JPH05326477A - Method for removal of halogen from semiconductor substrate surface - Google Patents

Method for removal of halogen from semiconductor substrate surface

Info

Publication number
JPH05326477A
JPH05326477A JP13349192A JP13349192A JPH05326477A JP H05326477 A JPH05326477 A JP H05326477A JP 13349192 A JP13349192 A JP 13349192A JP 13349192 A JP13349192 A JP 13349192A JP H05326477 A JPH05326477 A JP H05326477A
Authority
JP
Japan
Prior art keywords
semiconductor substrate
substrate
halogen
chamber
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13349192A
Other languages
Japanese (ja)
Inventor
Yoji Saito
洋司 齋藤
Kenichi Takagi
憲一 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP13349192A priority Critical patent/JPH05326477A/en
Publication of JPH05326477A publication Critical patent/JPH05326477A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To promote the desorption of reaction products from a semiconductor substrate surface and enable the removal of halogen at a low temperature by exhausting a processing chamber containing the substrate to ultra-high vacuum, introducing a small quantity of hydrogen gas thereinto, and heat treating the substrate in low pressure hydrogen gas at a low temperature. CONSTITUTION:A semiconductor substrate is carried into a load-lock chamber 2 by a transport mechanism 11. After preliminary exhausting, the substrate is transferred into an etching chamber 1. Halogen gas is introduced into the etching chamber 1 through a massflow controller 7; the surface of the semiconductor substrate is etched to remove spontaneous oxide films and carbon impurities therefrom using the halogen gas. The substrate is then transferred into a heat treatment or film formation chamber 3 through the load-lock chamber 2. After the chamber 3 is exhausted to ultra-high vacuum, a small quantity of hydrogen gas is introduced thereinto through a massflow controller 9, and further, the substrate is heated to approx. 300 deg.C, remaining halogen being thereby removed from the surface thereof. Subsequently, the introduced gas is changed over to material gas to form a desired film.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体基板上への薄膜
形成時の前処理における半導体基板表面のハロゲン除去
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for removing halogen on the surface of a semiconductor substrate in a pretreatment for forming a thin film on the semiconductor substrate.

【0002】[0002]

【従来技術】半導体エピタキシャル層成長や金属半導体
界面形成の質及び信頼を高めるためには、前処理として
半導体上の自然酸化膜や汚染物質を完全に除去すること
が重要である。その一つの方法として化学処理により洗
浄した半導体基板をハロゲンガスにより表面エッチング
して基板表面の自然酸化膜やカーボン系不純物の除去を
行う方法が知られている。この方法を実施する処理装置
の一例を添付図面の図1に示す。図示装置はエッチング
室1と、準備室2と、試料加熱機構を備えた熱処理また
は成膜室3とから成っている。各室はゲート弁4、5で
仕切られおり、そして各室には排気ポンプ(図示してな
い)が接続されている。エッチング室1にはエッチング
用のハロゲンガス導入機構6及びハロゲンガスの供給を
制御するマスフローコントローラ7が設けられ、また熱
処理または成膜室3には水素ガス導入機構8及び水素ガ
スの供給を制御するマスフローコントローラ9が設けら
れている。熱処理または成膜室3は10-8トール以下の超
高真空にできるように構成されている。なお図1におい
て10は基板ホルダ、11は処理すべき半導体基板を準備室
2を介してエッチング室1、または熱処理または成膜室
3へ搬入したりこれらの室から搬出するための基板搬送
機構である。
2. Description of the Related Art In order to improve the quality and reliability of semiconductor epitaxial layer growth and metal-semiconductor interface formation, it is important to completely remove the natural oxide film and contaminants on the semiconductor as a pretreatment. As one of the methods, a method is known in which a semiconductor substrate cleaned by a chemical treatment is surface-etched with a halogen gas to remove a natural oxide film and carbon-based impurities on the substrate surface. An example of a processing apparatus for carrying out this method is shown in FIG. 1 of the accompanying drawings. The illustrated apparatus comprises an etching chamber 1, a preparation chamber 2, and a heat treatment or film formation chamber 3 equipped with a sample heating mechanism. Each chamber is partitioned by gate valves 4 and 5, and an exhaust pump (not shown) is connected to each chamber. The etching chamber 1 is provided with a halogen gas introduction mechanism 6 for etching and a mass flow controller 7 for controlling the supply of the halogen gas, and the heat treatment or film formation chamber 3 is controlled with a hydrogen gas introduction mechanism 8 and the supply of the hydrogen gas. A mass flow controller 9 is provided. The heat treatment or film formation chamber 3 is constructed so that it can be made into an ultrahigh vacuum of 10 -8 Torr or less. In FIG. 1, 10 is a substrate holder, and 11 is a substrate transfer mechanism for loading and unloading a semiconductor substrate to be processed into the etching chamber 1 or the heat treatment or film formation chamber 3 via the preparation chamber 2. is there.

【0003】このように構成された装置の動作におい
て、通常の化学処理により洗浄された半導体基板は、基
板搬送機構11を用いて準備室2へ導入され、予備排気が
行われる。その後、半導体基板は基板搬送機構11を用い
て準備室2からエッチング室1へ移され、ハロゲンガス
導入機構6及びマスフローコントローラ7によりエッチ
ング室1にハロゲンガスが導入され、ハロゲンガスより
半導体基板の表面エッチングが行われる。この処理によ
り半導体基板の表面の自然酸化膜やカーボン系不純物等
が除去される。しかしこの処理で使用したハロゲンが半
導体基板表面に残留してしまい、この残留ハロゲンはそ
の後の形成膜質を劣化させたり信頼性を低下させること
になる。そこでこのような半導体基板表面上の残留ハロ
ゲンを除去するため、エッチング処理した半導体基板を
エッチング室1から準備室2を介して熱処理または成膜
室3へ搬送し、熱処理または成膜室3内を超高真空に排
気するかまたは水素ガス導入機構8及びマスフローコン
トローラ9により常圧水素ガスを導入して、基板を加熱
して残留ハロゲンの除去が行われる。この場合、半導体
基板表面上の残留ハロゲンを除去するためには超高真空
中においても700 ℃以上の高温にする必要がある。
In the operation of the apparatus configured as described above, the semiconductor substrate cleaned by the ordinary chemical treatment is introduced into the preparation chamber 2 by using the substrate transfer mechanism 11, and preliminary evacuation is performed. After that, the semiconductor substrate is transferred from the preparation chamber 2 to the etching chamber 1 by using the substrate transport mechanism 11, and the halogen gas is introduced into the etching chamber 1 by the halogen gas introduction mechanism 6 and the mass flow controller 7, so that the halogen gas introduces the surface of the semiconductor substrate. Etching is performed. By this treatment, the natural oxide film on the surface of the semiconductor substrate, carbon-based impurities, etc. are removed. However, the halogen used in this treatment remains on the surface of the semiconductor substrate, and the residual halogen deteriorates the quality of the formed film thereafter and lowers the reliability. Therefore, in order to remove such residual halogen on the surface of the semiconductor substrate, the etched semiconductor substrate is transferred from the etching chamber 1 to the heat treatment or film formation chamber 3 through the preparation chamber 2, and the inside of the heat treatment or film formation chamber 3 is moved. Evacuation to ultra-high vacuum or introduction of atmospheric pressure hydrogen gas by the hydrogen gas introduction mechanism 8 and mass flow controller 9 heats the substrate to remove residual halogen. In this case, in order to remove the residual halogen on the surface of the semiconductor substrate, it is necessary to raise the temperature to 700 ° C. or higher even in an ultrahigh vacuum.

【0004】フッ素ガスにより自然酸化膜を除去した基
板について、常圧水素中での熱処理による残留フッ素量
の熱処理温度依存性を示す一例を図4のグラフ(a) に例
示する。800 ℃近くまでは残留フッ素の減少は見られ
ず、残留フッ素を除去するには800 ℃程度の非常に高い
温度が必要であることが認められる。
An example showing the heat treatment temperature dependency of the amount of residual fluorine by heat treatment in hydrogen at atmospheric pressure for a substrate from which a natural oxide film has been removed by fluorine gas is illustrated in graph (a) of FIG. No reduction of residual fluorine was observed up to near 800 ° C, and it is recognized that a very high temperature of about 800 ° C is required to remove residual fluorine.

【0005】残留フッ素量の超高真空中熱処理温度依存
性を図4のグラフ(b) に示す。この場合もフッ素の除去
には超高真空中において700 ℃以上の温度が必要である
ことが認められる。
The graph (b) of FIG. 4 shows the dependence of the amount of residual fluorine on the heat treatment temperature in ultra-high vacuum. In this case as well, it is recognized that a temperature of 700 ° C or higher in ultrahigh vacuum is necessary for removing fluorine.

【0006】[0006]

【発明が解決しようとする課題】このように従来の方法
では、700 ℃以上の高温が必要となるため、半導体基板
に与える損傷が大きくなるという問題点があった。すな
わち、最近の集積回路素子の微細化、薄膜化に伴い、一
層低温、低損傷処理が要求されている。また、自然酸化
膜除去方法としては紫外光励起水素、フッ素混合ガス処
理による自然酸化膜除去方法では、光源やプラズマ電源
等の特殊な装置が必要となり、装置の構成が複雑かつ大
型となるという問題点があった。
As described above, in the conventional method, a high temperature of 700 ° C. or higher is required, so that there is a problem that damage to the semiconductor substrate becomes large. That is, with the recent miniaturization and thinning of integrated circuit elements, lower temperature and lower damage treatment is required. In addition, as a natural oxide film removal method, the natural oxide film removal method by ultraviolet light excited hydrogen and fluorine mixed gas treatment requires a special device such as a light source and a plasma power source, which causes a problem that the device configuration becomes complicated and large. was there.

【0007】そこで、本発明は、上記のような従来法に
伴う問題点を解決して特別な装置を設ける必要なしに基
板の損傷を伴わない低い温度でハロゲンを除去できる半
導体基板表面のハロゲン除去方法を提供することを目的
としている。
Therefore, the present invention solves the problems associated with the conventional method as described above and can remove halogen at a low temperature without damaging the substrate at a low temperature without providing a special device. It is intended to provide a way.

【0008】[0008]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明による半導体基板表面のハロゲン除去方法
は、処理すべき半導体基板の入れられた処理室を超高真
空にした後、微量の水素ガスを処理室に導入し、低圧力
水素ガス中で半導体基板を比較的低い温度で熱処理する
ことを特徴としている。本発明の方法においては、好ま
しくは半導体基板は、水素圧力を10-5〜10-4トールに維
持しながら300 ℃程度の温度で加熱処理され得る。
In order to achieve the above-mentioned object, the method for removing halogen on the surface of a semiconductor substrate according to the present invention is a method in which a treatment chamber containing a semiconductor substrate to be treated is evacuated to an ultrahigh vacuum, Is introduced into the processing chamber, and the semiconductor substrate is heat-treated at a relatively low temperature in low-pressure hydrogen gas. In the method of the present invention, preferably, the semiconductor substrate can be heat-treated at a temperature of about 300 ° C. while maintaining the hydrogen pressure at 10 −5 to 10 −4 Torr.

【0009】[0009]

【作用】本発明による半導体基板表面のハロゲン除去方
法においては、水素を供給することにより半導体基板の
表面におけるハロゲン吸着状態が変化する。また水素圧
力を低くすることにより、半導体基板の表面における反
応生成物の脱離が促進され、比較的低温度でハロゲンの
除去が可能となる。反応機構としては例えば、シリコン
基板上に残留しているフッ素の場合には、 −Si−F(吸着)+H2 →−Si−HF(吸着) →(加熱)−Si−Hまたは−Si− +HF(気相) が推定される。
In the method of removing halogen on the surface of a semiconductor substrate according to the present invention, the state of halogen adsorption on the surface of the semiconductor substrate changes by supplying hydrogen. Further, by lowering the hydrogen pressure, desorption of reaction products on the surface of the semiconductor substrate is promoted, and halogen can be removed at a relatively low temperature. The reaction mechanism for example, in the case of fluorine remaining in the silicon substrate, -Si-F (adsorption) + H 2 → -Si-HF ( adsorption) → (heating) -Si-H or -Si- + HF (Gas phase) is estimated.

【0010】[0010]

【実施例】以下本発明の実施例について説明する。本発
明の方法を実施する装置として図1に示す装置を用いて
説明する。装置の構成は図1について上記で説明したも
のと実質的に同じである。本発明においては、ハロゲン
ガスによるエッチング処理までは図1に関して説明した
仕方で行われる。すなわち、半導体基板は基板搬送機構
11により準備室2へ導入して、予備排気を行なった後、
基板搬送機構11を用いて準備室2からエッチング室1へ
移送される。エッチング室1にはハロゲンガス導入機構
6及びマスフローコントローラ7によりハロゲンガスが
導入され、ハロゲンガスより半導体基板の表面エッチン
グが行われ、半導体基板の表面の自然酸化膜やカーボン
系不純物等が除去される。こうしてエッチング処理を施
した半導体基板は基板搬送機構11によりエッチング室1
から準備室2を介して熱処理または成膜室3へ搬送され
る。この熱処理または成膜室3を10-8トール以下の超高
真空に排気後、水素ガス導入機構8及びマスフローコン
トローラ9により水素ガスを微量導入しながら、高真空
ポンプで熱処理または成膜室3内を排気し、水素圧力を
10-5〜10-4トールに維持する。この状態で半導体基板を
約300 ℃程度の温度に加熱し、半導体基板表面上の残留
ハロゲンを除去する。その後、導入ガスを原料ガスに切
換えることにより、所望の成膜を行うことができる。例
えば原料ガスとしてSiH4 ガスを用いた場合には、半
導体基板上にSi膜が形成される。
EXAMPLES Examples of the present invention will be described below. An apparatus for carrying out the method of the present invention will be described using the apparatus shown in FIG. The configuration of the device is substantially the same as that described above for FIG. In the present invention, the etching process with the halogen gas is performed in the same manner as described with reference to FIG. That is, the semiconductor substrate is a substrate transfer mechanism.
After introducing into the preparation chamber 2 by 11 and performing preliminary evacuation,
It is transferred from the preparation chamber 2 to the etching chamber 1 using the substrate transfer mechanism 11. A halogen gas is introduced into the etching chamber 1 by the halogen gas introduction mechanism 6 and the mass flow controller 7, the surface of the semiconductor substrate is etched from the halogen gas, and the natural oxide film and carbon-based impurities on the surface of the semiconductor substrate are removed. .. The semiconductor substrate subjected to the etching process in this way is etched by the substrate transfer mechanism 11 into the etching chamber 1
Is transferred to the heat treatment or film formation chamber 3 through the preparation chamber 2. After evacuating the heat treatment or film formation chamber 3 to an ultra-high vacuum of 10 -8 Torr or less, while introducing a small amount of hydrogen gas by the hydrogen gas introduction mechanism 8 and the mass flow controller 9, the heat treatment or film formation chamber 3 is heated by the high vacuum pump. Exhaust the hydrogen pressure
Keep at 10 -5 to 10 -4 torr. In this state, the semiconductor substrate is heated to a temperature of about 300 ° C. to remove the residual halogen on the surface of the semiconductor substrate. After that, a desired film can be formed by switching the introduced gas to the source gas. For example, when SiH 4 gas is used as the source gas, a Si film is formed on the semiconductor substrate.

【0011】図2には本発明の方法と従来法との比較例
を示し、三フッ化塩素ガスでエッチング処理した後のシ
リコン基板について図1に示すような処理装置を用いて
従来法により超高真空(10-9トール)で60分間熱処理を
行ない、熱処理後のシリコン基板の表面に残留する塩素
及びフッ素からのオージェ信号強度の熱処理温度依存性
では、塩素については500 ℃以下、またフッ素について
は300 ℃以下では減少はほとんど見られず、700 ℃以上
の高温熱処理することによって実質的に減少することが
認められる。これに対して、同様に三フッ化塩素ガスで
エッチング処理したシリコン基板について本発明による
方法に従って、微量の水素ガスを導入し、5×10-5トー
ルの低圧力水素ガス中で60分間熱処理した後のシリコン
基板の表面に残留する塩素及びフッ素からのオージェ信
号強度の熱処理温度依存性においては、上記の従来法に
よる同温度での超高真空中の熱処理の場合に比べて塩素
及びフッ素とも極めて少なくなり、約300 ℃で検出され
なくなっていることが認められる。このことは比較的低
温でシリコン基板表面上の塩素やフッ素が水素と反応
し、表面より脱離したことを示している。上の高温熱処
理することによって実質的に減少することが認められ
る。
FIG. 2 shows a comparative example of the method of the present invention and the conventional method. A silicon substrate after being etched with chlorine trifluoride gas is processed by the conventional method using a processing apparatus as shown in FIG. Heat treatment is performed for 60 minutes in a high vacuum (10 -9 torr), and the heat treatment temperature dependence of Auger signal intensity from chlorine and fluorine remaining on the surface of the silicon substrate after heat treatment shows that for chlorine, 500 ° C or less, and for fluorine, It can be seen that there is almost no decrease below 300 ° C, and it is substantially reduced by high temperature heat treatment above 700 ° C. On the other hand, a silicon substrate similarly etched with chlorine trifluoride gas was introduced with a small amount of hydrogen gas according to the method of the present invention and heat-treated for 60 minutes in low pressure hydrogen gas of 5 × 10 −5 Torr. In the heat treatment temperature dependence of the Auger signal intensity from chlorine and fluorine remaining on the surface of the silicon substrate after that, both chlorine and fluorine are extremely higher than those in the case of heat treatment in the ultrahigh vacuum at the same temperature by the above conventional method. It is observed that the amount has decreased and is no longer detected at about 300 ° C. This indicates that chlorine and fluorine on the surface of the silicon substrate reacted with hydrogen at a relatively low temperature and were desorbed from the surface. It is observed that the above high temperature heat treatment results in a substantial reduction.

【0012】図3には本発明の方法によるシリコン基板
上の残留塩素及びフッ素の水素圧力依存性を例示し、三
フッ化塩素ガスでエッチング処理したシリコン基板に対
して基板温度を150 ℃にして60分間熱処理を種々の水素
圧力について行った。150 ℃の温度において超高真空状
態から水素ガスを導入して水素圧力を増加させていく
と、10-4トールまでは残留塩素及びフッ素は急激に減少
することが認められる。これは、シリコン基板表面の塩
素やフッ素と水素との反応において水素不足の状態にあ
り、反応速度が水素供給量に律速しているためと考えら
れる。なお、水素圧力を10-4トール以上に増加させる
と、残留塩素やフッ素はむしろ増加し、これは高い水素
圧力の下では水素が基板表面に大量に供給されることに
なるため反応生成物の脱離が抑制されるためでないかと
考えられる。従って、本発明では、半導体基板の表面に
残留しているハロゲンは水素圧力に大きく依存し、10-5
〜10-4トールにおいて300 ℃という非常に低い基板温度
で完全に除去できることが見出された。
FIG. 3 illustrates the hydrogen pressure dependence of residual chlorine and fluorine on a silicon substrate according to the method of the present invention. The substrate temperature is set to 150 ° C. for a silicon substrate etched with chlorine trifluoride gas. Heat treatment was carried out for 60 minutes at various hydrogen pressures. It is recognized that when hydrogen gas is introduced from the ultra-high vacuum state at a temperature of 150 ° C and the hydrogen pressure is increased, the residual chlorine and fluorine sharply decrease up to 10 -4 Torr. It is considered that this is because hydrogen is insufficient in the reaction between chlorine and fluorine on the surface of the silicon substrate and hydrogen, and the reaction rate is rate-determined by the hydrogen supply amount. It should be noted that when the hydrogen pressure is increased to 10 -4 Torr or more, the residual chlorine and fluorine are rather increased, which means that a large amount of hydrogen is supplied to the substrate surface under high hydrogen pressure, so that the reaction products This is probably because desorption is suppressed. Accordingly, in the present invention, the halogen remaining on the surface of the semiconductor substrate is highly dependent on the hydrogen pressure, 10 -5
It has been found that at ~ 10 -4 Torr, complete removal is possible at very low substrate temperatures of 300 ° C.

【0013】ところで、上記実施例では相成長の前処理
工程としての例が示されているが、本発明の方法は金属
膜等のスパッタ、蒸着等の前処理工程にも応用すること
ができる。
By the way, in the above embodiment, an example is shown as a pretreatment step for phase growth, but the method of the present invention can also be applied to a pretreatment step such as sputtering or vapor deposition of a metal film or the like.

【0014】[0014]

【発明の効果】以上説明してきたように、本発明の方法
によれば、処理すべき半導体基板の入れられた処理室を
超高真空にした後、微量の水素ガスを処理室に導入し、
低圧力水素ガス中で半導体基板を比較的低い温度で熱処
理することにより、従来の処理装置の構造を実質的に変
更する必要なしに半導体基板の表面に残留しているハロ
ゲンを完全に除去することができる。また本発明の方法
は単純な低温熱処理であるので、基板の損傷を低く抑え
ることができるだけでなく低コストで大量同時処理が容
易となり、極めて有用な基板処理方法を提供することが
できる。
As described above, according to the method of the present invention, after the processing chamber in which the semiconductor substrate to be processed is put into an ultrahigh vacuum, a small amount of hydrogen gas is introduced into the processing chamber,
To completely remove halogens remaining on the surface of a semiconductor substrate by heat-treating the semiconductor substrate at a relatively low temperature in a low pressure hydrogen gas without substantially changing the structure of a conventional processing apparatus. You can Further, since the method of the present invention is a simple low-temperature heat treatment, it is possible to suppress damage to the substrate to a low level, facilitate low-cost simultaneous mass processing, and provide an extremely useful substrate processing method.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の方法を実施するのに用いられ得る通
常の処理装置の一例を示す概略図。
FIG. 1 is a schematic diagram showing an example of a conventional processing apparatus that can be used to carry out the method of the present invention.

【図2】 本発明の方法による半導体基板上の残留ハロ
ゲンの熱処理温度依存性を従来の方法によるもの比較し
て示すグラフ。
FIG. 2 is a graph showing the heat treatment temperature dependence of residual halogen on a semiconductor substrate according to the method of the present invention in comparison with that according to the conventional method.

【図3】 本発明の方法による半導体基板上の残留ハロ
ゲンの水素圧力依存性を示すグラフ。
FIG. 3 is a graph showing hydrogen pressure dependence of residual halogen on a semiconductor substrate according to the method of the present invention.

【図4】 従来の方法による残留ハロゲンの熱処理温度
依存性の一例を示すグラフ。
FIG. 4 is a graph showing an example of heat treatment temperature dependency of residual halogen by a conventional method.

【符号の説明】[Explanation of symbols]

1:エッチング室 2:準備室 3:熱処理または成膜室 4:ゲート弁 5:ゲート弁 6:ハロゲンガス導入機構 7:ハロゲンガスのマスフローコントローラ 8:水素ガス導入機構 9:水素ガスのマスフローコントローラ 10:基板ホルダ 11:基板搬送機構 1: Etching room 2: Preparation room 3: Heat treatment or film formation room 4: Gate valve 5: Gate valve 6: Halogen gas introduction mechanism 7: Halogen gas mass flow controller 8: Hydrogen gas introduction mechanism 9: Hydrogen gas mass flow controller 10 : Board holder 11: Board transfer mechanism

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】半導体基板上への薄膜形成時の前処理にお
ける半導体基板表面のハロゲン除去方法において、処理
すべき半導体基板の入れられた処理室を超高真空にした
後、微量の水素ガスを処理室に導入し、低圧力水素ガス
中で半導体基板を比較的低い温度で熱処理することを特
徴とする半導体基板表面のハロゲン除去方法。
1. A method for removing halogen from a surface of a semiconductor substrate in a pretreatment for forming a thin film on a semiconductor substrate, wherein a treatment chamber containing a semiconductor substrate to be treated is evacuated to an ultrahigh vacuum, and then a trace amount of hydrogen gas is added. A method of removing halogen on a surface of a semiconductor substrate, which comprises introducing the semiconductor substrate into a processing chamber and heat-treating the semiconductor substrate in a low-pressure hydrogen gas at a relatively low temperature.
【請求項2】水素圧力を10-5〜10-4トールに維持しなが
ら300 ℃程度の温度で半導体基板を熱処理する請求項1
に記載の半導体基板表面のハロゲン除去方法。
2. The semiconductor substrate is heat-treated at a temperature of about 300 ° C. while maintaining the hydrogen pressure at 10 −5 to 10 −4 Torr.
The method for removing halogen on the surface of a semiconductor substrate according to.
JP13349192A 1992-05-26 1992-05-26 Method for removal of halogen from semiconductor substrate surface Pending JPH05326477A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13349192A JPH05326477A (en) 1992-05-26 1992-05-26 Method for removal of halogen from semiconductor substrate surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13349192A JPH05326477A (en) 1992-05-26 1992-05-26 Method for removal of halogen from semiconductor substrate surface

Publications (1)

Publication Number Publication Date
JPH05326477A true JPH05326477A (en) 1993-12-10

Family

ID=15106014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13349192A Pending JPH05326477A (en) 1992-05-26 1992-05-26 Method for removal of halogen from semiconductor substrate surface

Country Status (1)

Country Link
JP (1) JPH05326477A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6830631B2 (en) * 2000-02-25 2004-12-14 Steag Rtp Systems Gmbh Method for the removing of adsorbed molecules from a chamber
US7060206B2 (en) 2000-01-18 2006-06-13 Valence Technology, Inc. Synthesis of metal compounds under carbothermal conditions
KR101010419B1 (en) * 2006-10-26 2011-01-21 어플라이드 머티어리얼스, 인코포레이티드 Integrated method for removal of halogen residues from etched substrates by thermal process
US8845816B2 (en) 2011-03-01 2014-09-30 Applied Materials, Inc. Method extending the service interval of a gas distribution plate
US8992689B2 (en) 2011-03-01 2015-03-31 Applied Materials, Inc. Method for removing halogen-containing residues from substrate
KR20170026180A (en) 2015-08-31 2017-03-08 도쿄엘렉트론가부시키가이샤 Method for removing halogen and method for manufacturing semiconductor device
JP7171115B1 (en) * 2021-03-09 2022-11-15 学校法人中部大学 Silane-containing condensed ring dipeptide compound, method for producing same, and method for producing polypeptide compound using same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7060206B2 (en) 2000-01-18 2006-06-13 Valence Technology, Inc. Synthesis of metal compounds under carbothermal conditions
US6830631B2 (en) * 2000-02-25 2004-12-14 Steag Rtp Systems Gmbh Method for the removing of adsorbed molecules from a chamber
KR101010419B1 (en) * 2006-10-26 2011-01-21 어플라이드 머티어리얼스, 인코포레이티드 Integrated method for removal of halogen residues from etched substrates by thermal process
US8845816B2 (en) 2011-03-01 2014-09-30 Applied Materials, Inc. Method extending the service interval of a gas distribution plate
US8992689B2 (en) 2011-03-01 2015-03-31 Applied Materials, Inc. Method for removing halogen-containing residues from substrate
KR20170026180A (en) 2015-08-31 2017-03-08 도쿄엘렉트론가부시키가이샤 Method for removing halogen and method for manufacturing semiconductor device
US9892934B2 (en) 2015-08-31 2018-02-13 Tokyo Electron Limited Method for removing halogen and method for manufacturing semiconductor device
JP7171115B1 (en) * 2021-03-09 2022-11-15 学校法人中部大学 Silane-containing condensed ring dipeptide compound, method for producing same, and method for producing polypeptide compound using same

Similar Documents

Publication Publication Date Title
US9653318B2 (en) Directional SiO2 etch using plasma pre-treatment and high-temperature etchant deposition
TWI331364B (en)
KR0139793B1 (en) Method of forming conductive layer including removal of native oxide
US5454903A (en) Plasma cleaning of a CVD or etch reactor using helium for plasma stabilization
KR19990006332A (en) Manufacturing Method of Semiconductor Device and Semiconductor Manufacturing Device
US6914208B2 (en) Method for semiconductor wafer etching
JPH05326477A (en) Method for removal of halogen from semiconductor substrate surface
US7659206B2 (en) Removal of silicon oxycarbide from substrates
JP2004128281A (en) Substrate treatment method and apparatus thereof
CN112635317A (en) Etching method, method for removing damaged layer, and storage medium
JP2632293B2 (en) Selective removal method of silicon native oxide film
JP2744933B2 (en) Vertical processing equipment and processing equipment
JP3440685B2 (en) Wafer processing apparatus and processing method
US6716740B2 (en) Method for depositing silicon oxide incorporating an outgassing step
JP5547425B2 (en) Process and apparatus for processing wafers
JP2009060145A (en) Method for removing oxide film
KR20210058954A (en) Etching method, etching residue removal method, and storage medium
JPH1098019A (en) Surface cleaning
JPH0529285A (en) Cleaning method and semiconductor manufacturing device
JP2983244B2 (en) Surface treatment method
EP4307346A1 (en) Surface treatment method, dry etching method, cleaning method, semiconductor device manufacturing method, and etching device
JPS6399533A (en) Method and apparatus for dry etching of silicon nitride film
JPH0239523A (en) Method of forming film on semiconductor substrate
JPH07235530A (en) Formation of insulating film
JPH11219907A (en) Wafer treatment apparatus and treatment method therefor