JPH05317649A - Method for purifying exhaust gas - Google Patents

Method for purifying exhaust gas

Info

Publication number
JPH05317649A
JPH05317649A JP4128821A JP12882192A JPH05317649A JP H05317649 A JPH05317649 A JP H05317649A JP 4128821 A JP4128821 A JP 4128821A JP 12882192 A JP12882192 A JP 12882192A JP H05317649 A JPH05317649 A JP H05317649A
Authority
JP
Japan
Prior art keywords
zeolite
exhaust gas
catalyst
iron
durability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4128821A
Other languages
Japanese (ja)
Inventor
Koichi Segawa
幸一 瀬川
Katsuya Watanabe
克哉 渡辺
Shinichi Matsumoto
伸一 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP4128821A priority Critical patent/JPH05317649A/en
Publication of JPH05317649A publication Critical patent/JPH05317649A/en
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PURPOSE:To enhance the durability of an iron-zeolite catalyst as well as to extend a temp. range in which the catalyst exhibits its catalytic activity. CONSTITUTION:Exhaust gas contg. excess oxygen is brought into contact with an iron-zeolite catalyst consisting of zeolite and elemental iron supported by ion exchange in 0.05-0.3 molar ratio to elemental aluminum in zeolite to remove NOx in the exhaust gas. Since the amt. of the iron supported is regulated as mentioned above, a temp. range in which the catalyst exhibits its catalytic activity is extended and the durability of the catalyst is enhanced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、自動車の内燃機関など
から排出される排気ガス中の窒素酸化物(NOx)を浄
化する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for purifying nitrogen oxides (NOx) in exhaust gas discharged from an internal combustion engine of an automobile.

【0002】[0002]

【従来の技術】自動車用内燃機関の排気ガス浄化用触媒
としては、従来よりモノリス触媒、ペレット触媒が広く
用いられている。これらの排気ガス浄化用触媒は、活性
アルミナなどの触媒担持層に触媒金属を担持した構成で
ある。ここで触媒金属としては、Pt、Pd、Rhなど
が一種または二種以上用いられている。そして排気ガス
中のHC、COを酸化し、NOxを還元して、この3成
分を同時に浄化しているので、三元触媒と呼ばれてい
る。
2. Description of the Related Art Monolith catalysts and pellet catalysts have been widely used as exhaust gas purifying catalysts for automobile internal combustion engines. These exhaust gas purifying catalysts have a structure in which a catalyst metal is supported on a catalyst supporting layer such as activated alumina. As the catalyst metal, Pt, Pd, Rh, etc. are used alone or in combination of two or more. It is called a three-way catalyst because it oxidizes HC and CO in the exhaust gas and reduces NOx to purify these three components at the same time.

【0003】ところで低燃費化や排出炭酸ガス低減の目
的から、自動車の内燃機関では燃料を希薄燃焼させるこ
とが必要となっている。この場合には排気ガス中の酸素
濃度が理論値(排気ガス中の未燃焼成分を完全に酸化す
るのに必要な最小酸素濃度)より大きいリーン側とな
り、上記触媒では排気ガス中のNOxを還元除去するこ
とができないという欠点がある。またディーゼルエンジ
ンにおいては、多量の空気を用いて燃焼させていること
から排気ガス中の酸素濃度が大きくなり、同様にNOx
の浄化が困難である。
By the way, for the purpose of reducing fuel consumption and reducing carbon dioxide gas emission, it is necessary to burn fuel lean in an internal combustion engine of an automobile. In this case, the oxygen concentration in the exhaust gas becomes leaner than the theoretical value (the minimum oxygen concentration required to completely oxidize the unburned components in the exhaust gas), and the catalyst reduces NOx in the exhaust gas. It has the drawback that it cannot be removed. Further, in a diesel engine, since a large amount of air is used for combustion, the oxygen concentration in the exhaust gas increases, and similarly NOx
Is difficult to purify.

【0004】そこで近年、ゼオライトを利用したゼオラ
イト触媒が注目され、本願発明者らはNOxの浄化性能
に優れたゼオライト触媒をいくつか提案している。例え
ば特開平1−130735号公報では、ゼオライトに遷
移金属をイオン交換担持した排気ガス浄化用触媒を開示
している。この触媒によれば、ゼオライトの細孔中に遷
移金属の活性サイトが存在し、そこにNOxが吸着して
反応を起こし浄化される。なお、遷移金属としては銅
(Cu)が好ましい。
Therefore, in recent years, a zeolite catalyst using zeolite has been drawing attention, and the present inventors have proposed some zeolite catalysts having excellent NOx purification performance. For example, JP-A-1-130735 discloses an exhaust gas purifying catalyst in which a transition metal is carried on a zeolite by ion exchange. According to this catalyst, the active site of the transition metal exists in the pores of the zeolite, and NOx is adsorbed to the active site to cause a reaction to be purified. Copper (Cu) is preferable as the transition metal.

【0005】また、特開平3−89942号公報では、
ゼオライトに希土類元素と銅(Cu)を担持してなる排
気ガス浄化用触媒を開示している。さらに特開平3−2
02157号公報では、ゼオライトにアルカリ土類金属
と、希土類元素と、銅(Cu)を担持してなる排気ガス
浄化用触媒を開示している。さらに、特開平2−149
317号公報には、水素型のゼオライトにCu,Mn,
Fe,Ni,Co,Rh,Pd,Pt,V,及びMoか
ら選ばれる元素を担持したゼオライト触媒が開示されて
いる。
Further, in Japanese Patent Laid-Open No. 3-89942,
Disclosed is an exhaust gas purifying catalyst in which a rare earth element and copper (Cu) are supported on zeolite. Furthermore, JP-A-3-2
Japanese Patent No. 02157 discloses an exhaust gas purifying catalyst in which an alkaline earth metal, a rare earth element, and copper (Cu) are supported on zeolite. Furthermore, JP-A-2-149
No. 317 discloses that hydrogen-type zeolite has Cu, Mn,
A zeolite catalyst carrying an element selected from Fe, Ni, Co, Rh, Pd, Pt, V, and Mo is disclosed.

【0006】[0006]

【発明が解決しようとする課題】上記公報に開示された
排気ガス浄化用触媒は、それぞれ酸素過剰雰囲気中で炭
化水素とNOxとが反応し、NOxの浄化性能に優れて
いる。しかし本願発明者がさらに検討を重ねた結果、ゼ
オライトに銅を担持した銅ゼオライト触媒ではNOx浄
化率は排気ガス温度に対する依存性が大きく、かつ低温
では浄化率が低く有効な温度域が狭いことが明らかとな
った。また使用により徐々に浄化性能が低下し、耐久性
が不十分であることも明らかとなった。さらに、水素型
のゼオライトに金属元素を担持させた水素型ゼオライト
触媒でも、耐久性が不十分であることがわかった。
The exhaust gas purifying catalysts disclosed in the above publications are excellent in NOx purifying performance because hydrocarbons react with NOx in an oxygen excess atmosphere. However, as a result of further studies by the inventors of the present application, in the copper zeolite catalyst in which copper is supported on zeolite, the NOx purification rate has a large dependence on the exhaust gas temperature, and at low temperatures, the purification rate is low and the effective temperature range is narrow. It became clear. It was also clarified that the purification performance gradually decreased with use and the durability was insufficient. Furthermore, it has been found that even a hydrogen-type zeolite catalyst in which a metal element is supported on a hydrogen-type zeolite has insufficient durability.

【0007】本発明はこのような事情に鑑みてなされた
ものであり、鉄ゼオライト触媒を使用するに当たり、触
媒活性温度域を拡大するとともに耐久性を向上させるこ
とを目的とする。
The present invention has been made in view of the above circumstances, and it is an object of the present invention to broaden the catalytic activity temperature range and improve the durability when using an iron zeolite catalyst.

【0008】[0008]

【課題を解決するための手段】上記課題を解決する本発
明の排気ガス浄化方法は、ゼオライトとゼオライト中の
アルミニウム元素に対してモル比で0.05〜0.3の
量でイオン交換担持された鉄元素とからなる鉄ゼオライ
ト触媒に、酸素過剰状態の排気ガスを接触させて排気ガ
ス中の窒素酸化物を浄化することを特徴とする。
The exhaust gas purifying method of the present invention which solves the above-mentioned problems is carried out by carrying out ion exchange loading in a molar ratio of 0.05 to 0.3 with respect to zeolite and aluminum element in the zeolite. It is characterized in that an exhaust gas in an oxygen excess state is brought into contact with an iron zeolite catalyst composed of an iron element to purify nitrogen oxides in the exhaust gas.

【0009】ゼオライトは周知のように一般式xM2
n・Al2 3 ・ySiO2 で表される結晶性アルミノ
ケイ酸で、M(n価の金属)、x、yの違いによって、
結晶構造中の細孔径が異なり、多くの種類のものが市販
されている。またSi4+の一部をAl3+で置換している
ため正電荷が不足し、その不足を補うためNa+ 、K +
などの陽イオンを結晶内に保持する性質があるため、高
い陽イオン交換能をもっている。
As is well known, zeolites have the general formula xM2/
n ・ Al2O3・ YSiO2Crystalline alumino represented by
With silicic acid, M (n-valent metal), x, y
Many different types are commercially available, with different pore sizes in the crystal structure
Has been done. Also Si4+Part of Al3+Is replaced by
Therefore, the positive charge is insufficient, and Na is used to compensate for the shortage.+, K +
Since it has the property of holding cations such as
It has a good cation exchange capacity.

【0010】本発明で用いるゼオライトのSiO2 /A
2 3 のモル比は、10〜200が望ましい。10よ
り少ないと500℃以上の高温下での熱安定性が悪くな
る。また200より大きくなるとイオン交換点が減少す
るため、イオン交換の減少すなわち触媒活性が低下する
ようになる。熱劣化はアルミニウム周辺の構造変化が主
因と推定されるので、特に高温での耐久性を確保したい
場合にはモル比が20以上のゼオライトを用いることが
好ましい。例えばモル比が20〜200のZSM−5、
Y型あるいはモルデナイト構造のものが特に望ましい。
The SiO 2 / A of the zeolite used in the present invention
The molar ratio of l 2 O 3 is preferably 10 to 200. If it is less than 10, the thermal stability at a high temperature of 500 ° C. or higher deteriorates. On the other hand, when it is larger than 200, the ion exchange point is decreased, so that the ion exchange is decreased, that is, the catalytic activity is decreased. Since it is estimated that the thermal deterioration is mainly due to the structural change around aluminum, it is preferable to use zeolite with a molar ratio of 20 or more, especially when it is desired to ensure durability at high temperatures. For example, ZSM-5 having a molar ratio of 20 to 200,
A Y-type or mordenite structure is particularly desirable.

【0011】水素型のゼオライトでは、ゼオライトから
の脱アルミニウムが容易に起こるため耐久性が低下する
ので、Na型を用いるのが好ましい。本発明の特徴は、
鉄(Fe)元素をゼオライト中のアルミニウム元素に対
してモル比で0.05〜0.3の量でイオン交換担持し
た鉄ゼオライト触媒を用いるところにある。鉄の担持量
がこの範囲を外れると、全温度域でNOxの浄化性能が
低下するようになる。
In the case of the hydrogen type zeolite, dealumination from the zeolite easily occurs and the durability is lowered. Therefore, it is preferable to use the Na type. The features of the present invention are:
There is a case where an iron zeolite catalyst in which an iron (Fe) element is ion-exchanged and supported in a molar ratio of 0.05 to 0.3 with respect to an aluminum element in zeolite is used. If the amount of iron carried deviates from this range, the NOx purification performance will deteriorate in the entire temperature range.

【0012】[0012]

【作用】従来のゼオライトにCuをイオン交換担持した
銅ゼオライト触媒を用いた場合は、Cuはイオン交換点
を外れて移動し易いという性質があるために、凝集によ
り触媒性能が劣化するという不具合がある。また、還元
雰囲気で容易に金属Cuまで還元されるため活性が消失
し、耐久性にも不具合がある。
When a copper zeolite catalyst in which Cu is ion-exchanged and supported is used in conventional zeolite, Cu tends to move out of the ion-exchange point, so that the catalyst performance deteriorates due to aggregation. is there. In addition, since Cu is easily reduced in the reducing atmosphere, the activity is lost and there is a problem in durability.

【0013】一方、本発明の排気ガス浄化方法では、F
eをイオン交換担持した鉄ゼオライト触媒を用いてい
る。FeはCuに比べて移動しにくく、また還元もされ
にくい。したがって凝集による劣化及び還元による活性
の低下が防止される。さらに、Fe元素はゼオライト中
のアルミニウム元素に対してモル比で0.05〜0.3
の量で担持されている。担持量をこの範囲としたことに
より、理由は不明であるが、排気ガス温度の広い範囲で
NOxの高い浄化性能が得られ、かつ優れた耐久性が得
られる。
On the other hand, in the exhaust gas purification method of the present invention, F
An iron zeolite catalyst carrying ion-exchanged e is used. Fe is less likely to move and is less likely to be reduced than Cu. Therefore, deterioration due to aggregation and reduction in activity due to reduction are prevented. Furthermore, the Fe element has a molar ratio of 0.05 to 0.3 to the aluminum element in the zeolite.
It is carried in the amount of. Although the reason is unclear by setting the supported amount in this range, a high purification performance of NOx can be obtained in a wide range of exhaust gas temperature and excellent durability can be obtained.

【0014】[0014]

【実施例】以下、実施例により具体的に説明する。 (実施例1)Na型ゼオライト粉末(「Na−ZSM
5」,モル比SiO2 /Al2 3 =21)を蒸留水に
浸漬し、窒素ガスをバブリングしながら一昼夜静置す
る。これによりゼオライト中の酸素を除去する。次いで
窒素気流中でゼオライトを取り出し、窒素ガスをバブリ
ングしながら硫酸第一鉄水溶液0.5mol/lに浸漬
して一昼夜静置する。これを室温で5時間真空乾燥し、
Feがイオン交換担持された鉄ゼオライト触媒を得た。
この鉄ゼオライト触媒では、元素分析の結果FeのAl
に対するモル比(Fe/Al)は0.05であった。
EXAMPLES The present invention will be specifically described below with reference to examples. (Example 1) Na-type zeolite powder ("Na-ZSM
5 ", molar ratio SiO 2 / Al 2 O 3 = 21) is immersed in distilled water and left still overnight for one day while bubbling nitrogen gas. This removes oxygen in the zeolite. Then, the zeolite is taken out in a nitrogen stream, and while bubbling nitrogen gas, the zeolite is immersed in a ferrous sulfate aqueous solution of 0.5 mol / l and allowed to stand overnight. This is vacuum dried at room temperature for 5 hours,
An iron zeolite catalyst in which Fe was ion-exchanged was obtained.
In this iron zeolite catalyst, as a result of elemental analysis, Fe of Al
The molar ratio (Fe / Al) was 0.05.

【0015】この鉄ゼオライト触媒を公知の方法でペレ
ット化し、表1に示す組成のモデルガスを通過させてN
Ox浄化率を測定した。排気ガスの入ガス温度は200
〜500℃の間で5水準選び、空間速度SVは1万h-1
である。測定結果を表2及び図1〜図5に示す。
This iron zeolite catalyst was pelletized by a known method and passed through a model gas having the composition shown in Table 1 to obtain N 2.
The Ox purification rate was measured. Exhaust gas inlet temperature is 200
Select 5 levels from ~ 500 ℃, space velocity SV is 10,000h -1
Is. The measurement results are shown in Table 2 and FIGS.

【0016】[0016]

【表1】 また、表1のモデルガスをSV=1万h-1、入ガス温度
=700℃で20時間上記鉄ゼオライト触媒に接触させ
る耐久試験を行い、その後上記と同様にNOx浄化率を
測定した。その結果も合わせて表2及び図1〜図5に示
す。
[Table 1] A durability test was conducted in which the model gas shown in Table 1 was brought into contact with the iron zeolite catalyst for 20 hours at an SV of 10,000 h -1 and an inlet gas temperature of 700 ° C, and then the NOx purification rate was measured in the same manner as above. The results are also shown in Table 2 and FIGS.

【0017】そして耐久試験前後におけるNOx浄化率
から、浄化性能の保持率(試験後の浄化率/試験前の浄
化率)を算出し、表2及び図1〜図5に示す。 (実施例2,実施例3)モル比(Fe/Al)をそれぞ
れ0.09及び0.21としたこと以外は実施例1と同
様である。結果を表2及び図1〜図5に示す。 (実施例4)ゼオライトとしてNa型モルデナイト(モ
ル比SiO2 /Al2 3 =21)を選び、モル比(F
e/Al)を0.08としたこと以外は実施例1と同様
である。結果を表2及び図1〜図5に示す。 (比較例1,比較例2)モル比(Fe/Al)をそれぞ
れ0.02及び0.45としたこと以外は実施例1と同
様である。結果を表2及び図1〜図5に示す。 (比較例3)硫酸第一鉄水溶液の代わりに濃度0.5m
ol/lの硫酸銅水溶液を選び、モル比(Cu/Al)
を0.50としたこと以外は実施例1と同様である。結
果を表2及び図1〜図5に示す。
From the NOx purification rate before and after the durability test, the retention rate of the purification performance (the purification rate after the test / the purification rate before the test) was calculated and shown in Table 2 and FIGS. (Examples 2 and 3) The same as Example 1 except that the molar ratios (Fe / Al) were 0.09 and 0.21, respectively. The results are shown in Table 2 and FIGS. (Example 4) to select Na mordenite (molar ratio SiO 2 / Al 2 O 3 = 21) as a zeolite, the molar ratio (F
The same as Example 1 except that e / Al) was set to 0.08. The results are shown in Table 2 and FIGS. Comparative Example 1 and Comparative Example 2 The same as Example 1 except that the molar ratios (Fe / Al) were 0.02 and 0.45, respectively. The results are shown in Table 2 and FIGS. (Comparative Example 3) Concentration of 0.5 m instead of ferrous sulfate aqueous solution
Select an ol / l copper sulfate aqueous solution and select the molar ratio (Cu / Al)
The same as Example 1 except that was set to 0.50. The results are shown in Table 2 and FIGS.

【0018】[0018]

【表2】 なお、図中ハッチング無しの棒グラフは耐久前のNOx
浄化率を、ハッチング入りの棒グラフは耐久試験後のN
Ox浄化率を示す。 (評価)比較例3のCuを担持した銅ゼオライト触媒を
用いた場合は、高温域における耐久前のNOx浄化率は
高いが、低温域では低い。また高温域においても耐久後
の浄化率が低く、耐久性にも劣っていることがわかる。
[Table 2] The bar graph without hatching is NOx before endurance.
Purification rate, the bar graph with hatching is N after endurance test
The Ox purification rate is shown. (Evaluation) When the Cu-supported copper zeolite catalyst of Comparative Example 3 is used, the NOx purification rate before endurance in the high temperature range is high, but it is low in the low temperature range. Further, it can be seen that the purification rate after endurance is low even in the high temperature range, and the endurance is poor.

【0019】比較例1の浄化方法では、全温度域で浄化
率に劣り、中温度域での保持率が高くとも元になる耐久
前の浄化率が低いため意味が薄い。これはFeの担持量
の絶対量に不足しているためだと推察される。また50
0℃における保持率が他の触媒に比べて劣っているが、
これもFeの担持量の絶対量に不足しているためだと推
察される。
In the purification method of Comparative Example 1, the purification rate is inferior in the whole temperature range, and even if the retention rate in the middle temperature range is high, the purification rate before the original durability is low, so that it is meaningless. It is speculated that this is because the absolute amount of Fe carried is insufficient. Again 50
The retention rate at 0 ° C is inferior to other catalysts,
It is speculated that this is also due to the lack of the absolute amount of Fe carried.

【0020】比較例2のゼオライト触媒では、Feの担
持量の絶対量は満足されているものの、実施例に比べて
全温度域で耐久前の浄化率に不足している。一方、実施
例の浄化方法は、全温度域で高い浄化性能を示し、保持
率も比較例に比べて概して高く耐久性にも優れているこ
とがわかる。
In the zeolite catalyst of Comparative Example 2, the absolute amount of Fe supported was satisfied, but the purification rate before endurance was insufficient in the entire temperature range as compared with the Examples. On the other hand, it can be seen that the purification methods of the examples show high purification performance over the entire temperature range, and the retention rate is generally higher than that of the comparative example and excellent in durability.

【0021】[0021]

【発明の効果】すなわち本発明の排気ガス浄化方法によ
れば、排気ガス温度の低温から高温までの広い温度範囲
でNOxの浄化性能が高い。また鉄ゼオライト触媒の耐
久性も良好である。
According to the exhaust gas purification method of the present invention, the NOx purification performance is high in a wide temperature range of exhaust gas from low temperature to high temperature. Further, the durability of the iron zeolite catalyst is also good.

【図面の簡単な説明】[Brief description of drawings]

【図1】入ガス温度200℃におけるNOx浄化率と浄
化性能の保持率を示すグラフである。
FIG. 1 is a graph showing a NOx purification rate and a purification rate retention rate at an inlet gas temperature of 200 ° C.

【図2】入ガス温度250℃におけるNOx浄化率と浄
化性能の保持率を示すグラフである。
FIG. 2 is a graph showing the NOx purification rate and the purification performance retention rate at an inlet gas temperature of 250 ° C.

【図3】入ガス温度300℃におけるNOx浄化率と浄
化性能の保持率を示すグラフである。
FIG. 3 is a graph showing the NOx purification rate and the purification performance retention rate at an inlet gas temperature of 300 ° C.

【図4】入ガス温度400℃におけるNOx浄化率と浄
化性能の保持率を示すグラフである。
FIG. 4 is a graph showing a NOx purification rate and a purification performance retention rate at an inlet gas temperature of 400 ° C.

【図5】入ガス温度500℃におけるNOx浄化率と浄
化性能の保持率を示すグラフである。
FIG. 5 is a graph showing the NOx purification rate and the purification rate retention rate at an inlet gas temperature of 500 ° C.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ゼオライトと該ゼオライト中のアルミニ
ウム元素に対してモル比で0.05〜0.3の量でイオ
ン交換担持された鉄元素とからなる鉄ゼオライト触媒
に、酸素過剰状態の排気ガスを接触させて該排気ガス中
の窒素酸化物を浄化することを特徴とする排気ガス浄化
方法。
1. An iron-zeolite catalyst comprising zeolite and an iron element ion-supported in a molar ratio of 0.05 to 0.3 with respect to an aluminum element in the zeolite, and an exhaust gas in an oxygen excess state. To purify nitrogen oxides in the exhaust gas by contacting the exhaust gas with the exhaust gas.
JP4128821A 1992-05-21 1992-05-21 Method for purifying exhaust gas Pending JPH05317649A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4128821A JPH05317649A (en) 1992-05-21 1992-05-21 Method for purifying exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4128821A JPH05317649A (en) 1992-05-21 1992-05-21 Method for purifying exhaust gas

Publications (1)

Publication Number Publication Date
JPH05317649A true JPH05317649A (en) 1993-12-03

Family

ID=14994253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4128821A Pending JPH05317649A (en) 1992-05-21 1992-05-21 Method for purifying exhaust gas

Country Status (1)

Country Link
JP (1) JPH05317649A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1108849C (en) * 1999-06-23 2003-05-21 中国石油化工集团公司 Process for removing nitrogen oxide
DE102009040553A1 (en) 2008-09-09 2010-05-20 Mitsubishi Jidosha Kogyo K.K. Emission control catalyst and engine control

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1108849C (en) * 1999-06-23 2003-05-21 中国石油化工集团公司 Process for removing nitrogen oxide
DE102009040553A1 (en) 2008-09-09 2010-05-20 Mitsubishi Jidosha Kogyo K.K. Emission control catalyst and engine control

Similar Documents

Publication Publication Date Title
JP4703818B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JPH0938464A (en) Catalyst for purification of exhaust gas and purifying method of exhaust gas
Takami et al. Zeolite-supported precious metal catalysts for NOx reduction in lean burn engine exhaust
JP3407901B2 (en) Exhaust gas purifying catalyst, method for producing the catalyst, and method for purifying exhaust gas
JPH05317649A (en) Method for purifying exhaust gas
JPH09239276A (en) Exhaust gas cleaning catalyst
JPH0615183A (en) Catalyst for purification of exhaust gas and purifying method of exhaust gas using the same
JPH01247710A (en) Purifying device for automobile exhaust
JP2605956B2 (en) Exhaust gas purification catalyst
JP3271802B2 (en) Exhaust gas purification catalyst and exhaust gas purification method using the same
JP3325604B2 (en) Exhaust gas purification catalyst
JP3224036B2 (en) Exhaust gas purification catalyst
JPH05184934A (en) Catalyst for purifying exhaust gas
JP3257686B2 (en) Exhaust gas purification catalyst and exhaust gas purification method using the same
JP3242946B2 (en) Exhaust gas purification catalyst and exhaust gas purification method using the same
JP2802335B2 (en) Method for producing exhaust purification catalyst
JP3197711B2 (en) Exhaust gas purification catalyst
JPH0623272A (en) Production of catalyst for cleaning waste gas
JPH0679140A (en) Method for purifying combustion exhaust gas and catalyst using the method
JPH04219147A (en) Exhaust gas purification catalyst
JP3291316B2 (en) Exhaust gas purification catalyst
JPH03202157A (en) Catalyst for purifying exhaust gas
JP3366342B2 (en) Exhaust gas purification catalyst and exhaust gas purification method using the same
JPH0857259A (en) Purification of exhaust gas from internal combustion engine
JPH06205975A (en) Catalyst for purifying exhaust gas