from the first electrode 1 to the negative corona C2
And electrons e are generated, and the electrons e combine with the positive charges P accumulated on the surface of the insulating layer 3 to neutralize them. As a result, the excess positive charge P is reduced, and when the state again shown in FIG. 5 is reached, the paying corona C1 can be generated. Above, FIG.
~ By repeating the state shown in Fig. 7, continuous generation of the payout corona C1 can be maintained and ensured.

【0014】実験によれば、図1に示す高圧交番電源4
によって周波数が50Hzの交流を10〜15KV位に
昇圧し、第1の電極1及び第2の電極2間に印加したと
ころ、広範囲にわたって大規模な払子コロナ放電現象が
惹起され観測された。また、得られた払子コロナも減衰
することなく、安定維持かつ確保することが確認され
た。なお、上記高圧交番電源4の代りに高圧直流電源を
使用した場合にも同様の作用効果が得られた。
According to experiments, the high voltage alternating power supply 4 shown in FIG.
When an alternating current having a frequency of 50 Hz was boosted to about 10 to 15 KV and applied between the first electrode 1 and the second electrode 2, a large-scale frustrated corona discharge phenomenon was induced and observed over a wide range. In addition, it was confirmed that the obtained Tokoro corona could be maintained and secured stably without being attenuated. Similar effects were obtained when a high-voltage DC power supply was used instead of the high-voltage alternating power supply 4.

【0015】触媒反応器8は、所定厚の触媒層8aに金
属イオン交換ゼオライトを触媒として内在している。こ
の金属イオン交換ゼオライトとしては、例えば、銅イオ
ン交換ゼオライトなどがあり、特にCu−ZSM−5ゼ
オライトは、低温においても分解活性が極めて高いと共
に、酸素濃度が高い場合の酸素阻害にも強いという特徴
がある。銅イオン交換ゼオライトは、例えば、ゼオライ
ト粉末を酢酸銅溶液に浸漬して銅イオン交換し、その後
に種々の後加工によって製造される。
The catalytic reactor 8 has a metal ion-exchanged zeolite as a catalyst in a catalyst layer 8a having a predetermined thickness. Examples of the metal ion-exchanged zeolite include, for example, copper ion-exchanged zeolite, and in particular, Cu-ZSM-5 zeolite has a feature that it has extremely high decomposition activity even at low temperatures and is highly resistant to oxygen inhibition when the oxygen concentration is high. There is. The copper ion-exchanged zeolite is produced, for example, by immersing zeolite powder in a copper acetate solution for copper ion exchange, and then by various post-processing.

【0016】次に、上記第1実施例の構成における排気
ガス浄化装置の作用を説明する。燃焼器7から排出され
た排気ガスAは、払子コロナ発生器5に導入される。払
子コロナ発生器5の第1の電極1と絶縁層3とで形成し
た空間には、大規模な払子コロナC1が安定維持して発
生しており、この中を排気ガスAが通過するとNO
SO等の有害ガスは払子コロナの作用によって活性化
され、かつ、除塵または解離された排気ガスBとして排
出される。しかして、排気ガスA中に含有するHC,C
O,HO等の微粒子は、払子コロナ発生器5を通過す
る際にイオンエネルギーを荷電される。
Next, the operation of the exhaust gas purifying apparatus having the structure of the first embodiment will be described. The exhaust gas A discharged from the combustor 7 is introduced into the payout corona generator 5. In the space formed by the first electrode 1 of the payout corona generator 5 and the insulating layer 3, a large-scaled payoff corona C1 is stably generated, and when the exhaust gas A passes through this, NO X is generated. Hazardous gases such as SO X and SO X are activated by the action of the paying corona, and are discharged as exhaust gas B that has been dust-removed or dissociated. Then, HC, C contained in the exhaust gas A
The fine particles such as O and H 2 O are charged with ion energy when passing through the payee corona generator 5.

【0017】排気ガスBは、触媒反応器8に導入され、
金属イオン交換ゼオライトからなる触媒層8aを通過す
る。この時、金属イオン交換ゼオライトは、上述の荷電
された微粒子によって活性化され、排気ガスB中のNO
をNとOに分解する。しかして、排気ガスB中の
NOは触媒層8aを通過することにより極めて低減し
て除去される。また、排気ガスB中のSOも同様に分
解されて、除去される。
The exhaust gas B is introduced into the catalytic reactor 8,
It passes through the catalyst layer 8a made of metal ion-exchanged zeolite. At this time, the metal ion-exchanged zeolite is activated by the charged fine particles, and NO in the exhaust gas B is
X is decomposed into N 2 and O 2 . Then, NO X in the exhaust gas B is extremely reduced and removed by passing through the catalyst layer 8a. Further, SO X in the exhaust gas B is similarly decomposed and removed.

【0018】また、エンジン7の起動直後においては、
触媒層8aがほぼ常温以下の状態にあり、金属イオン交
換ゼオライトは高温時と比較して不活性である。しか
し、前段に払子コロナ発生器5を介在させたことによ
り、起動時点から、排気ガスB中のエネルギー荷電され
た微粒子が金属イオン交換ゼオライトを活性化するの
で、NOやSO等を分解する効率が高い。
Immediately after starting the engine 7,
Since the catalyst layer 8a is in a state of almost room temperature or lower, the metal ion-exchanged zeolite is inactive as compared with that at high temperature. However, by interposing the Tokoro corona generator 5 in the preceding stage, the energy-charged fine particles in the exhaust gas B activate the metal ion-exchanged zeolite from the start-up time, so that NO X , SO X, etc. are decomposed. High efficiency.

【0019】次に、図8〜図10に基づき第2実施例を
説明する。本実施例は、図1で示す第1実施例の接続構
成から触媒反応器8を廃止すると共に、払子コロナ発生
器5に触媒12を配設したことを特徴とする。なお、第
1実施例と同構成については、同符号を付し、その説明
を省略する。図8は払子コロナ発生器5の垂直断面図で
ある。払子コロナ発生器5において、第1の電極1と絶
縁層3との間には、触媒12を配設している。換言すれ
ば、絶縁層3の内壁面には、全周囲にわたり触媒12を
配設している。この触媒12は、排気ガスAとの接触表
面積を広くするために、例えば、図10で示すような直
径1〜2〔mm〕程度のセラミックス材料からなる球状
の芯材12aの表面に、触媒膜12bを施して触媒粒子
12cとし、これを図9で示すように、絶縁層3の内壁
面に塗布した後、焼成して当該絶縁層3に固着する。こ
の触媒膜12bは、例えばPt,Rh,Pdなどの貴金
属を組成とする三元触媒や、これらにCe,La,Zr
などの各種卑金属酸化物等を添加した各種の触媒を使用
するが、これに限定されるものではない。
Next, a second embodiment will be described with reference to FIGS. The present embodiment is characterized in that the catalytic reactor 8 is eliminated from the connection configuration of the first embodiment shown in FIG. 1 and that the catalyst 12 is arranged in the payout corona generator 5. The same components as those in the first embodiment are designated by the same reference numerals and the description thereof will be omitted. FIG. 8 is a vertical sectional view of the payee corona generator 5. In the payout corona generator 5, a catalyst 12 is arranged between the first electrode 1 and the insulating layer 3. In other words, the catalyst 12 is arranged on the inner wall surface of the insulating layer 3 all around. In order to increase the contact surface area with the exhaust gas A, the catalyst 12 has, for example, a catalyst film on the surface of a spherical core material 12a made of a ceramic material having a diameter of about 1 to 2 [mm] as shown in FIG. 12b is applied to form catalyst particles 12c, which are applied to the inner wall surface of the insulating layer 3 and then baked to be fixed to the insulating layer 3 as shown in FIG. The catalyst film 12b may be a three-way catalyst having a composition of a noble metal such as Pt, Rh, Pd, or Ce, La, Zr.
Although various catalysts containing various base metal oxides are used, the present invention is not limited thereto.

【0020】次に、上記第2実施例の構成における排気
ガス浄化装置の作用を説明する。燃焼器7から排出され
た排気ガスAは、払子コロナ発生器5に導入される。払
子コロナ発生器5内において、排気ガスAは触媒12に
おける触媒膜12bの触媒作用によって、酸化反応と還
元反応が同時に促進される。従って、排気ガスA中のC
O,HC及びNOの3成分はHO,CO,N
等に分解し、ほぼ無害化されて排出する。ところ
で、排気ガスAには多量のO成分も含有しており、他
の成分の酸化・還元反応の促進に伴い、各触媒膜12b
の周囲にOが吸着される。従って、当該触媒膜12b
は不活性になり、次第に触媒機能が低下する。
Next, the operation of the exhaust gas purifying apparatus having the structure of the second embodiment will be described. The exhaust gas A discharged from the combustor 7 is introduced into the payout corona generator 5. In the payoff corona generator 5, the exhaust gas A is simultaneously promoted in the oxidation reaction and the reduction reaction by the catalytic action of the catalyst film 12b in the catalyst 12. Therefore, C in the exhaust gas A
The three components of O, HC and NO X are H 2 O, CO 2 , N 2 ,
It decomposes to O 2 or the like, discharges are substantially harmless. By the way, the exhaust gas A also contains a large amount of O 2 component, and along with the promotion of the oxidation / reduction reaction of other components, each catalyst film 12b.
O 2 is adsorbed around the. Therefore, the catalyst film 12b
Becomes inactive and the catalytic function gradually decreases.

【0021】しかし、払子コロナ発生器5において、第
1の電極1と絶縁層3とで形成した空間には、大規模な
払子コロナC1が発生している。しかして、触媒12の
表面には、前記第1実施例において図5〜図7で説明し
たようにプラス電荷Pが蓄積することにより、各触媒膜
12bに吸着しているOを離脱させる。従って、各触
媒膜12bは常に活性化され、触媒機能を維持する。
However, in the payout corona generator 5, a large-scale payoff corona C1 is generated in the space formed by the first electrode 1 and the insulating layer 3. Then, as described in FIGS. 5 to 7 in the first embodiment, the positive charge P is accumulated on the surface of the catalyst 12 to release O 2 adsorbed on each catalyst film 12b. Therefore, each catalyst film 12b is always activated and maintains the catalytic function.

【0022】なお、上記触媒12は、触媒粒子12cを
絶縁層3に固着した構成に限定されるものではなく、例
えば、図11で示す第3実施例のように、絶縁層3の内
壁面に、2〜3層に触媒膜12dを塗布して焼結する構
成でもよい。
[0022] Incidentally, the catalyst 12 is not limited to the configuration in which fixed catalyst particles 12c in the insulating layer 3, for example, as in the third embodiment shown in FIG. 11, the inner wall surface of the insulating layer 3 , A structure in which the catalyst film 12d is applied to two or three layers and sintered.
It can be done.

【0023】また、触媒12は、第1の電極1と絶縁層Further, the catalyst 12 is composed of the first electrode 1 and the insulating layer.
3との間に配設した構成であればよく、例えば、図12It is sufficient if the structure is arranged between the first and second terminals, for example, as shown in FIG.
で示す第4実施例のように、第1の電極1の周囲に巻回Winding around the first electrode 1 as in the fourth embodiment
した、ステンレス綱材から成るコイル状の芯材12eのOf the coiled core material 12e made of stainless steel material
表面に、触媒膜を塗布して焼結する構成でもよい。このA structure in which a catalyst film is applied to the surface and then sintered may be used. this
芯材12eは、コイル状の形状に限定されず、束子状やThe core material 12e is not limited to a coil shape, but a bundle shape or
ブラシ状でもよい。It may be a brush.

【0024】更に、触媒12は、図8で示す第2実施例Further, the catalyst 12 is the second embodiment shown in FIG.
において、多数の触媒粒子12cを円筒状の絶縁層3内In the cylindrical insulating layer 3, a large number of catalyst particles 12c
に満充填し、これらの触媒粒子12cに吸着しいるO O 2 which is fully filled in and is adsorbed on these catalyst particles 12c
を、コロナ放電により離脱させる構成でもよい。May be separated by corona discharge.

【0025】なお、上記第2実施例〜第4実施例におけIn addition, in the above-mentioned second to fourth embodiments
る払子コロナ発生器5の代替えとして、絶縁層3と同様The same as the insulating layer 3 as an alternative to the fusuko corona generator 5.
の筒体内に、触媒膜を付着させた磁性体から成る複数のInside the cylinder, there are multiple
棒材やハニカム材、材料等を、排気ガスAの流過方向にStick rods, honeycomb materials, materials, etc. in the exhaust gas A flow direction.
配設し、これに外部から磁気を付与する構成に置換してIt is installed and replaced with a structure that applies magnetism from the outside
もよい。磁気の付与方式としては、固定磁石式、断続磁Good. Magnetization methods are fixed magnet type and intermittent magnetizing type
気付与方式、交番磁気付与方式などを挙げることができQi application method, alternating magnetic application method, etc.
る。一般に、Oは弱磁性を有している。排気ガスAかIt Generally, O 2 has weak magnetism. Exhaust gas A
ら触媒に吸着したOに、上述の方法で外部から磁気をThe O 2 adsorbed on the catalyst is magnetized from the outside by the above-mentioned method.
印加すると、磁気的反発力によって当該活性酸素が離脱When applied, the active oxygen is released due to magnetic repulsion.
する。これにより、触媒の活性過化を維持できる。To do. As a result, overactivation of the catalyst can be maintained.

【0026】[0026]

【発明の効果】以上詳述したように第1の発明の構成に
よれば、金属イオン交換ゼオライトの触媒層の前段に払
子コロナ発生部を介在したことにより、エネルギー荷電
された排気ガス中の微粒子によって金属イオン交換ゼオ
ライトが活性化されるので、NO等の有害物質の除去
効率が向上し、酸素過剰雰囲気下においても有効に除去
できる。
As described above in detail, according to the structure of the first invention, the fine particles in the energy-charged exhaust gas are provided by interposing the payor corona generating portion in the preceding stage of the catalyst layer of the metal ion-exchanged zeolite. Since the metal ion-exchanged zeolite is activated by this, the efficiency of removing harmful substances such as NO X is improved and can be effectively removed even in an oxygen excess atmosphere.

【0027】また、第2の発明の構成によれば、触媒を
払子コロナで常に活性状態に維持するので、当該触媒機
能が安定し、酸素過剰雰囲気下においてもCO,HC,
NO等の有害物質の除去効率が向上する。また、運転
開始時の低温状態においても、触媒を活性化させて有害
物質の除去を促進できる。
Further, according to the second aspect of the invention, Runode to maintain the catalyst always active in hossu corona, the catalytic converter
Stable performance, CO, HC, even in oxygen excess atmosphere
The efficiency of removing harmful substances such as NO X is improved. Also driving
Activates the catalyst even in the low temperature state at the start and is harmful.
It can facilitate the removal of substances.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る第1実施例を示す接続構成図であ
る。
FIG. 1 is a connection configuration diagram showing a first embodiment according to the present invention.

【図2】図1で示す払子コロナ発生器の組立断面図であ
る。
FIG. 2 is an assembled cross-sectional view of the brush corona generator shown in FIG.

【図3】図2で示す第1の電極の表面に断面形状が三角
形状とする凸部を形成した要部斜視図である。
FIG. 3 is a perspective view of a main part in which a protrusion having a triangular cross section is formed on the surface of the first electrode shown in FIG.

【図4】図2で示す第1の電極の表面に断面形状が台形
状とする凸部を形成した要部斜視図である。
FIG. 4 is a perspective view of a main part in which a convex portion having a trapezoidal cross section is formed on the surface of the first electrode shown in FIG.

【図5】図2で示す払子コロナ発生器において正極性コ
ロナ発生状態を説明する説明図である。
FIG. 5 is an explanatory diagram illustrating a positive corona generation state in the brush corona generator shown in FIG. 2.

【図6】図2で示す払子コロナ発生器において零点状態
を説明する説明図である。
FIG. 6 is an explanatory diagram illustrating a zero-point state in the payout corona generator illustrated in FIG. 2.

【図7】図2で示す払子コロナ発生器において負極性コ
ロナ発生状態を説明する説明図である。
FIG. 7 is an explanatory diagram illustrating a negative corona generation state in the brush corona generator shown in FIG. 2.

【図8】本発明に係る第2実施例を示す払子コロナ発生FIG. 8 is a view showing a second embodiment of the present invention, which shows the generation of a corona corona.
器の組立断面図である。It is an assembly sectional view of a container.

【図9】図8における絶縁層と触媒回りの要部拡大図で9 is an enlarged view of a main part around an insulating layer and a catalyst in FIG.
ある。is there.

【図10】図9における触媒粒子の拡大断面図である。FIG. 10 is an enlarged cross-sectional view of catalyst particles in FIG.

【図11】本発明に係る第3実施例を示す払子コロナ発FIG. 11 shows a third embodiment of the present invention, which is from Toshiko Corona.
生器における絶縁層と触媒回りの要部拡大図である。FIG. 3 is an enlarged view of a main part around an insulating layer and a catalyst in a living device.

【図12】本発明に係る第4実施例を示す払子コロナ発FIG. 12 shows a fourth embodiment of the present invention, which is from Toshiko Corona
生器の組立断面図である。It is an assembly sectional view of a living implement.

【符号の説明】 5 払子コロナ発生器 7 燃焼器 8 触媒反応器 8a 触媒層 9 排気ガス管12 触媒 [Explanation of Codes] 5 Fusuko Corona Generator 7 Combustor 8 Catalytic Reactor 8a Catalyst Layer 9 Exhaust Gas Pipe 12 Catalyst

【手続補正3】[Procedure 3]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図8[Correction target item name] Figure 8

【補正方法】追加[Correction method] Added

【補正内容】[Correction content]

【図8】 [Figure 8]

【手続補正4】[Procedure amendment 4]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図9[Correction target item name] Figure 9

【補正方法】追加[Correction method] Added

【補正内容】[Correction content]

【図9】 [Figure 9]

【手続補正5】[Procedure Amendment 5]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図10[Name of item to be corrected] Fig. 10

【補正方法】追加[Correction method] Added

【補正内容】[Correction content]

【図10】 [Figure 10]

【手続補正6】[Procedure Amendment 6]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図11[Name of item to be corrected] Fig. 11

【補正方法】追加[Correction method] Added

【補正内容】[Correction content]

【図11】 FIG. 11

【手続補正7】[Procedure Amendment 7]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図12[Correction target item name] Figure 12

【補正方法】追加[Correction method] Added

【補正内容】[Correction content]

【図12】 [Fig. 12]

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 F01N 3/28 301 C ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI technical display location F01N 3/28 301 C

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 燃焼器の排気ガス口を、払子コロナ発生
器を介して触媒反応器と接続し、 前記払子コロナ発生器は、表面が凸部形状に形成された
導電体からなる第1の電極と、この第1の電極に対向し
て配設した導電体からなる第2の電極と、この第2の電
極の少なくとも前記第1の電極側の面に被着する絶縁層
と、前記第1の電極及び第2の電極に接続する高圧電源
で構成し、 前記触媒反応器は、金属イオン交換ゼオライトの触媒を
内在したことを特徴とする排気ガス浄化装置。
1. An exhaust gas port of a combustor is connected to a catalytic reactor through a payout corona generator, wherein the payoff corona generator comprises a first conductor made of a conductor having a convex surface. An electrode, a second electrode made of a conductor disposed so as to face the first electrode, an insulating layer adhered to at least the surface of the second electrode on the first electrode side, the second electrode An exhaust gas purifying apparatus comprising a high-voltage power supply connected to one electrode and a second electrode, wherein the catalytic reactor contains a metal ion-exchanged zeolite catalyst therein.
JP4160287A 1992-05-27 1992-05-27 Exhaust emission control device Pending JPH05332128A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4160287A JPH05332128A (en) 1992-05-27 1992-05-27 Exhaust emission control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4160287A JPH05332128A (en) 1992-05-27 1992-05-27 Exhaust emission control device

Publications (1)

Publication Number Publication Date
JPH05332128A true JPH05332128A (en) 1993-12-14

Family

ID=15711726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4160287A Pending JPH05332128A (en) 1992-05-27 1992-05-27 Exhaust emission control device

Country Status (1)

Country Link
JP (1) JPH05332128A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997013963A1 (en) * 1995-10-13 1997-04-17 Coral S.P.A. Device for purifying the exhaust gas of an internal combustion engine
WO1999018333A1 (en) * 1997-10-07 1999-04-15 Litex, Inc. Method and apparatus for using free radicals to reduce pollutants in the exhaust gases from the combustion of a fuel
US6012283A (en) * 1994-05-18 2000-01-11 Lockheed Martin Corp. Method and apparatus for reducing pollutants
US6047543A (en) * 1996-12-18 2000-04-11 Litex, Inc. Method and apparatus for enhancing the rate and efficiency of gas phase reactions
WO2000043469A3 (en) * 1999-01-21 2000-11-02 Litex Inc Combined plasma reactor catalyst systems for effective emission control over a range of operating conditions
US6264899B1 (en) 1996-06-28 2001-07-24 Litex, Inc. Method and apparatus for using hydroxyl to reduce pollutants in the exhaust gases from the combustion of a fuel
EP1136668A1 (en) * 2000-03-02 2001-09-26 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method and device for purifying exhaust gas
US6321531B1 (en) 1996-12-18 2001-11-27 Litex, Inc. Method and apparatus for using free radicals to reduce pollutants in the exhaust gases from the combustion of a fuel
EP1157196A1 (en) * 1999-02-26 2001-11-28 Litex, Inc. Method and apparatus for using free radicals to reduce pollutants in the exhaust gases from the combustion of a fuel

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6012283A (en) * 1994-05-18 2000-01-11 Lockheed Martin Corp. Method and apparatus for reducing pollutants
US6253544B1 (en) 1994-05-18 2001-07-03 Lockheed Martin Corporation Method and apparatus for reducing pollutants
US6058698A (en) * 1995-10-13 2000-05-09 Coral S.P.A. Device for purifying the exhaust gas of an internal combustion engine
WO1997013963A1 (en) * 1995-10-13 1997-04-17 Coral S.P.A. Device for purifying the exhaust gas of an internal combustion engine
US6264899B1 (en) 1996-06-28 2001-07-24 Litex, Inc. Method and apparatus for using hydroxyl to reduce pollutants in the exhaust gases from the combustion of a fuel
US6047543A (en) * 1996-12-18 2000-04-11 Litex, Inc. Method and apparatus for enhancing the rate and efficiency of gas phase reactions
US6029442A (en) * 1996-12-18 2000-02-29 Litex, Inc. Method and apparatus for using free radicals to reduce pollutants in the exhaust gases from the combustion of fuel
US6321531B1 (en) 1996-12-18 2001-11-27 Litex, Inc. Method and apparatus for using free radicals to reduce pollutants in the exhaust gases from the combustion of a fuel
US6330794B1 (en) 1996-12-18 2001-12-18 Litex, Inc. Method and apparatus for using free radicals to reduce pollutants in the exhaust gases from the combustion of a fuel
US6357223B1 (en) 1996-12-18 2002-03-19 Litex, Inc. Method and apparatus for enhancing the rate and efficiency of gas phase reactions
WO1999018333A1 (en) * 1997-10-07 1999-04-15 Litex, Inc. Method and apparatus for using free radicals to reduce pollutants in the exhaust gases from the combustion of a fuel
WO2000004989A3 (en) * 1998-07-24 2000-04-27 Litex Inc Method and apparatus for enhancing the rate and efficiency of gas phase reactions
WO2000043469A3 (en) * 1999-01-21 2000-11-02 Litex Inc Combined plasma reactor catalyst systems for effective emission control over a range of operating conditions
EP1157196A1 (en) * 1999-02-26 2001-11-28 Litex, Inc. Method and apparatus for using free radicals to reduce pollutants in the exhaust gases from the combustion of a fuel
EP1157196A4 (en) * 1999-02-26 2003-01-22 Litex Inc Method and apparatus for using free radicals to reduce pollutants in the exhaust gases from the combustion of a fuel
EP1136668A1 (en) * 2000-03-02 2001-09-26 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method and device for purifying exhaust gas

Similar Documents

Publication Publication Date Title
US7510600B2 (en) Gas purifying apparatus
US7163663B2 (en) Reactor for plasma assisted treatment of gaseous
Okubo et al. Single-Stage Simultaneous Reduction of Diesel Particulate and $\hbox {NO} _ {\rm x} $ Using Oxygen-Lean Nonthermal Plasma Application
EP1287242A1 (en) Apparatus for removing soot and no x? in exhaust gas from diesel engines
US6852200B2 (en) Non-thermal plasma reactor gas treatment system
KR20090128537A (en) Device and method for regenerating exhaust purification catalyst
US20030024804A1 (en) Method and device for the plasma-induced lowering of the soot emission from diesel engines
WO2005083241A1 (en) Plasma reactor power source, plasma reactor, exhaust gas purification device and exhaust gas purifying method
JPH05332128A (en) Exhaust emission control device
JPH06106025A (en) Plasma reaction vessel in nitrogen oxide decomposition device
JP4591164B2 (en) Exhaust gas purification method and exhaust gas purification device
CN101219338B (en) Automobile tail gas purifier of low-temperature plasma body
US20030170154A1 (en) Plasma assisted catalytic treatment of gases
EP1479430A1 (en) An exhaust gas purifying apparatus and method of using the same
JP2004245096A (en) Plasma reactor
JPH05237337A (en) Treatment of exhaust gas and treating equipment for exhaust gas
EP1479431A2 (en) An exhaust gas purifying apparatus and method of using the same
JP2004028026A (en) Exhaust emission control device
JP2003269133A (en) Exhaust emission control device
JP2002213228A (en) Exhaust emission control device for internal combustion engine
JPH1193644A (en) Corona generating device
KR100347593B1 (en) Exhaust gas purifier of internal combustion engine
KR100477503B1 (en) Type mixture and one body purification apparatus between plasma and catalyst
JPS63268911A (en) Exhaust purifier for engine
JP2005106022A (en) Exhaust emission control device

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020709