JPH0531627A - Electrolytic combined grinding method for cylindrical workpiece - Google Patents

Electrolytic combined grinding method for cylindrical workpiece

Info

Publication number
JPH0531627A
JPH0531627A JP21006391A JP21006391A JPH0531627A JP H0531627 A JPH0531627 A JP H0531627A JP 21006391 A JP21006391 A JP 21006391A JP 21006391 A JP21006391 A JP 21006391A JP H0531627 A JPH0531627 A JP H0531627A
Authority
JP
Japan
Prior art keywords
workpiece
electrode
electrolytic
tool
action
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21006391A
Other languages
Japanese (ja)
Other versions
JP2617833B2 (en
Inventor
Katsutsune Tamiya
勝恒 田宮
Shoichi Honda
昭一 本田
Shinji Furusawa
真治 古澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP3210063A priority Critical patent/JP2617833B2/en
Publication of JPH0531627A publication Critical patent/JPH0531627A/en
Application granted granted Critical
Publication of JP2617833B2 publication Critical patent/JP2617833B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

PURPOSE:To perform high-efficiency and high-quality grinding by separately exerting an electrolytic action and a grinding action on a cylindrical workpiece to keep the gap between the workpiece and an electrode constant regardless of wear of an abrasive material. CONSTITUTION:A rotating cylindrical workpiece 1 is defined as an anode, and the working face 16 of a cathodic electrode 15 is formed into a concave surface having a radius equal to or slightly larger than that of the workpiece 1. At the same time that an electrolyte 6 is interposed between the electrode 15 and the workpiece 1 to generate an electrolytic action, a grinding wheel or an abrasive member 20 having visco-elasticity provided on a disc-like rotary grinding tool 18 is pressed against the workpiece 1. The electrode 15 and the tool 18 are moved parallel to the center-axis of rotation of the workpiece 1 while the electrode 15 and the tool 18 are retained at a fixed relative position, and thus the surface of the workpiece 1 is electrolytically and combinedly ground while an electrolytic action and a grinding action are separately exerted on the workpiece.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電解作用と研削作用を
複合させ、円筒工作物の表面を高品位,高精度に研磨す
る円筒工作物の電解複合研磨方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrolytic composite polishing method for a cylindrical workpiece, which combines the electrolytic action and the grinding action to polish the surface of the cylindrical workpiece with high quality and high precision.

【0002】[0002]

【従来の技術】従来の円筒工作物の電解複合研磨方法
は、図3に示すように、回転する円筒工作物1を給電ブ
ラシ2を介して電解電源の陽極に接続し、電解電源の陰
極に接続された電極3の加工面を、工作物1の半径或い
はやや大きい半径の凹面とし、加工面に絶縁性,通液性
の研磨材4を装着し、電極3の供給孔5から電解液6を
工作物1と電極3の間に供給し、工作物1の同一個所に
電解作用と砥粒研削作用を同時に作用させている。この
場合、電極3は工作物1の軸心方向に長さがとれるた
め、電極面積を大きくすることができ、電解電流を大に
して研磨除去量を増大できる。
2. Description of the Related Art In a conventional electrolytic composite polishing method for a cylindrical workpiece, as shown in FIG. 3, a rotating cylindrical workpiece 1 is connected to an anode of an electrolytic power source via a power supply brush 2 and a cathode of the electrolytic power source is connected. The processed surface of the connected electrode 3 is a concave surface having a radius of the workpiece 1 or a slightly larger radius, an insulating and liquid-permeable abrasive 4 is attached to the processed surface, and the electrolytic solution 6 is supplied through the supply hole 5 Is supplied between the workpiece 1 and the electrode 3, and the electrolytic action and the abrasive grain grinding action are simultaneously applied to the same portion of the workpiece 1. In this case, since the electrode 3 can have a length in the axial direction of the workpiece 1, the electrode area can be increased, the electrolytic current can be increased, and the polishing removal amount can be increased.

【0003】また、図4に示すように、回転する研磨工
具7の円板状の電極8に絶縁性,通液性の研磨材9を装
着し、工具7の供給孔10から電解液6を電極8と工作
物1との間に供給し、工具7を通電ブラシ11を介して
電解電源の陰極に接続し、工具7を電解電源の陽極に通
電ブラシ2を介して接続された工作物1に押し付け、図
3の場合と同様、工作物1の同一個所に電解作用と砥粒
研削作用を同時に作用されている。この場合、工作物1
のうねり,粗さの改善性が優れている。
Further, as shown in FIG. 4, an insulating and liquid-permeable abrasive material 9 is attached to a disk-shaped electrode 8 of a rotating polishing tool 7, and an electrolytic solution 6 is supplied from a supply hole 10 of the tool 7. The workpiece 1 is supplied between the electrode 8 and the workpiece 1, the tool 7 is connected to the cathode of the electrolytic power source via the energizing brush 11, and the tool 7 is connected to the anode of the electrolytic power source via the energizing brush 2. 3, the electrolytic action and the abrasive grain grinding action are simultaneously applied to the same portion of the workpiece 1 as in the case of FIG. In this case, the workpiece 1
Excellent in improving undulation and roughness.

【0004】[0004]

【発明が解決しょうとする課題】従来の図3,図4に示
す電解複合研磨の場合、研磨材4,9は絶縁性,通液性
が不可欠であり、使用する研磨材が制限される。さら
に、研磨材4,9の摩耗により、工作物1と電極3,8
との間隙Gが変化する。
In the case of the conventional electrolytic composite polishing shown in FIGS. 3 and 4, the abrasives 4 and 9 must have insulating properties and liquid permeability, and the abrasives to be used are limited. Further, the abrasion of the abrasives 4, 9 causes the workpiece 1 and the electrodes 3, 8 to
The gap G between and changes.

【0005】その上、図3の場合、工作物1の回転方向
と研磨材4の摺動方向が同一であるため、工作物1のう
ねり,粗さ,真直度,真円度の改善性が乏しい。また、
図4の場合、工作物1と電極8とが線状の対向であるた
め、電解電流を少ししか流せなく、研磨効果が低いとい
う問題点がある。
Further, in the case of FIG. 3, since the rotation direction of the work piece 1 and the sliding direction of the abrasive material 4 are the same, the waviness, roughness, straightness, and roundness of the work piece 1 can be improved. poor. Also,
In the case of FIG. 4, since the workpiece 1 and the electrode 8 are linearly opposed to each other, there is a problem that only a small amount of electrolytic current can flow and the polishing effect is low.

【0006】本発明は、前記の点に留意し、高能率で高
品質の研磨が可能な円筒工作物の電解複合研磨方法を提
供することを目的とする。
In view of the above points, the present invention has an object of providing an electrolytic composite polishing method for a cylindrical workpiece capable of highly efficient and high-quality polishing.

【0007】[0007]

【課題を解決するための手段】前記課題を解決するため
に、本発明の円筒工作物の電解研磨方法は、回転する円
筒工作物を陽極性とし、陰極性の電極の加工面を工作物
の半径或いはやや大きい半径の凹面とし、電極と工作物
間に電解液を介在して電解作用を発生させ、同時に回転
する円板状の研磨工具に設けた砥石又は粘弾性を有する
研磨材を工作物に押圧し、電極と工具の相対位置を保ち
ながら電極と工具を工作物の回転中心軸に平行に移動さ
せ、電解作用と研削作用を別個に作用させながら工作物
の表面を電解複合研磨することを特徴とするものであ
る。
In order to solve the above-mentioned problems, an electrolytic polishing method for a cylindrical work piece according to the present invention provides a rotating cylindrical work piece with an anodic property, and a machined surface of a cathodic electrode on the work piece. A concave surface with a radius or a slightly larger radius is used to create a grinding stone or a viscoelastic abrasive provided on a disk-shaped polishing tool that rotates at the same time to generate an electrolytic action by interposing an electrolytic solution between the electrode and the workpiece. Pressing to move the electrode and the tool parallel to the rotation center axis of the workpiece while maintaining the relative position of the electrode and the tool, and perform electrolytic composite polishing of the surface of the workpiece while performing the electrolytic action and the grinding action separately. It is characterized by.

【0008】[0008]

【作用】前記のように構成された本発明の円筒工作物の
電解複合研磨方法は、電解作用を行う電極と研削作用を
行う研磨工具の研磨材とが、相対位置を保って別位置で
あり、電解作用と研削作用とを別個に作用させるため、
工作物と電極との間隙は研磨材の摩耗には無関係で一定
に維持することができ、研磨材に研削に最適のものを選
択でき、電極面積も大きくすることができ、高能率で高
品質の研磨が可能になる。
According to the electrolytic composite polishing method for a cylindrical workpiece of the present invention having the above-described structure, the electrode that performs the electrolytic action and the abrasive material of the polishing tool that performs the polishing action are kept at different positions and are at different positions. , In order to operate the electrolytic action and the grinding action separately,
The gap between the work piece and the electrode can be kept constant regardless of the wear of the abrasive, the most suitable abrasive can be selected for grinding, the electrode area can be increased, and the efficiency and quality are high. Can be polished.

【0009】[0009]

【実施例】1実施例について図1及び図2を参照して説
明する。それらの図において図3及び図4と同一符号は
同一もしくは相当するものを示す。円筒工作物1は、一
端が機械の駆動軸12に直結されたチャック13に保持
され、他端が回転センタ14に支持されて回転し、通電
ブラシ2を介して電解電源の陽極に接続されている。電
解電源の陰極に接続された電極15は、その加工面16
が工作物1の半径或いはやや大きい半径の凹面であり、
電極15に形成された供給孔17を通して電解液6が電
極15の加工面16と工作物1との間に供給される。こ
こで工作物1と電極15との間隙Gは、スライド機構
(図示せず)により任意に設定でき、設定された間隙G
(通常1〜数mm)を保ちながら、電極15が工作物1の
回転中心軸に平行に移動する。
EXAMPLE One example will be described with reference to FIGS. In these drawings, the same reference numerals as those in FIGS. 3 and 4 indicate the same or corresponding ones. The cylindrical workpiece 1 has one end held by a chuck 13 directly connected to a drive shaft 12 of the machine, the other end supported by a rotation center 14 to rotate, and is connected to an anode of an electrolysis power source via a current-carrying brush 2. There is. The electrode 15 connected to the cathode of the electrolysis power source has a processed surface 16
Is the radius of the workpiece 1 or a concave surface with a slightly larger radius,
The electrolytic solution 6 is supplied between the machining surface 16 of the electrode 15 and the workpiece 1 through the supply hole 17 formed in the electrode 15. Here, the gap G between the workpiece 1 and the electrode 15 can be arbitrarily set by a slide mechanism (not shown), and the set gap G
The electrode 15 moves parallel to the rotation center axis of the workpiece 1 while maintaining (normally 1 to several mm).

【0010】回転する研磨工具18は下部の円板部19
に砥石又は粘弾性を有する研磨材20が装着され、研磨
材20が工作物1に押圧され、工具18の供給孔21を
通して電解液,研磨液等の加工液22が工作物1と研磨
材20との間に供給される。
The rotating polishing tool 18 has a lower disk portion 19
A grindstone or viscoelastic abrasive material 20 is attached to the workpiece 1, the abrasive material 20 is pressed against the workpiece 1, and a machining fluid 22 such as an electrolytic solution or a polishing fluid passes through the supply hole 21 of the tool 18 and the workpiece 1 and the abrasive material 20. Supplied between and.

【0011】さらに、電極15と工具18は機械的に連
結されて相対位置を保ちながら工作物1の回転中心軸に
平行に移動し、電極15による電解作用と、研磨材20
による研削作用とが同時に別個に作用し、工作物1を電
解複合研磨する。なお、工具18の研磨材20の幅l m
は電極15の幅l e以上であることが望ましい。また、
電解作用は数V〜10数Vで10A/cm2 以下が好まし
い。
Further, the electrode 15 and the tool 18 are mechanically connected to each other and move in parallel to the central axis of rotation of the workpiece 1 while maintaining their relative positions.
And the grinding action by the same act at the same time, and the workpiece 1 is electrolytically compound-polished. The width of the polishing material 20 of the tool 18 is l m
Is preferably not less than the width l e of the electrode 15. Also,
The electrolytic action is preferably several V to several tens V and 10 A / cm 2 or less.

【0012】(実験例)φ100,長さ800mmのSU
S304の工作物を,切削加工により粗さ12S,真円
度5μm ,真直度8μmにし、その工作物に対し、まず
第1工程で、φ150の研磨工具にPVA#220の砥
石を装着し、600rpm,押付力10kgfの条件で
研磨工具による機械研削を行うと同時に、電極に52
R,高さ80mm,幅120mmの凹面を用い、供給孔から
20%NaNO3 水溶液を供給し、電解電流50Aを流
し、工作物の回転数50rpm,研磨工具と電極の送り
100mm/minで4パス、32分間の研磨を行った結
果、粗さ0.4〜0.9μm Rmax,真円度2μm ,真
直度4μm の研磨が行えた。
(Experimental example) SU having a diameter of 100 and a length of 800 mm
The workpiece of S304 is cut to have a roughness of 12S, a roundness of 5 μm, and a straightness of 8 μm. First, in the first step, a grinding tool of φ150 is attached to a grinding tool of PVA # 220, and 600 rpm is applied to the workpiece. , At the same time as mechanical grinding with a polishing tool under the condition of pressing force of 10 kgf,
R, height 80 mm, width 120 mm concave surface is used, and 20% NaNO 3 from the supply hole An aqueous solution was supplied, an electrolytic current of 50 A was flown, the number of revolutions of the workpiece was 50 rpm, the polishing tool and the electrode were fed at 100 mm / min for 4 passes, and polishing was performed for 32 minutes, resulting in a roughness of 0.4 to 0.9 μm Rmax. , Roundness of 2μm and straightness of 4μm could be polished.

【0013】つぎに、第2工程で、研磨工具にPVA#
800の砥石を装着し、電解電流20Aの条件で2パ
ス、16分間の研磨を行った結果、粗さ0.1〜0.2
μm Rmax ,真円度1.5μm ,真直度3μmが得られ
た。
Next, in the second step, PVA # is applied to the polishing tool.
As a result of mounting 800 grindstones and polishing for 2 minutes under an electrolytic current of 20 A for 16 minutes, the roughness was 0.1 to 0.2.
μm Rmax, roundness of 1.5 μm, and straightness of 3 μm were obtained.

【0014】さらに、第3工程で、PVA#1500の
砥石を装着し、電解電流10Aの条件で2パス、16分
間の研磨を行った結果、粗さ0.05μmRmax ,真円
度1.5μm ,真直度2μm の高精度加工が得られた。
Further, in the third step, a PVA # 1500 grindstone was attached, and polishing was carried out for 2 passes for 16 minutes under the condition of an electrolytic current of 10 A. As a result, the roughness was 0.05 μm Rmax, the circularity was 1.5 μm, High-precision processing with a straightness of 2 μm was obtained.

【0015】なお、図3に示す従来の研磨方法では、工
作物の軸心方向のうねりが除去できず、また、図4の方
法では電解電流が増大できないため、研磨工程に6〜8
工程を要した。しかし、本発明では、僅か3工程で生産
性が大幅に向上するとともに、うねりを完全に除去で
き、高品質の研磨が可能になった。
In the conventional polishing method shown in FIG. 3, the waviness in the axial direction of the workpiece cannot be removed, and in the method shown in FIG. 4, the electrolytic current cannot be increased.
It took a process. However, in the present invention, the productivity is significantly improved in only three steps, and the undulations can be completely removed, and high quality polishing is possible.

【0016】[0016]

【発明の効果】本発明は、以上説明したように構成され
ているので、以下に記載する効果を奏する。電解作用を
行う電極15と研削作用を行う研磨工具18の研磨材2
0とが、相対位置を保って別位置であり、電解作用と研
削作用とが別個に作用するため、工作物1と電極15と
の間隙は研磨材20の摩耗には無関係で一定に維持する
ことができ、研磨材20に研削に最適のものを選択で
き、電極面積も大きくすることができ、高能率で高品質
の研磨を行うことができる。
Since the present invention is configured as described above, it has the following effects. Abrasive material 2 of electrode 15 that performs electrolytic action and polishing tool 18 that performs grinding action
0 is a different position while maintaining the relative position, and the electrolytic action and the grinding action act separately, so that the gap between the workpiece 1 and the electrode 15 is kept constant regardless of wear of the abrasive 20. It is possible to select the most suitable abrasive material 20 for grinding, the electrode area can be increased, and highly efficient and high-quality polishing can be performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の1実施例の切断正面図である。FIG. 1 is a cut front view of an embodiment of the present invention.

【図2】図1の左側面図である。FIG. 2 is a left side view of FIG.

【図3】従来例の切断正面図である。FIG. 3 is a cut front view of a conventional example.

【図4】他の従来例の切断正面図である。FIG. 4 is a cut front view of another conventional example.

【符号の説明】[Explanation of symbols]

1 円筒工作物 6 電解液 15 電極 16 加工面 18 研磨工具 20 研磨材 1 Cylindrical Workpiece 6 Electrolyte 15 Electrode 16 Machining Surface 18 Polishing Tool 20 Abrasive Material

Claims (1)

【特許請求の範囲】 【請求項1】 回転する円筒工作物を陽極性とし、陰極
性の電極の加工面を前記工作物の半径或いはやや大きい
半径の凹面とし、前記電極と前記工作物間に電解液を介
在して電解作用を発生させ、同時に回転する円板状の研
磨工具に設けた砥石又は粘弾性を有する研磨材を前記工
作物に押圧し、前記電極と前記工具の相対位置を保ちな
がら前記電極と前記工具を前記工作物の回転中心軸に平
行に移動させ、電解作用と研削作用を別個に作用させな
がら前記工作物の表面を電解複合研磨することを特徴と
する円筒工作物の電解複合研磨方法。
Claim: What is claimed is: 1. A rotating cylindrical work piece is made anodically, and a machining surface of a cathodic electrode is made a concave surface having a radius of the work piece or a slightly larger radius, and between the electrode and the work piece. An electrolytic action is generated through an electrolytic solution, and a grinding stone or a viscoelastic abrasive provided on a disk-shaped polishing tool that rotates at the same time is pressed against the workpiece to maintain the relative position between the electrode and the tool. Meanwhile, the electrode and the tool are moved in parallel to the rotation center axis of the workpiece, and the surface of the workpiece is electrolytically compound-polished while the electrolytic action and the grinding action are separately performed. Electrolytic compound polishing method.
JP3210063A 1991-07-26 1991-07-26 Electrolytic compound polishing machine for cylindrical workpieces Expired - Fee Related JP2617833B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3210063A JP2617833B2 (en) 1991-07-26 1991-07-26 Electrolytic compound polishing machine for cylindrical workpieces

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3210063A JP2617833B2 (en) 1991-07-26 1991-07-26 Electrolytic compound polishing machine for cylindrical workpieces

Publications (2)

Publication Number Publication Date
JPH0531627A true JPH0531627A (en) 1993-02-09
JP2617833B2 JP2617833B2 (en) 1997-06-04

Family

ID=16583208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3210063A Expired - Fee Related JP2617833B2 (en) 1991-07-26 1991-07-26 Electrolytic compound polishing machine for cylindrical workpieces

Country Status (1)

Country Link
JP (1) JP2617833B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59156622A (en) * 1983-02-25 1984-09-05 Hitachi Zosen Corp Electrolytically compounded mirror face machining method for cylindrical workpiece
JPH02139125A (en) * 1988-11-15 1990-05-29 Kawasaki Steel Corp Descaling method for steel pipe

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59156622A (en) * 1983-02-25 1984-09-05 Hitachi Zosen Corp Electrolytically compounded mirror face machining method for cylindrical workpiece
JPH02139125A (en) * 1988-11-15 1990-05-29 Kawasaki Steel Corp Descaling method for steel pipe

Also Published As

Publication number Publication date
JP2617833B2 (en) 1997-06-04

Similar Documents

Publication Publication Date Title
JP3286941B2 (en) Truing method of diamond grinding wheel
JP3909619B2 (en) Apparatus and method for mirror processing of magnetic disk substrate
EP1877216B1 (en) Method of electrolytically microfinishing a metallic workpiece
JP4144725B2 (en) Glass substrate chamfering method and apparatus
JPH10175165A (en) Centerless grinding method using metal bond grinding wheel, and its device
JP2838314B2 (en) Electrolytic interval dressing grinding method
JPH0531627A (en) Electrolytic combined grinding method for cylindrical workpiece
JPS63283861A (en) On-machine electric discharge truing/dressing for metal bond grindstone
JPH0531628A (en) Electrolytic combined grinding method for cylindrical workpiece
Zhang et al. Precision shaping of small diameter wheels using micro electric discharge truing (MEDT) and hole-machining of Al2O3 material
JPS6294224A (en) Surface processing method for aluminium
JPH06720A (en) Electrolytic composite polishing method for outer surface of cylinder work
JP3251610B2 (en) Mirror polishing method and apparatus using electrolytic products
JPH0295574A (en) Grinding method for electrolytic dressing and method and device for compound working of polishing method serving conductive grindstone for tool as well
KR950015117B1 (en) Electroerosion machine having cylindrical aspects works
JPH04275874A (en) Double face lap grinding method used with electrolytic dressing
JP2717438B2 (en) Method and apparatus for truing and dressing conductive grindstone by electrolytic dressing grinding
JP3671250B2 (en) Diamond grinding wheel and its truing device
JPH07328907A (en) Spherical surface creative processing method and device thereof
JPH08197433A (en) Composite grinding wheel for cutting
JPH06335853A (en) Grinding and device therefor
JPH07195261A (en) Spherical grinding method and device thereof
JP2000326206A (en) Electrode support device for elid surface grinding machine and method thereof
JPS6362613A (en) Method of processing aluminum surface
Zhang et al. Application of ELID grinding technique to precision machining of optics

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees