JPH05326945A - Horizontal mos field effect transistor - Google Patents

Horizontal mos field effect transistor

Info

Publication number
JPH05326945A
JPH05326945A JP4128620A JP12862092A JPH05326945A JP H05326945 A JPH05326945 A JP H05326945A JP 4128620 A JP4128620 A JP 4128620A JP 12862092 A JP12862092 A JP 12862092A JP H05326945 A JPH05326945 A JP H05326945A
Authority
JP
Japan
Prior art keywords
region
conductivity type
drain
concentration
silicon substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4128620A
Other languages
Japanese (ja)
Other versions
JP3074064B2 (en
Inventor
Hiroshi Tanida
宏 谷田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP04128620A priority Critical patent/JP3074064B2/en
Publication of JPH05326945A publication Critical patent/JPH05326945A/en
Application granted granted Critical
Publication of JP3074064B2 publication Critical patent/JP3074064B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE:To provide a horizontal MOS field effect transistor which improves the reverse direction safety operation area. CONSTITUTION:The width (h) of a source area 8 in the vicinity of the drain pad 16 of a drain electrode 12 connected to a high-concentration drain area 2 is formed narrower than the width H of a high-concentration area 10 of the same conductivity type as a silicon substrate 1 which is formed adjacent to the source area 8. Even when breakdown current is concentrated in the vicinity of the drain pad, the high-concentration area 10 operates as the bypass of the breakdown current and the operation of a parasitic bipolar transistor formed of the source area 8, the silicon substrate 1 and an extended drain area 3 is suppressed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、高耐圧横型MOS
(酸化金属半導体)構造をした電界効果トランジスタに
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high voltage lateral MOS.
The present invention relates to a field effect transistor having a (metal oxide semiconductor) structure.

【0002】[0002]

【従来の技術】以下、従来の高耐圧横型MOS電界効果
トランジスタ(以下LMOSという)について説明す
る。図3(a)は従来のLMOSのマスクを示す平面
図、同図(b)は同図(a)におけるC−C’間で切断
したセルの断面構造を示す図である。図3において、1
はシリコン基板、2は高濃度のドレイン領域、3は延長
ドレイン領域、4はシリコン基板1と同一の導電型領域
(以下PT領域という)、5はチャネル部、6はゲート
酸化膜、7はポリシリコン、8はソース領域、9はチャ
ネルストッパ、10はシリコン基板1と同一導電型の高
濃度領域、11はソース電極、12はドレイン電極、1
3は層間絶縁膜、15はソースパット、16はドレイン
パットを示している。
2. Description of the Related Art A conventional high voltage lateral MOS field effect transistor (hereinafter referred to as LMOS) will be described below. FIG. 3 (a) is a plan view showing a conventional LMOS mask, and FIG. 3 (b) is a view showing a cross-sectional structure of a cell cut along CC 'in FIG. 3 (a). In FIG. 3, 1
Is a silicon substrate, 2 is a high-concentration drain region, 3 is an extended drain region, 4 is the same conductivity type region as the silicon substrate 1 (hereinafter referred to as PT region), 5 is a channel portion, 6 is a gate oxide film, and 7 is a poly-oxide. Silicon, 8 is a source region, 9 is a channel stopper, 10 is a high concentration region of the same conductivity type as the silicon substrate 1, 11 is a source electrode, 12 is a drain electrode, 1
Reference numeral 3 is an interlayer insulating film, 15 is a source pad, and 16 is a drain pad.

【0003】図3に示すように、シリコン基板1とは逆
導電型の高濃度のドレイン領域2が延長ドレイン領域3
内に形成され、さらに延長ドレイン領域3に包含された
シリコン基板1と同一の導電型領域4(以下PT領域と
いう)に回りを取り囲まれるように形成されている。チ
ャネル部5上にはゲ−ト酸化膜6およびゲ−ト電極とな
るポリシリコン7が形成されている。
As shown in FIG. 3, a high-concentration drain region 2 having a conductivity type opposite to that of the silicon substrate 1 is an extended drain region 3.
It is formed so as to be surrounded by the same conductivity type region 4 (hereinafter referred to as a PT region) which is formed inside and is included in the extended drain region 3 and which is the same as the silicon substrate 1. A gate oxide film 6 and a polysilicon 7 to be a gate electrode are formed on the channel portion 5.

【0004】チャネル部5の横には、延長ドレイン領域
3に相対して逆導電型のソ−ス領域8が形成されてお
り、また、ソ−ス領域8を取り囲むようにして高濃度の
シリコン基板1と同一導電型のチャネルストッパ9が形
成されている。さらに、チャネルの基板バイアス効果を
抑制し、また、誘導性負荷でのブレークダウン時におけ
るソース領域8、シリコン基板1、延長ドレイン領域3
で形成される寄生のバイポーラトランジスタの動作によ
るLMOSの破壊を抑制するために、ソ−ス領域8に隣
接して同一導電型の高濃度領域10が形成され、ソ−ス
領域8と同様にソ−ス電極11と直接電気的に接続され
ている。
A source region 8 of opposite conductivity type is formed on the side of the channel portion 5 so as to face the extended drain region 3, and the source region 8 is surrounded by a high concentration silicon. A channel stopper 9 of the same conductivity type as the substrate 1 is formed. Further, the substrate bias effect of the channel is suppressed, and the source region 8, the silicon substrate 1, and the extended drain region 3 are provided at the time of breakdown by an inductive load.
In order to suppress the destruction of the LMOS due to the operation of the parasitic bipolar transistor formed in step 1, a high-concentration region 10 of the same conductivity type is formed adjacent to the source region 8, and like the source region 8, the high-concentration region 10 is formed. -Directly electrically connected to the cathode electrode 11.

【0005】また、PT領域4は、図4に示すように、
延長ドレイン領域3との部分的な表面にPT領域4とシ
リコン基板1を結ぶ同一導電型層14(以下FI領域と
いう)が設けられている。
Further, the PT area 4 is, as shown in FIG.
The same conductivity type layer 14 (hereinafter referred to as FI region) that connects the PT region 4 and the silicon substrate 1 is provided on a partial surface of the extended drain region 3.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、従来の
LMOSでは、FI領域14はソ−スパット15近傍に
形成されており、PT領域4はソースパット15からド
レインパット16にかけて長い形状に形成されている。
また、図3(a)に示すように、ソ−ス領域8と高濃度
領域10はその幅の比が一定になるように形成されてい
た。このため、ブレークダウンが生じた場合には、PT
領域4と延長ドレイン領域3が逆バイアスとなり、空乏
層はPT領域4と延長ドレイン領域3に広がる際、PT
領域4の長さが長いため空乏層形成による電荷の移動に
時間差が生じ、ドレインパット16近傍がブレークダウ
ンするのが一番遅くなる。
However, in the conventional LMOS, the FI region 14 is formed in the vicinity of the source pad 15, and the PT region 4 is formed in a long shape from the source pad 15 to the drain pad 16. ..
Further, as shown in FIG. 3A, the source region 8 and the high-concentration region 10 are formed so that the width ratio thereof is constant. Therefore, if a breakdown occurs, PT
When the region 4 and the extended drain region 3 are reverse biased and the depletion layer spreads to the PT region 4 and the extended drain region 3, the PT
Since the length of the region 4 is long, there is a time difference in the movement of charges due to the formation of the depletion layer, and the breakdown in the vicinity of the drain pad 16 becomes the latest.

【0007】このため、電力負荷がモータやソレノイド
等の誘導性負荷の場合には、ブレークダウン時のブレー
クダウン電流が、電荷の抜けの一番遅いドレインパット
16近傍に集中してLMOSを破壊していた。このよう
に、従来のLMOSでは逆方向安全動作領域(以下R−
ASOという)が狭いという問題点があった。したがっ
て、この発明の目的は、逆方向安全動作領域の向上を図
ることができる高耐圧の横型MOS電界効果トランジス
タを提供することである。
Therefore, when the power load is an inductive load such as a motor or a solenoid, the breakdown current at the time of breakdown concentrates in the vicinity of the drain pad 16 where the electric charge is the slowest to be discharged, and destroys the LMOS. Was there. As described above, in the conventional LMOS, the backward safe operation area (hereinafter, R-
There was a problem that ASO) was narrow. Therefore, an object of the present invention is to provide a high withstand voltage lateral MOS field effect transistor capable of improving the backward safe operation area.

【0008】[0008]

【課題を解決するための手段】この発明の横型MOS電
界効果トランジスタは、高濃度ドレイン領域に接続され
るドレイン電極のドレインパット近傍における他導電型
ソース領域の幅を、これに隣接して形成されるシリコン
基板と同一導電型の高濃度領域の幅よりも小さく形成し
ている。
According to the lateral MOS field effect transistor of the present invention, the width of the other conductivity type source region near the drain pad of the drain electrode connected to the high concentration drain region is formed adjacent to this. The width is smaller than the width of the high-concentration region of the same conductivity type as that of the silicon substrate.

【0009】[0009]

【作用】この発明の構成によれば、ドレインパット近傍
のソ−ス領域の幅が、これに隣接して形成されるシリコ
ン基板と同一導電型の高濃度領域の幅よりも小さく形成
されているので、ブレークダウン電流が生じてドレイン
パット近傍に集中しても、高濃度領域がブレークダウン
電流のバイパスとして機能し、ブレークダウン電流はシ
リコン基板と同一導電型の高濃度領域を流れ、ソース領
域、シリコン基板、延長ドレイン領域で形成される寄生
のバイポーラトランジスタの動作が抑制される。
According to the structure of the present invention, the width of the source region near the drain pad is formed smaller than the width of the high concentration region of the same conductivity type as the silicon substrate formed adjacent thereto. Therefore, even if a breakdown current occurs and concentrates in the vicinity of the drain pad, the high-concentration region functions as a bypass of the breakdown current, and the breakdown current flows through the high-concentration region of the same conductivity type as the silicon substrate, the source region, The operation of the parasitic bipolar transistor formed in the silicon substrate and the extended drain region is suppressed.

【0010】[0010]

【実施例】以下図面を参照しながら、この発明の実施例
であるLMOSについて説明する。図1(a)はこの発
明の実施例であるLMOSのマスクを示す平面図であ
り、同図(b)は同図(a)におけるA−A’間で切断
したセルの断面構造を示す図、図2は同じく図1(a)
におけるB−B’間で切断したセルの断面構造を示す図
である。図1および図2において従来例を示す図3と同
一符号を付したものは同じものを示すため、説明を省略
する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An LMOS which is an embodiment of the present invention will be described below with reference to the drawings. FIG. 1A is a plan view showing a mask of an LMOS according to an embodiment of the present invention, and FIG. 1B is a view showing a sectional structure of a cell cut along AA ′ in FIG. 2 is the same as FIG. 1 (a).
It is a figure which shows the cross-section of the cell cut | disconnected between BB 'in FIG. In FIGS. 1 and 2, the same reference numerals as those of FIG. 3 showing the conventional example indicate the same parts, and therefore the description thereof will be omitted.

【0011】この発明の実施例であるLMOSは、図1
(a)に示すように、FI領域14から離れたドレイン
パット16近傍におけるソ−ス領域8と高濃度領域10
の幅の比が、ソースパット15近傍における両者の幅の
比と異なっており、ソース領域8の幅hが高濃度領域1
0の幅Hよりも小さく形成されている。このように、ド
レインパット16近傍のソ−ス領域の幅hが、これに隣
接して形成されるシリコン基板と同一導電型の高濃度領
域10の幅Hよりも小さく形成されているので、ブレー
クダウン電流が生じてドレインパット16近傍に集中し
ても、高濃度領域10がブレークダウン電流のバイパス
として機能し、ブレークダウン電流はシリコン基板と同
一導電型の高濃度領域10を流れ、ソース領域8、シリ
コン基板1、延長ドレイン領域3で形成される寄生のバ
イポーラトランジスタの動作を抑制する。このため、ブ
レークダウン電流によるLMOSの破壊を防止すること
ができる。
The LMOS according to the embodiment of the present invention is shown in FIG.
As shown in (a), the source region 8 and the high concentration region 10 in the vicinity of the drain pad 16 separated from the FI region 14.
The width ratio of the source region 8 is different from the width ratio of the two in the vicinity of the source pad 15, and the width h of the source region 8 is high.
It is formed smaller than the width H of 0. In this way, the width h of the source region near the drain pad 16 is formed smaller than the width H of the high-concentration region 10 of the same conductivity type as the silicon substrate formed adjacent thereto, so that the break occurs. Even if a down current is generated and concentrated in the vicinity of the drain pad 16, the high concentration region 10 functions as a bypass for the breakdown current, the breakdown current flows through the high concentration region 10 of the same conductivity type as the silicon substrate, and the source region 8 The operation of the parasitic bipolar transistor formed by the silicon substrate 1 and the extended drain region 3 is suppressed. Therefore, the breakdown of the LMOS due to the breakdown current can be prevented.

【0012】図5は、従来例と実施例とのR−ASOレ
ベルの比較を示す図である。この発明の実施例にかかる
LMOSを従来例と比較すると、R−ASOレベルは約
1.7倍となっており、従来と同じ製造プロセスによっ
てもデバイスのR−ASOレベルの向上を図ることがで
きることを示している。
FIG. 5 is a diagram showing a comparison of R-ASO levels between the conventional example and the example. When the LMOS according to the embodiment of the present invention is compared with the conventional example, the R-ASO level is about 1.7 times, and the R-ASO level of the device can be improved by the same manufacturing process as the conventional one. Is shown.

【0013】[0013]

【発明の効果】この発明の横型MOS電界効果トランジ
スタによれば、ドレインパット近傍のソ−ス領域の幅
が、これに隣接して形成されるシリコン基板と同一導電
型の高濃度領域の幅よりも小さく形成されているので、
ブレークダウン電流が生じてドレインパット近傍に集中
しても、この高濃度領域がブレークダウン電流のバイパ
スとして機能し、ブレークダウン電流はシリコン基板と
同一導電型の高濃度領域を流れ、ソース領域、シリコン
基板、延長ドレイン領域で形成される寄生のバイポーラ
トランジスタの動作を抑制して逆方向安全動作領域の向
上を図ることができる。
According to the lateral MOS field effect transistor of the present invention, the width of the source region near the drain pad is smaller than the width of the high concentration region of the same conductivity type as the silicon substrate formed adjacent thereto. Is also small, so
Even if a breakdown current occurs and concentrates in the vicinity of the drain pad, this high-concentration region functions as a bypass for the breakdown current, and the breakdown current flows through the high-concentration region of the same conductivity type as the silicon substrate. The operation of the parasitic bipolar transistor formed of the substrate and the extended drain region can be suppressed to improve the backward safe operation region.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)はこの発明の実施例であるLMOSのマ
スクを示す平面図であり、(b)は(a)におけるA−
A’間で切断したセルの断面構造を示す図である。
FIG. 1A is a plan view showing a mask of an LMOS according to an embodiment of the present invention, and FIG. 1B is a line A- in FIG.
It is a figure which shows the cross-section of the cell cut | disconnected between A '.

【図2】図1(a)におけるB−B’間で切断したセル
の断面構造を示す図である。
FIG. 2 is a diagram showing a cross-sectional structure of a cell cut along a line BB ′ in FIG.

【図3】(a)は従来例であるLMOSのマスクを示す
平面図であり、(b)は(a)におけるC−C’間で切
断したセルの断面構造を示す図である。
FIG. 3A is a plan view showing a mask of a conventional LMOS, and FIG. 3B is a view showing a cross-sectional structure of a cell cut along CC ′ in FIG.

【図4】FI領域近傍の構造を示す断面図である。FIG. 4 is a cross-sectional view showing the structure near the FI region.

【図5】従来例と実施例とのR−ASOレベルの比較図
である。
FIG. 5 is a comparison diagram of R-ASO levels of a conventional example and an example.

【符号の説明】[Explanation of symbols]

1 シリコン基板 2 ドレイン領域 3 延長ドレイン領域 4 PT領域(基板と同一の導電型領域) 5 チャネル部 6 ゲート酸化膜 8 ソース領域 10 基板と同一導電型の高濃度領域 11 ソース電極 12 ドレイン電極 13 層間絶縁膜 15 ソースパット 16 ドレインパット h ソ−ス領域の幅 H 高濃度領域の幅 1 Silicon substrate 2 Drain region 3 Extended drain region 4 PT region (same conductivity type region as the substrate) 5 Channel part 6 Gate oxide film 8 Source region 10 High concentration region of the same conductivity type as the substrate 11 Source electrode 12 Drain electrode 13 Interlayer Insulating film 15 Source pad 16 Drain pad h Width of source region H Width of high concentration region

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 一導電型のシリコン基板上に他導電型の
高濃度ドレイン領域を包含するように形成された延長ド
レイン領域内に、前記高濃度ドレイン領域からチャネル
部方向に向かう基板表面に沿ってシリコン基板と同一の
導電型領域が形成され、ソース電極に電気的に接続され
る他導電型のソース領域に隣接してシリコン基板と同一
導電型の高濃度領域が形成された横型MOS電界効果ト
ランジスタであって、 前記高濃度ドレイン領域に接続されるドレイン電極のド
レインパット近傍における前記他導電型のソース領域の
幅を、これに隣接して形成されるシリコン基板と同一導
電型の高濃度領域の幅よりも小さく形成したことを特徴
とする横型MOS電界効果トランジスタ。
1. An extended drain region formed on a silicon substrate of one conductivity type so as to include a high-concentration drain region of another conductivity type, along a substrate surface extending from the high-concentration drain region toward a channel portion. Lateral MOS field effect in which a high-concentration region of the same conductivity type as the silicon substrate is formed adjacent to a source region of another conductivity type electrically connected to the source electrode In the transistor, the width of the source region of the other conductivity type in the vicinity of the drain pad of the drain electrode connected to the high-concentration drain region is set to the high-concentration region of the same conductivity type as the silicon substrate formed adjacent thereto. A lateral MOS field-effect transistor characterized by being formed smaller than the width of the.
JP04128620A 1992-05-21 1992-05-21 Lateral MOS field effect transistor Expired - Lifetime JP3074064B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04128620A JP3074064B2 (en) 1992-05-21 1992-05-21 Lateral MOS field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04128620A JP3074064B2 (en) 1992-05-21 1992-05-21 Lateral MOS field effect transistor

Publications (2)

Publication Number Publication Date
JPH05326945A true JPH05326945A (en) 1993-12-10
JP3074064B2 JP3074064B2 (en) 2000-08-07

Family

ID=14989299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04128620A Expired - Lifetime JP3074064B2 (en) 1992-05-21 1992-05-21 Lateral MOS field effect transistor

Country Status (1)

Country Link
JP (1) JP3074064B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007250780A (en) * 2006-03-15 2007-09-27 Sharp Corp Semiconductor device
JP5158095B2 (en) * 2008-01-10 2013-03-06 富士通セミコンダクター株式会社 Semiconductor device and manufacturing method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007250780A (en) * 2006-03-15 2007-09-27 Sharp Corp Semiconductor device
JP5158095B2 (en) * 2008-01-10 2013-03-06 富士通セミコンダクター株式会社 Semiconductor device and manufacturing method thereof
US8410550B2 (en) 2008-01-10 2013-04-02 Fujitsu Semiconductor Limited Breakdown voltage MOS semiconductor device
US8735254B2 (en) 2008-01-10 2014-05-27 Fujitsu Semiconductor Limited Manufacture method of a high voltage MOS semiconductor device

Also Published As

Publication number Publication date
JP3074064B2 (en) 2000-08-07

Similar Documents

Publication Publication Date Title
US5621234A (en) Vertical semiconductor device with breakdown voltage improvement region
JPH0766428A (en) Thin film soi device and its manufacture
JPH08274335A (en) Silicon carbide mosfet
JP3076468B2 (en) Semiconductor device
JPS63266882A (en) Vertical-type insulated-gate field-effect transistor
JPH1145998A (en) Insulated gate semiconductor device
JP3074064B2 (en) Lateral MOS field effect transistor
JP2001119019A (en) Semiconductor device and manufacturing method therefor
JP3100755B2 (en) Vertical MOS field-effect transistor
JPS6164165A (en) Mos type field-effect transistor
EP0109692A1 (en) Semiconductor device for a MOSFET
JP2608976B2 (en) Semiconductor device
JPS6353972A (en) Composite semiconductor device
JPH05326946A (en) Horizontal mos field effect transistor
JPS63254769A (en) Vertical insulated-gate type field effect transistor
JP3217484B2 (en) High voltage semiconductor device
US11677033B2 (en) Passive element on a semiconductor base body
JP3249175B2 (en) Thyristor with insulated gate and high breakdown voltage semiconductor device
JP3074065B2 (en) Lateral MOS field effect transistor
JP3130645B2 (en) High voltage MOS transistor
JPH05326944A (en) Horizontal mos field effect transistor
JP2608974B2 (en) Semiconductor device
JP2624373B2 (en) Semiconductor device
JPH0653490A (en) Semiconductor device
JPH05335584A (en) Vertical mos field effect transistor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090602

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100602

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100602

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110602

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120602

Year of fee payment: 12

EXPY Cancellation because of completion of term