JPH05317881A - Denitrification method - Google Patents

Denitrification method

Info

Publication number
JPH05317881A
JPH05317881A JP4134658A JP13465892A JPH05317881A JP H05317881 A JPH05317881 A JP H05317881A JP 4134658 A JP4134658 A JP 4134658A JP 13465892 A JP13465892 A JP 13465892A JP H05317881 A JPH05317881 A JP H05317881A
Authority
JP
Japan
Prior art keywords
water
denitrification
sludge
raw water
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4134658A
Other languages
Japanese (ja)
Inventor
Nobuhiro Oda
信博 織田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP4134658A priority Critical patent/JPH05317881A/en
Publication of JPH05317881A publication Critical patent/JPH05317881A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Biological Treatment Of Waste Water (AREA)

Abstract

PURPOSE:To obtain treated water having high quality by adding reducing catalysts to a biodenitrification reaction chamber and blowing gaseous hydrogen into this chamber, thereby denitrifying water contg. NO3<-> and/or NO2<->. CONSTITUTION:The raw water contg., for example, the No2<->, is subjected to the biological denitrification treatment by inorg. nutrient denitrifying bacteria with the gaseous H2 supplied from an air diffusion plate 3 as a hydrogen donator and is simultaneously subjected to a contact reduction treatment with, for example, Pd, of microorganism carriers 5 as a catalyst under existence of the gaseous H2, by which the raw water is stably and efficiently denitrified. The denitrified water of the denitrification reaction chamber 1 is then sent to a settling tank 2 where sludge is settled and removed from the raw water; thereafter, the supernatant water is discharged as the treated water from a piping 13. On the other hand, the settled sludge is returned as return sludge to the denitrification reaction chamber 1. As a result, the remaining of the NO2<-> is prevented and the treated water having the high water quality is stably obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は脱窒方法に係り、特に、
硝酸イオン及び/又は亜硝酸イオンを含む水を生物脱窒
反応槽に導入して水素供与体の存在下に脱窒する方法に
おいて、処理効率の向上、処理安定性の向上、装置設備
の小型化を可能とする脱窒方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a denitrification method,
In a method of introducing water containing nitrate ions and / or nitrite ions into a biological denitrification reaction tank to denitrify in the presence of a hydrogen donor, improvement of treatment efficiency, improvement of treatment stability, downsizing of equipment and facilities Denitrification method that enables

【0002】[0002]

【従来の技術】硝酸イオン及び/又は亜硝酸イオンを含
む水の処理方法としては、イオン交換樹脂によるイオン
交換処理又は白金触媒による還元処理等の物理化学的方
法と、酢酸、エタノール、メタノール等の有機物、又
は、無機イオウ、水素ガス等の無機物を電子供与体とす
る生物的脱窒方法とがある。
As a method for treating water containing nitrate ions and / or nitrite ions, there are physicochemical methods such as ion exchange treatment with an ion exchange resin or reduction treatment with a platinum catalyst, and acetic acid, ethanol, methanol, etc. There is a biological denitrification method using an organic substance or an inorganic substance such as inorganic sulfur or hydrogen gas as an electron donor.

【0003】即ち、活性汚泥中には、有機栄養性(従属
栄養性、他家栄養性ともいう)の脱窒細菌と、無機栄養
性(独立栄養性、自家栄養性ともいう)の脱窒細菌とが
存在し、従来はメタノール等の有機物を添加することが
要求される有機栄養性の脱窒細菌が専ら用いられてき
た。しかしながら、この方法では有機物の価格が高くつ
くという欠点がある。
That is, in the activated sludge, an organic nutrient (also called heterotrophic or allotrophic) denitrifying bacterium and an inorganic nutrient (also called autotrophic or autotrophic) denitrifying bacterium. And the organic denitrifying bacteria that require the addition of organic substances such as methanol have been used exclusively. However, this method has a drawback that the cost of organic substances is high.

【0004】また、無機イオウを用いる方法では、処理
水中の硫酸イオン濃度が高いという欠点がある。
The method using inorganic sulfur has a drawback that the concentration of sulfate ion in the treated water is high.

【0005】近年、地下水中の硝酸イオンを除去するた
めに水素供与体として水素ガスを利用する無機栄養性の
脱窒細菌を用いることが検討されている。しかしなが
ら、この脱窒方法では、水素ガスが水に溶け難いため、
硝酸イオンの分解速度が遅く、その上、処理が不安定で
あるという問題がある。特に、原水中の硝酸イオン濃度
や原水量が変動すると、生物反応がこれらの変動に対応
しきれず、処理水中に硝酸イオン、特に、亜硝酸イオン
が残留するという欠点がある。
In recent years, it has been studied to use an inorganic trophic denitrifying bacterium which utilizes hydrogen gas as a hydrogen donor to remove nitrate ions in groundwater. However, in this denitrification method, since hydrogen gas is difficult to dissolve in water,
There is a problem that the decomposition rate of nitrate ion is slow and the treatment is unstable. In particular, when the nitrate ion concentration and the amount of raw water in the raw water fluctuate, the biological reaction cannot cope with these fluctuations, and there is a drawback that nitrate ions, particularly nitrite ions, remain in the treated water.

【0006】このため、通常は、これらの原水変動に対
処するために、原水の貯留槽を設けて水質を一定にした
り、生物反応槽の負荷に十分な余裕を持たせるなどの対
策が講じられている。しかしながら、この方法では、大
容量の原水貯留槽や、大容量の生物反応槽が必要とな
り、設備建設コストの高騰、装置設置面積の増大を招く
という欠点がある。
Therefore, in order to cope with these fluctuations in raw water, measures are usually taken such as providing a raw water storage tank to make the water quality constant and giving the biological reaction tank a sufficient margin. ing. However, this method requires a large-capacity raw water storage tank and a large-capacity biological reaction tank, and has the drawbacks of increasing equipment construction costs and increasing the equipment installation area.

【0007】一方、脱窒処理で得られた処理水を水素ガ
ス存在下にパラジウム触媒と接触させ、亜硝酸イオンを
窒素ガスに還元することも検討されている。
On the other hand, it is also considered to bring the treated water obtained by the denitrification treatment into contact with a palladium catalyst in the presence of hydrogen gas to reduce nitrite ions to nitrogen gas.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、上記の
還元処理を組み合せた方法では、生物脱窒反応槽と触媒
脱窒反応槽との2つの槽が必要であり、設備コストが高
騰し、また、メンテナンスが煩雑となる上に、装置を設
置するために広い敷地を要するという問題があった。
However, in the method in which the above reduction treatment is combined, two tanks, a biological denitrification reaction tank and a catalytic denitrification reaction tank, are required, and the equipment cost rises. In addition to complicated maintenance, there is a problem that a large site is required to install the device.

【0009】本発明は上記従来の問題点を解決し、硝酸
イオン及び/又は亜硝酸イオンを含む水を生物脱窒反応
槽に導入して水素供与体の存在下に脱窒する方法におい
て、処理効率の向上、処理安定性の向上、装置設備の小
型化を可能とする脱窒方法を提供することを目的とす
る。
The present invention solves the above-mentioned conventional problems, and introduces water containing nitrate ions and / or nitrite ions into a biological denitrification reaction tank to perform denitrification in the presence of a hydrogen donor. An object of the present invention is to provide a denitrification method capable of improving efficiency, improving processing stability, and downsizing equipment.

【0010】[0010]

【課題を解決するための手段】本発明の脱窒方法は、硝
酸イオン及び/又は亜硝酸イオンを含む水を生物脱窒反
応槽に導入し、水素供与体の存在下に脱窒する方法にお
いて、前記反応槽に還元触媒を添加するとともに、水素
ガスを吹き込むことを特徴とする。
The denitrification method of the present invention is a method of introducing water containing nitrate ions and / or nitrite ions into a biological denitrification reaction tank and denitrifying in the presence of a hydrogen donor. In addition, a reducing catalyst is added to the reaction tank, and hydrogen gas is blown into the reaction tank.

【0011】以下図面を参照して本発明を詳細に説明す
る。
The present invention will be described in detail below with reference to the drawings.

【0012】図1は本発明の脱窒方法の実施に好適な装
置の一例を示す系統図である。
FIG. 1 is a system diagram showing an example of an apparatus suitable for carrying out the denitrification method of the present invention.

【0013】図中、1は脱窒反応槽、2は沈殿槽であ
り、脱窒反応槽2内の底部には散気板3が設置されてお
り、水素(H2 )ガスボンベ4のH2 ガスが配管10よ
り供給される。
[0013] In the figure, 1 is denitrification reactor 2 is settling tank, the bottom of the denitrification in the reactor 2 are installed diffuser plate 3, H 2 of hydrogen (H 2) gas cylinder 4 Gas is supplied from the pipe 10.

【0014】11は原水を脱窒反応槽1に供給する配
管、12は脱窒反応槽1の処理水を沈殿槽2に送給する
配管、13は処理水の排出配管、14は沈殿槽2の汚泥
を返送汚泥として脱窒反応槽1に送給する配管であり、
汚泥返送ポンプPを備える。
Reference numeral 11 is a pipe for supplying raw water to the denitrification reaction tank 1, 12 is a pipe for feeding the treated water of the denitrification reaction tank 1 to the settling tank 2, 13 is a treated water discharge pipe, and 14 is a settling tank 2 Is a pipe for feeding the sludge of No. 1 as return sludge to the denitrification reaction tank 1.
A sludge return pump P is provided.

【0015】本実施例においては、パラジウム(Pd)
を発泡ウレタンに担持したものを脱窒反応槽1の微生物
(保持)担体5として用い、H2 ガス通気により槽内に
三相流動相を形成している。
In this embodiment, palladium (Pd)
Is used as the microorganism (holding) carrier 5 of the denitrification reaction tank 1, and a three-phase fluidized phase is formed in the tank by aeration of H 2 gas.

【0016】このような方法においては、原水は配管1
1より脱窒反応槽1に供給され、槽内で、散気板3から
通気されるH2 ガスを水素供与体とする無機栄養性の脱
窒細菌により生物的脱窒処理されると共に、H2 ガス存
在下、担体5のPdを触媒とする接触還元処理されて安
定かつ効率的に脱窒処理される。
In such a method, the raw water is pipe 1
1 is supplied to the denitrification reaction tank 1 and, within the tank, is subjected to biological denitrification treatment by an inorganic nutrient denitrifying bacterium using H 2 gas aerated from the diffuser plate 3 as a hydrogen donor, and In the presence of 2 gases, catalytic reduction treatment using Pd of the carrier 5 as a catalyst is performed, and denitrification treatment is performed stably and efficiently.

【0017】脱窒反応槽1の脱窒処理水は次いで配管1
2より沈殿槽2に送給され、汚泥が沈降分離された後、
上澄水は処理水として配管13より排出される。一方、
沈降汚泥は返送汚泥として配管14より脱窒反応槽1に
返送される。
The denitrification-treated water in the denitrification reaction tank 1 is then piped 1
2 is sent to the settling tank 2 and after sludge is settled and separated,
The supernatant water is discharged from the pipe 13 as treated water. on the other hand,
The settled sludge is returned to the denitrification reaction tank 1 through the pipe 14 as return sludge.

【0018】本発明において、還元触媒としては、上記
のPd触媒の他、白金(Pt)等の金属又はその化合物
を1種単独で或いは2種以上を併用して用いることがで
きる。このうち、Pd触媒としては、例えば、金属パラ
ジウム、酸化パラジウム、水酸化パラジウムなどのパラ
ジウム化合物の他、イオン交換樹脂やアルミナ、活性
炭、ゼオライト、プラスチックなどの担体にPdを担持
させた触媒も用いることができる。なお担持触媒の場
合、Pd担持量は通常0.1〜10重量%程度である。
特に、強塩基性又は弱塩基性アニオン交換樹脂を担体と
して用いると、少ないPd担持量で優れた効果を発揮す
るので好ましい。
In the present invention, as the reducing catalyst, a metal such as platinum (Pt) or a compound thereof can be used alone or in combination of two or more in addition to the above Pd catalyst. Among these, as the Pd catalyst, for example, a palladium compound such as metallic palladium, palladium oxide, or palladium hydroxide, or a catalyst in which Pd is supported on a carrier such as an ion exchange resin, alumina, activated carbon, zeolite, or plastic is used. You can In the case of a supported catalyst, the amount of Pd supported is usually about 0.1 to 10% by weight.
In particular, it is preferable to use a strongly basic or weakly basic anion exchange resin as a carrier, since an excellent effect can be exhibited with a small amount of Pd supported.

【0019】なお、アニオン交換樹脂にPdを担持させ
るには、アニオン交換樹脂をカラムに充填し、次いで塩
化パラジウムの酸性溶液を通水すればよい。もし、金属
Pdとして担持するならば、上述の溶液にさらにホルマ
リンなどを加えて還元すればよい。
In order to support Pd on the anion exchange resin, the anion exchange resin may be packed in a column, and then an acidic solution of palladium chloride may be passed through. If it is supported as metal Pd, it may be reduced by adding formalin or the like to the above solution.

【0020】このような還元触媒の形状は粉末状、粒
状、破砕状、繊維状、ペレット状などいずれの形状でも
使用でき、その粒径(ないし大きさ)は0.1〜2mm
程度が好ましいが、特に粉末状のものが好ましい。
The reducing catalyst may have any shape such as powder, granules, crushed particles, fibrous particles or pellets, and the particle size (or size) is 0.1 to 2 mm.
The degree is preferable, but powdery one is particularly preferable.

【0021】また、H2 ガスの供給量は原水水質や脱窒
反応槽の規模等に応じて適宜決定されるが、通常の場
合、10〜30ml/l程度とされる。脱窒反応槽2の
上部空間のH2 ガスを含むガスを回収し、循環使用する
こともできる。
The supply amount of H 2 gas is appropriately determined according to the raw water quality, the scale of the denitrification reaction tank, etc., but is usually about 10 to 30 ml / l. A gas containing H 2 gas in the upper space of the denitrification reaction tank 2 can be recovered and reused.

【0022】本発明においてはH2 ガスを利用して脱窒
細菌の馴養を行なうことができる。即ち、し尿処理場や
下水処理場の活性汚泥処理装置から排出される余剰汚泥
を種汚泥とし、これを原水と混合してH2 ガスを吹き込
み馴養を行なうことができる。馴養汚泥から公知の方法
により特定の水素ガス利用脱窒細菌を単離し、これを培
養して生物的脱窒に使用することもできる。
In the present invention, H 2 gas can be used to acclimate denitrifying bacteria. That is, the excess sludge discharged from the activated sludge treatment device of the human waste treatment plant or the sewage treatment plant can be used as seed sludge, which can be mixed with raw water to blow H 2 gas for acclimation. It is also possible to isolate a specific denitrifying bacterium utilizing hydrogen gas from the acclimatized sludge by a known method, culture it, and use it for biological denitrification.

【0023】なお、図示の方法は、本発明の一実施方法
であって、本発明はその要旨を超えない限り、何ら図示
の方法に限定されるものではない。図示の方法ではPd
を微生物担体として用いたが、その他、バイオフィルタ
の担体の一部にPd等の還元触媒を用い、これにH2
スを通気するようにしても良い。ここで、原水は上向流
であっても下向流であっても良い。
The method shown in the figure is a method for carrying out the present invention, and the present invention is not limited to the method shown in the figure as long as it does not exceed the gist of the invention. In the method shown, Pd
Although a reducing catalyst such as Pd is used as a part of the carrier of the biofilter, H 2 gas may be aerated therein. Here, the raw water may be an upward flow or a downward flow.

【0024】処理温度や処理pHについても特に制限は
ないが、一般には15〜35℃、pH6.0〜8.5で
行なうのが好ましい。
The treatment temperature and the treatment pH are not particularly limited, but it is generally preferable to carry out the treatment at 15 to 35 ° C. and pH 6.0 to 8.5.

【0025】[0025]

【作用】本発明の脱窒方法においては、水素供与体の存
在下における生物的脱窒処理と水素ガス及び還元触媒に
よる接触還元(触媒脱窒)処理との併用により安定かつ
効率的な処理を行なえる。
In the denitrification method of the present invention, the biological denitrification treatment in the presence of a hydrogen donor and the catalytic reduction (catalytic denitrification) treatment with hydrogen gas and a reducing catalyst are combined for stable and efficient treatment. I can do it.

【0026】即ち、生物的脱窒反応は、主に、NO3 -
NO2 -の反応と、NO2 -→N2 の反応との2つの反応に
分類され、反応の律速段階は通常、NO2 -→N2 の反応
である。このため、脱窒反応の負荷増大が起こると、ま
ず、NO2 -が処理水中に残留するようになる。
[0026] In other words, biological denitrification reaction is, primarily, NO 3 -
It is classified into two reactions, a reaction of NO 2 − and a reaction of NO 2 → N 2 , and the rate-determining step of the reaction is usually a reaction of NO 2 → N 2 . Therefore, when the load of the denitrification reaction increases, first, NO 2 remains in the treated water.

【0027】これに対して、本発明の脱窒方法では、脱
窒反応槽内に還元触媒を共存させ、H2 ガスの存在下、
原水の負荷増大のために、生物的脱窒反応でN2 にまで
処理することができなかったNO2 -の接触還元を行なう
ため、NO2 -の残留が防止され、高水質の処理水を原水
の負荷変動やpH、温度等の条件変化に関係なく安定に
得ることが可能となる。
On the other hand, according to the denitrification method of the present invention, a reducing catalyst is allowed to coexist in the denitrification reaction tank, and H 2 gas is present.
Due to an increase in the load of raw water, catalytic reduction of NO 2 which could not be treated to N 2 in the biological denitrification reaction is performed, so that NO 2 is prevented from remaining and treated water of high quality is obtained. It is possible to stably obtain the raw water regardless of load fluctuations and changes in conditions such as pH and temperature.

【0028】なお、所定の原水負荷となる定常状態にお
いては、NO3 -→NO2 -→N2 の反応はすべて脱窒細菌
により終了されるため、接触還元は殆ど起こらないもの
と考えられる。
[0028] In the steady state a predetermined raw load, NO 3 - → NO 2 - for → the reaction of N 2 are all terminated by denitrifying bacteria, catalytic reduction is considered that almost does not occur.

【0029】しかして、本発明においては、生物的脱窒
と接触還元とを共に脱窒反応槽で行なわせるため、触媒
脱窒反応槽が不要となり、しかも、処理効率及び処理安
定性の向上により、原水貯留槽の小容量化又は省略、脱
窒反応槽の小容量化が図れ、結果的に装置設備の小型化
が図れる。
In the present invention, however, since the biological denitrification and the catalytic reduction are both carried out in the denitrification reaction tank, the catalytic denitrification reaction tank is unnecessary, and further, the processing efficiency and the processing stability are improved. The capacity of the raw water storage tank can be reduced or omitted, and the capacity of the denitrification reaction tank can be reduced, resulting in downsizing of the equipment.

【0030】[0030]

【実施例】以下に比較例及び実施例を挙げて本発明をよ
り具体的に説明する。
EXAMPLES The present invention will be described more specifically with reference to Comparative Examples and Examples below.

【0031】比較例1 いわしや製ミニジャーファメンタ(2リットル)に、し
尿低希釈2段活性汚泥法の余剰汚泥を100メッシュ篩
で濾過した後、MISS5000mg/lとなるよう
に、1リットル添加した。ここに、回転数400rpm
の撹拌下、H2 ガスを0.1リットル/minで通気
し、表1に示す水質の合成排水を500ml/hrで通
水した。
Comparative Example 1 To a mini jar fermenter (2 liters) manufactured by Iwaya Co., Ltd., excess sewage obtained by the low-diluted two-stage activated sludge method of human waste was filtered through a 100-mesh sieve, and then 1 liter was added so that MISS was 5000 mg / l. did. Here, the rotation speed is 400 rpm
With stirring, the H 2 gas was aerated at a rate of 0.1 liter / min, and the synthetic wastewater having the water quality shown in Table 1 was passed at a rate of 500 ml / hr.

【0032】[0032]

【表1】 [Table 1]

【0033】ジャーファメンタからの流出水は沈殿槽に
受け、固液分離後、上澄水(処理水)は放流し、沈殿汚
泥はジャーファメンタに返送した。汚泥返送量は500
ml/hrとした。また、ジャーファメンタ内の温度は
25℃、pHは7.2に自動コントロールした。
The effluent water from the jar-famenter was received in the sedimentation tank, and after the solid-liquid separation, the supernatant water (treated water) was discharged and the sedimented sludge was returned to the jar-famenter. Sludge return amount is 500
It was set to ml / hr. Further, the temperature inside the jar famentor was automatically controlled at 25 ° C. and the pH was 7.2.

【0034】約一ケ月運転を継続した後、処理水の水質
分析を行なったところ、原水NO3−Nが33mg/l
であったのに対し、処理水のNO3 −Nは検出限界以下
であった。
After continuing the operation for about one month, the water quality of the treated water was analyzed and found that the raw water NO 3 -N was 33 mg / l.
However, NO 3 -N in the treated water was below the detection limit.

【0035】しかし、この運転後、原水の硝酸ナトリウ
ム濃度を400mg/lに上昇させたところ、硝酸ナト
リウム濃度上昇直後より処理水中にNO3 −Nが検出さ
れるようになり、表2に示す如く、1時間後にはNO3
−N:2.3mg/l、2時間後にはNO3 −N:3.
5mg/l検出されるようになった。また、NO2 −N
は1時間後、2時間後でそれぞれ0.9mg/l、2.
1mg/lとなった。
However, after this operation, when the sodium nitrate concentration of the raw water was increased to 400 mg / l, NO 3 --N was detected in the treated water immediately after the increase of the sodium nitrate concentration, and as shown in Table 2. NO 3 after 1 hour
-N: 2.3 mg / l, NO 3 after 2 hours -N: 3.
5 mg / l was detected. In addition, NO 2 -N
Was 0.9 mg / l after 2 hours and 2.
It became 1 mg / l.

【0036】実施例1 ジャーファメンタ中にPd触媒(バイエル社製「レパチ
ットOC1063」)を200g添加したこと以外は比
較例1と同様にして運転を行なった。なお、ジャーファ
メンタ出口にはサランネットをしき、触媒が流出しない
ようにした。
Example 1 The same operation as in Comparative Example 1 was carried out except that 200 g of a Pd catalyst (“Lepatit OC1063” manufactured by Bayer Co.) was added to the jar fermentor. A saran net was put at the exit of the jarfamenter to prevent the catalyst from flowing out.

【0037】その結果、表1の水質の合成排水を供給し
て運転している期間の処理水中のNO3 −Nは、比較例
1と同様に検出限界以下であった。
As a result, NO 3 -N in the treated water during the period in which the synthetic wastewater of the water quality shown in Table 1 was supplied and operated was below the detection limit as in Comparative Example 1.

【0038】一方、原水の硝酸ナトリウム濃度を400
mg/lに上昇させた場合のNO3−N,NO2 −Nは
表2に示す通りであり、負荷変動に十分対応できること
が確認された。
On the other hand, the sodium nitrate concentration of the raw water is set to 400
The NO 3 —N and NO 2 —N when the concentration was increased to mg / l are as shown in Table 2, and it was confirmed that it was possible to sufficiently cope with the load fluctuation.

【0039】[0039]

【表2】 [Table 2]

【0040】[0040]

【発明の効果】以上詳述した通り、本発明の脱窒方法に
よれば、原水中の硝酸イオン濃度上昇といった負荷変動
や条件変化があっても、効率的な脱窒処理を安定かつ確
実に行なうことができ、特に亜硝酸イオン濃度の著しく
低い、高水質の処理水を得ることができる。
As described above in detail, according to the denitrification method of the present invention, efficient denitrification treatment can be stably and reliably performed even if there is a load fluctuation such as an increase in nitrate ion concentration in raw water or a change in conditions. It is possible to carry out the treatment, and it is possible to obtain a treated water of high water quality having a particularly low nitrite ion concentration.

【0041】また、負荷変動等に脱窒反応槽のみで対応
することができることから、原水貯留槽を不要ないし小
容量化することができ、しかも処理の安定化により脱窒
反応槽の小容量化も図れ、結果として装置設備の小型
化、設置面積の縮小、メンテナンスの軽減、設備コスト
の低減が図れる。
Further, since it is possible to cope with load fluctuations and the like only with the denitrification reaction tank, the raw water storage tank can be made unnecessary or can have a smaller capacity, and the capacity of the denitrification reaction tank can be reduced by stabilizing the treatment. As a result, it is possible to downsize the equipment, reduce the installation area, reduce maintenance, and reduce the equipment cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の脱窒方法の実施に好適な装置の一例を
示す系統図である。
FIG. 1 is a system diagram showing an example of an apparatus suitable for carrying out the denitrification method of the present invention.

【符号の説明】[Explanation of symbols]

1 脱窒反応槽 2 沈殿槽 3 散気板 4 H2 ガスボンベ 5 Pd微生物担体1 Denitrification reaction tank 2 Precipitation tank 3 Air diffuser plate 4 H 2 Gas cylinder 5 Pd Microorganism carrier

フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C02F 3/10 Z Continuation of front page (51) Int.Cl. 5 Identification code Office reference number FI Technical display area C02F 3/10 Z

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 硝酸イオン及び/又は亜硝酸イオンを含
む水を生物脱窒反応槽に導入し、水素供与体の存在下に
脱窒する方法において、 前記反応槽に還元触媒を添加するとともに、水素ガスを
吹き込むことを特徴とする脱窒方法。
1. A method of introducing water containing nitrate ions and / or nitrite ions into a biological denitrification reaction tank and denitrifying in the presence of a hydrogen donor, in which a reducing catalyst is added to the reaction tank, A denitrification method characterized by blowing hydrogen gas.
JP4134658A 1992-05-27 1992-05-27 Denitrification method Pending JPH05317881A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4134658A JPH05317881A (en) 1992-05-27 1992-05-27 Denitrification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4134658A JPH05317881A (en) 1992-05-27 1992-05-27 Denitrification method

Publications (1)

Publication Number Publication Date
JPH05317881A true JPH05317881A (en) 1993-12-03

Family

ID=15133534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4134658A Pending JPH05317881A (en) 1992-05-27 1992-05-27 Denitrification method

Country Status (1)

Country Link
JP (1) JPH05317881A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003033789A (en) * 2001-07-26 2003-02-04 Kurita Water Ind Ltd Method for denitrificaton treatment using living organisms and device therefor
JP2003047989A (en) * 2001-08-06 2003-02-18 Nisshin Steel Co Ltd Denitrification method and apparatus
EP2134469A2 (en) * 2007-04-05 2009-12-23 Indian Institute of Technology Reactor for reductive conversion reactions using palladized bacterial cellulose
CN112429844A (en) * 2020-10-23 2021-03-02 同济大学 Method and system for deep denitrification of sewage

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003033789A (en) * 2001-07-26 2003-02-04 Kurita Water Ind Ltd Method for denitrificaton treatment using living organisms and device therefor
JP2003047989A (en) * 2001-08-06 2003-02-18 Nisshin Steel Co Ltd Denitrification method and apparatus
EP2134469A2 (en) * 2007-04-05 2009-12-23 Indian Institute of Technology Reactor for reductive conversion reactions using palladized bacterial cellulose
EP2134469A4 (en) * 2007-04-05 2012-04-11 Indian Inst Technology Reactor for reductive conversion reactions using palladized bacterial cellulose
CN112429844A (en) * 2020-10-23 2021-03-02 同济大学 Method and system for deep denitrification of sewage

Similar Documents

Publication Publication Date Title
JP4681297B2 (en) Method of treating wastewater with sludge granules
US4069147A (en) Waste water treatment with oxygen
JP2628089B2 (en) Wastewater treatment method
Kokufuta et al. Simultaneously occurring nitrification and denitrification under oxygen gradient by polyelectrolyte complex‐coimmobilized Nitrosomonas europaea and Paracoccus denitrificans cells
US5228997A (en) Aerobic biological nitrification using biomass granulates
SI9520119A (en) Wastewater treatment method and plant
JP4925208B2 (en) Aerobic granule formation method, water treatment method and water treatment apparatus
JP2002346593A (en) Method and apparatus for denitrification
JP4876343B2 (en) Denitrification method and denitrification apparatus
JP4867098B2 (en) Biological denitrification method and apparatus
US4225430A (en) Biological process
JPH05317881A (en) Denitrification method
JP4474500B2 (en) Wastewater treatment method using simultaneous nitrification and denitrification in sprinkling filter bed
JP4455498B2 (en) Method and apparatus for using recovered magnesium ammonium phosphate
JP4329359B2 (en) Denitrification method
US5124039A (en) Process for biological treatment of dissolved nitrates
KR20020087799A (en) Method for advanced wastewater treatment using multi-sbr system
KR100360561B1 (en) A treatment methods for organic sewage
JP3706574B2 (en) Waste water denitrification treatment method and treatment equipment
JP2002177986A (en) Biological denitrification equipment
CN112979095A (en) Treatment method for hydrazine hydrate wastewater synthesized by ketazine method
KR100420647B1 (en) Waste water disposal method by continuos inflow Sequencing Bath Reactor
JP2000024687A (en) Treatment of waste nitric acid
JP2947684B2 (en) Nitrogen removal equipment
JP4596533B2 (en) Wastewater treatment method