JPH053160A - Growth method of chemical compound semiconductor crystal - Google Patents

Growth method of chemical compound semiconductor crystal

Info

Publication number
JPH053160A
JPH053160A JP18430291A JP18430291A JPH053160A JP H053160 A JPH053160 A JP H053160A JP 18430291 A JP18430291 A JP 18430291A JP 18430291 A JP18430291 A JP 18430291A JP H053160 A JPH053160 A JP H053160A
Authority
JP
Japan
Prior art keywords
group
doping
vapor phase
growth method
hydride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18430291A
Other languages
Japanese (ja)
Other versions
JP3109149B2 (en
Inventor
Mitsuru Shimazu
充 嶋津
Hiroya Kimura
浩也 木村
Toshio Ueda
登志雄 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP03184302A priority Critical patent/JP3109149B2/en
Publication of JPH053160A publication Critical patent/JPH053160A/en
Application granted granted Critical
Publication of JP3109149B2 publication Critical patent/JP3109149B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To provide an organic metal vapor growth method of forming a III-V compound semiconductor of multilayered structure, where a multilayered structure possessed of a sharp doping profile at the interface of growth layers can be easily realized. CONSTITUTION:When a compound semiconductor is doped with carbon using organic metal compound as V material, V hydride is periodically supplied at the same time. N-type doping gas is periodically supplied at the same time with the V hydride to form a doping superlattice. Furthermore, V hydride is changed in supply period, whereby carbon is controlled in doping amount. By this process, the interruption of growth and the change of growth temperature are not required to be carried out at the boundary surface of layers. Therefore, not only an operation time can be saved but also impurities or defects are hardly introduced to the boundary surface of the growth layers, so that an epitaxial layer can be enhanced in quality.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、有機金属気相成長法に
より、炭素ドープ化合物半導体結晶、例えばGaAs、
AlGaAsなどのIII−V族化合物半導体結晶を気相
成長させる方法に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to a carbon-doped compound semiconductor crystal, such as GaAs, by a metal organic chemical vapor deposition method.
The present invention relates to a method for vapor phase growth of a III-V group compound semiconductor crystal such as AlGaAs.

【0002】[0002]

【従来の技術】有機金属気相成長法(OMVPE法)
は、有機金属化合物と金属水素化合物を、反応炉の中で
熱分解することにより、基板上に薄膜の単結晶を成長す
る方法である。この方法は、超薄膜の多層構造の形成が
容易であり、量産性も高いので、各種の化合物半導体デ
バイス用基板の作製に用いられている。
2. Description of the Related Art Metalorganic vapor phase epitaxy (OMVPE)
Is a method of growing a single crystal of a thin film on a substrate by thermally decomposing an organometallic compound and a metal hydrogen compound in a reaction furnace. Since this method is easy to form an ultra-thin film multi-layer structure and has high mass productivity, it is used for producing various types of compound semiconductor device substrates.

【0003】一方、GaAs−AlGaAsの超薄膜を
積層した超格子構造は従来の天然の材料にはない特異な
性質を示し、各種の物性値を任意に設計できることから
OMVPE法を用いた研究が盛んに行われている。超格
子構造の中でも、n型GaAsとp型GaAsの超薄膜
を積層したドーピング超格子は(nipi型超格子)は
電子と正孔が空間的に分離されるためその実効バンドギ
ャップがGaAs本来のバンドギャップより小さくなる
という特長がある。そのため、このドーピング超格子構
造を利用すると、通常GaAsを透過してしまうような
長波長の光に対してもバンド間遷移が可能となり、長波
長光の検出や発光材料として用いることができる。ドー
ピング超格子のバンドギャップの減少効果は、外部から
印加した電界の強さによって変化するため、光変調器や
波長可変発光素子を作製することが可能である。
On the other hand, a superlattice structure in which GaAs-AlGaAs ultrathin films are laminated exhibits unique properties which are not found in conventional natural materials, and various physical properties can be arbitrarily designed, so that research using the OMVPE method is active. Has been done in. Among the superlattice structures, a doping superlattice in which n-type GaAs and p-type GaAs ultrathin films are laminated (nipi-type superlattice) has electrons and holes spatially separated from each other, so that its effective band gap is It has the feature of being smaller than the band gap. Therefore, if this doping superlattice structure is utilized, band-to-band transition is possible even for long-wavelength light that normally passes through GaAs, and it can be used as a long-wavelength light detection or light-emitting material. Since the bandgap reduction effect of the doping superlattice changes depending on the strength of the electric field applied from the outside, it is possible to manufacture an optical modulator or a wavelength tunable light emitting device.

【0004】また、化合物半導体のヘテロ接合を用いた
デバイスの中でもヘテロ接合・バイポーラ・トランジス
タ(HBT)は超高速で動作するため、盛んに開発され
ている。HBTの構造は、図2に示すように、半絶縁性
または導電性GaAs基板の上に積層されたn−GaA
sのコレクタ、p−GaAsのベース、n−AlGaA
sのエミッタから構成されている。HBTの特性は、p
−GaAsベース層の正孔濃度が高いほど優れた特性が
得られ、p−GaAsベース層とn−AlGaAsエミ
ッタ層との間のpn接合の界面が急峻なほど優れた特性
が得られる。
Among devices using a heterojunction of compound semiconductors, a heterojunction bipolar transistor (HBT) is actively developed because it operates at a very high speed. As shown in FIG. 2, the HBT structure has an n-GaA laminated on a semi-insulating or conductive GaAs substrate.
s collector, p-GaAs base, n-AlGaA
s emitter. The characteristic of HBT is p
The higher the hole concentration of the -GaAs base layer, the better the characteristics are obtained, and the steeper the pn junction interface between the p-GaAs base layer and the n-AlGaAs emitter layer, the better the characteristics.

【0005】OMVPE法においては、従来用いていた
p型ドーパントであるZnでは拡散係数が大きいため、
急峻なドーピングプロファイルを形成できないという問
題があった。分子線エピタキシャル法(MBE法)で
は、1×1020cm-3程度まで高濃度にドーピングする
ことが可能で、かつ、拡散係数の小さなベリリウム(B
e)が一般的に用いられているが、OMVPE法では安
全性の問題から、Beを用いることは困難である。ま
た、Znに比べて拡散係数が5桁小さいMgのドーピン
グも検討されている。しかし、Mg原料のビスシクロペ
ンタジエニルマグネシウム(Cp2Mg)およびビスメ
チルシクロペンタジエニルマグネシウム(M2Cp2
g)は配管および反応管へ吸着しやすいため、急峻なド
ーピング・プロファイルを形成することが難しい。した
がって、従来、OMVPE法では急峻なドーピングプロ
ファイルを得ることが難しいことから、ドーピング超格
子やHBTを形成することが困難であった。
In the OMVPE method, since the p-type dopant Zn used conventionally has a large diffusion coefficient,
There is a problem that a steep doping profile cannot be formed. In the molecular beam epitaxy method (MBE method), beryllium (B) having a small diffusion coefficient can be doped at a high concentration up to about 1 × 10 20 cm −3.
Although e) is generally used, it is difficult to use Be in the OMVPE method because of safety issues. In addition, doping of Mg, which has a diffusion coefficient five orders of magnitude smaller than that of Zn, has been studied. However, Mg raw materials such as biscyclopentadienyl magnesium (Cp 2 Mg) and bismethylcyclopentadienyl magnesium (M 2 Cp 2 M)
Since g) is easily adsorbed on the pipe and the reaction tube, it is difficult to form a steep doping profile. Therefore, conventionally, it has been difficult to form a doping superlattice or HBT because it is difficult to obtain a steep doping profile by the OMVPE method.

【0006】最近になり炭素(C)をp型ドーパントと
してドーピングする事が検討されている。例えば、文献
(J.Appl.Phys. Vol.64,No.8,p3975-3979, K. Saito et
al.)にあるように、ガスソースMBE法ではIII族元
素にトリメチルガリウム(TMGa)を、V族原料に金
属ヒ素を用いることにより、1020cm-3台のCドーピ
ングを行っている。また、有機金属気相結晶法において
も、文献(Appl.Phys.Lett. Vol.53,No.14,p.1317-131
9, T.F.Kuech et al.)にあるように、成長圧力76To
rr(10.1×103Pa)において、III族原料にT
MGa、V族原料にトリメチルヒ素(TMAs)を用い
ることにより2×1019cm-3のCドーピングを行って
いる。
Recently, it has been studied to dope carbon (C) as a p-type dopant. For example, the literature (J.Appl.Phys. Vol.64, No.8, p3975-3979, K. Saito et
al.), in the gas source MBE method, trimethylgallium (TMGa) is used as the group III element and metallic arsenic is used as the group V raw material to perform C doping at a level of 10 20 cm −3 . In addition, in the metal-organic vapor phase crystallization method, reference (Appl.Phys.Lett. Vol.53, No.14, p.1317-131
9, TFKuech et al.), Growth pressure 76To
In rr (10.1 × 10 3 Pa), T was used as the group III raw material.
C-doping of 2 × 10 19 cm −3 is performed by using trimethylarsenic (TMAs) as a source material for MGa and V.

【0007】発明者もV族有機金属原料を用い、減圧成
長することにより、OMVPE法において2.5×10
20cm-3という高濃度のCドーピングが可能であること
を報告している。しかしながら、OMVPE法でV族有
機金属原料を用いた方法では、ドーピング超格子を形成
する場合、n層で一旦、V族有機金属からアルシン(A
sH3)への切り換えを行わなければならず、多層を積
層するには長時間が必要となる。
The inventor of the present invention also uses a group V organic metal raw material and grows it under reduced pressure to obtain 2.5 × 10 5 in the OMVPE method.
It has been reported that high concentration C doping of 20 cm -3 is possible. However, in the method using the group V organometallic material in the OMVPE method, when the doping superlattice is formed, the group V metal is once converted into arsine (A
It has to be switched to sH 3 ), and it takes a long time to stack multiple layers.

【0008】[0008]

【発明が解決しようとする課題】OMVPE法におい
て、TMGaとTMAsを原料としてCドープGaAs
を成長する場合、TMGaやTMAsの流量を変えても
Cのドーピング量は殆ど変化しない。そこで成長温度を
変えることでドーピング量を制御している。例えば、上
記の文献2に依れば、成長圧力76Torr(10.1
×103Pa)で成長温度を600℃から700℃に上
げると、正孔濃度は1019cm-3台から1017cm-3
へ減少している。単層のエピタキシャル層を成長する場
合にはこの方法でも問題はないが、Cのドーピングレベ
ルの異なる多層を成長する場合には、層と層の間で成長
を中断し、成長温度を変更しなければならず、成長温度
の変更に相当長い時間を要するという問題があった。
In the OMVPE method, TMGa and TMAs are used as raw materials and C-doped GaAs is used.
When growing C, the doping amount of C hardly changes even if the flow rates of TMGa and TMAs are changed. Therefore, the doping amount is controlled by changing the growth temperature. For example, according to Reference 2 above, the growth pressure is 76 Torr (10.1
When the growth temperature is increased from 600 ° C. to 700 ° C. at × 10 3 Pa), the hole concentration is reduced from 10 19 cm −3 to 10 17 cm −3 . This method is not problematic when growing a single epitaxial layer, but when growing multiple layers with different C doping levels, the growth must be interrupted between layers and the growth temperature must be changed. Therefore, there is a problem that it takes a considerably long time to change the growth temperature.

【0009】また、OMVPE法でV族有機金属を用い
てCをドーピングする方法を使って、ドーピング超格子
を作製しようとすると、p型GaAs成長後、n型Ga
As層成長前に一旦V族原料を有機金属からアルシンへ
切り換え、次にp型GaAs成長前に今度はアルシンか
ら有機金属への切り換えのために成長を中断しなければ
ならず、多数の層を積層するには長時間が必要になると
いう問題があった。
Further, when an attempt is made to form a doping superlattice by using a method of doping C using a group V organic metal by the OMVPE method, when p-type GaAs is grown, n-type Ga is grown.
Before the As layer is grown, the group V raw material is once switched from organometallic to arsine, and before the p-type GaAs is grown, the growth must be interrupted in order to switch from arsine to the organometallic. There is a problem that a long time is required for stacking.

【0010】[0010]

【課題を解決するための手段】本発明は、III−V族化
合物半導体の有機金属気相成長方法において、V族原料
として有機金属化合物を用いて炭素をドーピングする際
に、V族水素化物を同時に周期的に供給することを特徴
とする。V族水素化物と同時にn型ドーピングガスを周
期的に供給する事により、p型GaAsとn型GaAs
を交互に成長し、成長中断を行わずにドーピング超格子
を作製する。また、V族水素化物を供給する周期を変化
させることにより、炭素のドーピング量を制御すること
を特徴とする気相成長方法である。特に、5.3×10
3Pa以下の低い成長圧力下で成長させることが好まし
い。
DISCLOSURE OF THE INVENTION The present invention relates to a method for organometallic vapor phase epitaxy of a III-V group compound semiconductor, wherein a group V hydride is used when carbon is doped using an organometallic compound as a group V raw material. The feature is that they are supplied periodically at the same time. By periodically supplying the n-type doping gas simultaneously with the group V hydride, p-type GaAs and n-type GaAs can be obtained.
Are alternately grown, and a doping superlattice is produced without interruption of growth. Further, the vapor phase growth method is characterized in that the doping amount of carbon is controlled by changing the supply cycle of the group V hydride. Especially 5.3 × 10
It is preferable to grow under a low growth pressure of 3 Pa or less.

【0011】[0011]

【作用】TMGaとTMAsを原料にしたGaAsにド
ーピングされるCは、TMGaおよびTMAsのメチル
基のCがGaもしくはAsと結合した形で、結晶中に取
り込まれるためであると考えられている。通常のTMG
aとAsH3を原料にした場合には、AsH3が分解して
できる水素原子がTMGaのメチル基と結合してメタン
となるため、Cがドーピングされにくいと理解されてい
る。しかし、実際には、この場合にも一定量のCが結晶
中へ取り込まれている。この反応をもう少し詳しくみる
と、気相中でTMGaがAsH3から発生した水素原子
と反応してメチル基が1つずつはずれて行き、モノメチ
ルGaの形でGaAs基板上に吸着し、最終的にGaと
Cが結晶中に取り込まれると考えられる。
It is considered that C doped into GaAs made of TMGa and TMAs as raw materials is incorporated into the crystal in a form in which C of the methyl group of TMGa and TMAs is combined with Ga or As. Normal TMG
It is understood that when a and AsH 3 are used as the raw materials, C is difficult to be doped because the hydrogen atom formed by the decomposition of AsH 3 is combined with the methyl group of TMGa to form methane. However, in this case, a certain amount of C is actually incorporated in the crystal. Taking a closer look at this reaction, TMGa reacts with the hydrogen atoms generated from AsH 3 in the gas phase, leaving one methyl group out, adsorbing on the GaAs substrate in the form of monomethyl Ga, and finally It is considered that Ga and C are incorporated into the crystal.

【0012】従って、AsH3から発生した水素原子の
濃度が高いほどCの取り込みは少なくなる。通常、As
3量を増やすとCの混入が少なくなるのはこのためで
ある。また、TMAsを原料としたときにCが大量に結
晶中に取り込まれるのは、AsH3から発生する水素原
子が存在しないためと考えられる。従って、TMGaと
TMAsを原料に用いてCをドーピングする際に、As
3を混入すれば、AsH3から発生する活性な水素原子
によってCのドーピングを抑制することが考えられる。
Therefore, the higher the concentration of hydrogen atoms generated from AsH 3 , the less the incorporation of C. Usually As
It is for this reason that when the amount of H 3 is increased, the mixing of C is reduced. It is considered that a large amount of C is taken into the crystal when TMAs is used as a raw material because there are no hydrogen atoms generated from AsH 3 . Therefore, when doping C using TMGa and TMAs as raw materials, As
When H 3 is mixed in, it is considered that the doping of C is suppressed by the active hydrogen atoms generated from AsH 3 .

【0013】本発明者らは、TMAsとTMGaのCド
ーピングの成長圧力依存性について広い圧力範囲にわた
って検討した結果、成長圧力5.3×103Pa以下の
領域で、高濃度のCドーピングが可能であることを見い
だした。そこで、このような低圧力の領域では水素原子
の寿命も長くなることから、AsH3によるCドーピン
グ制御の範囲も広がると考え、検討を行った。その結
果、混入するAsH3流量を変えることによって、Cド
ーピング量を1×1020cm-3から高抵抗領域までの広
い範囲で制御できるようになった。
The present inventors have examined the growth pressure dependence of C doping of TMAs and TMGa over a wide pressure range, and as a result, high concentration C doping is possible in a region where the growth pressure is 5.3 × 10 3 Pa or less. I found that. Therefore, it was considered that the range of C doping control by AsH 3 is widened because the life of hydrogen atoms is extended in such a low pressure region. As a result, the C doping amount can be controlled in a wide range from 1 × 10 20 cm −3 to the high resistance region by changing the mixed AsH 3 flow rate.

【0014】そこで、本発明者らは、アルシンを周期的
に添加することで高濃度Cドープ層と高純度層の超格子
構造を形成し、この高純度層にn型ドーパントをドーピ
ングする事によりドーピング超格子を作製する方法を考
案した。また、アルシン流量変化の周期を変えることに
より高濃度層と低濃度層の厚みの比率を変化させて超格
子全体の見かけ上の正孔濃度を制御する方法を発明し
た。
Therefore, the present inventors form a superlattice structure of a high-concentration C-doped layer and a high-purity layer by periodically adding arsine, and dope the high-purity layer with an n-type dopant. We devised a method to fabricate a doping superlattice. Further, the inventors invented a method of controlling the apparent hole concentration of the entire superlattice by changing the ratio of the thickness of the high concentration layer and the low concentration layer by changing the cycle of arsine flow rate change.

【0015】[0015]

【実施例】[実施例1]反応管内の圧力を1.3×10
3Paに保ち、予め反応管内にTMAsを流した状態
で、半絶縁性GaAs基板を成長温度600℃まで加熱
後、TMGaを反応管へ導入し、Cドープp型GaAs
を20nmの厚みに成長し、その後AsH350scc
mとジシラン(Si26)50sccmを反応管へ導入
しn型GaAsを同じく20nmの厚みに成長し、この
あと同様にAsH3とSi26を反応管へ周期的に導入
する事により、p+−GaAs/n+−GaAsを40サ
イクル(厚み1.6μm)成長した。この際、TMAs
とTMGaのモル比は7とした。混入したAsH3の濃
度は2%(水素希釈),Si26の濃度は10ppmで
ある。このサンプルを2結晶X線回折測定すると図1に
示すようにメインピークの両側に超格子構造に起因する
サブピークを観測することができ、確かに超格子が形成
されていることがわかる。また、4.2Kのフォトルミ
ネッセンス(PL)測定の結果、励起光強度が弱い場合
には通常のバンド端発光より約300meV低エネルギ
ー側の1.280eVに発光ピークが現れ、励起強度を
400倍にするとこのピークが1.302eVにシフト
した。このことから確かにドーピング超格子が形成され
ていることがわかる。
[Example] [Example 1] The pressure in the reaction tube was 1.3 x 10
The semi-insulating GaAs substrate was heated to a growth temperature of 600 ° C. while maintaining the pressure at 3 Pa and preliminarily flowing TMAs into the reaction tube, and then TMGa was introduced into the reaction tube to make C-doped p-type GaAs.
Was grown to a thickness of 20 nm and then AsH 3 50 scc
m and disilane (Si 2 H 6 ) 50 sccm are introduced into the reaction tube to grow n-type GaAs to a thickness of 20 nm, and then AsH 3 and Si 2 H 6 are periodically introduced into the reaction tube. , P + -GaAs / n + -GaAs were grown for 40 cycles (thickness: 1.6 μm). At this time, TMAs
The molar ratio of TMGa to TMGa was 7. The concentration of AsH 3 mixed in is 2% (diluted with hydrogen), and the concentration of Si 2 H 6 is 10 ppm. When this sample is subjected to two-crystal X-ray diffraction measurement, subpeaks due to the superlattice structure can be observed on both sides of the main peak as shown in FIG. 1, and it is clear that a superlattice is formed. In addition, as a result of photoluminescence (PL) measurement at 4.2K, when the excitation light intensity is weak, an emission peak appears at 1.280 eV which is about 300 meV lower energy side than the normal band edge emission, and the excitation intensity is increased 400 times. Then, this peak was shifted to 1.302 eV. From this, it is clear that the doping superlattice is formed.

【0016】[実施例2]反応管内の圧力を1.3×1
3Paに保ち、予め反応管内にTMAsを流した状態
で、半絶縁性GaAs基板を成長温度575℃まで加熱
後、TMGaを反応管へ導入し、Cドープp+−GaA
sを13nmの厚みに成長し、その後AsH3125s
ccmを反応管へ導入しCドープp-−GaAsを同じ
く13nmの厚みに成長し、このあと同様にAsH3
反応管へ周期的に導入する事により、p+/p-−GaA
sを100サイクル(厚み2.6μm)成長した。この
際、TMAsとTMGaのモル比は7とした。混入した
AsH3の濃度は2%(水素希釈)である。成長したG
aAsのホール効果測定(室温)から得られた正孔濃度
は2.8×1019cm-3であった。この値は、AsH3
流量0sccmの場合の正孔濃度5.5×1019cm-3
と125sccmの場合の1.8×1016cm-3の平均
値になっている。
[Example 2] The pressure inside the reaction tube was set to 1.3 x 1
While keeping the pressure at 0 3 Pa and TMAs flowing in the reaction tube in advance, the semi-insulating GaAs substrate was heated to a growth temperature of 575 ° C., then TMGa was introduced into the reaction tube, and C-doped p + -GaA was introduced.
s to a thickness of 13 nm, and then AsH 3 125s
introducing ccm into the reaction tube C-doped p - well grown to a thickness of 13nm to -GaAs, By Thereafter Similarly periodically introducing AsH 3 into the reaction tube, p + / p - -GaA
s was grown for 100 cycles (thickness 2.6 μm). At this time, the molar ratio of TMAs and TMGa was set to 7. The concentration of AsH 3 mixed in is 2% (diluted with hydrogen). Mature G
The hole concentration obtained from the Hall effect measurement of aAs (room temperature) was 2.8 × 10 19 cm −3 . This value is AsH 3
Hole concentration 5.5 × 10 19 cm −3 when the flow rate is 0 sccm
And an average value of 1.8 × 10 16 cm −3 in the case of 125 sccm.

【0017】[実施例3]反応管内の圧力を1.3×1
3Paに保ち、予め反応管内にTMAsを流した状態
で、半絶縁性GaAs基板を成長温度575℃まで加熱
後、TMGaを反応管へ導入し、GaAsの成長を始
め、AsH3を添加しない高濃度層20nmとAsH3
添加した低濃度層5nmを交互に40サイクル(1μ
m)、次にAsH3を添加しない高濃度層20nmとA
sH3を添加した低濃度層10nmを交互に34サイク
ル(1μm)、次にAsH3を添加しない高濃度層20
nmとAsH3を添加した低濃度層20nmを交互に2
5サイクル(1μm)、次にAsH3を添加しない高濃
度層20nmとAsH3を添加した低濃度層30nmを
交互に20サイクル(1μm)成長した。この際、TM
AsとTMGaのモル比は7とした。混入したAsH3
の濃度は2%(水素希釈)、流量は125sccmであ
る。成長したGaAsのC−V測定から得られたキャリ
アプロファイルを図3に示す。キャリア濃度は1層目が
4.4×1019cm-3、2層目が3.7×1019
-3、3層目が2.8×1019cm-3、4層目が2.2
×1019cm-3となり、各層のキャリア濃度は高濃度層
と低濃度層の厚みの比に逆比例する事がわかる。
[Embodiment 3] The pressure in the reaction tube is set to 1.3 × 1.
The semi-insulating GaAs substrate is heated to a growth temperature of 575 ° C. in a state where TMAs are flown in the reaction tube in advance while keeping the pressure at 0 3 Pa, then TMGa is introduced into the reaction tube, GaAs growth is started, and AsH 3 is not added. Alternately 40 cycles of high concentration layer 20 nm and low concentration layer 5 nm with AsH 3 added (1μ
m), and then the high-concentration layer without addition of AsH 3 20 nm and A
sH 3 alternately 34 cycles (1 [mu] m) the low concentration layer 10nm was added, then the high density layer without added AsH 3 20
nm and AsH 3 added low concentration layer 20 nm alternately 2
5 cycles (1 [mu] m), and then a high concentration layer 20nm and 20 cycles alternating low concentration layer 30nm where the AsH 3 was added without addition of AsH 3 (1 [mu] m) growth. At this time, TM
The molar ratio of As to TMGa was set to 7. Mixed AsH 3
Is 2% (hydrogen diluted) and the flow rate is 125 sccm. The carrier profile obtained from the CV measurement of the grown GaAs is shown in FIG. The carrier concentration is 4.4 × 10 19 cm −3 for the first layer and 3.7 × 10 19 c for the second layer.
m −3 , the third layer is 2.8 × 10 19 cm −3 , and the fourth layer is 2.2
It becomes × 10 19 cm −3 , which shows that the carrier concentration of each layer is inversely proportional to the thickness ratio of the high concentration layer and the low concentration layer.

【0018】実施例において、成長圧力1.3×103
Pa、成長温度600℃または575℃で行ったが、圧
力は5.3×103Pa以下であれば同様の良好な結果
が得られ、また温度は625℃以下において良好な結果
が得られる。5.3×103Paを超えるとキャリア濃
度の上限が低くなり、また625℃を超えると結晶の表
面状態が劣化するため好ましくない。
In the embodiment, the growth pressure is 1.3 × 10 3.
Although the growth was performed at Pa and a growth temperature of 600 ° C. or 575 ° C., similar good results can be obtained if the pressure is 5.3 × 10 3 Pa or less, and good results can be obtained at a temperature of 625 ° C. or less. When it exceeds 5.3 × 10 3 Pa, the upper limit of the carrier concentration becomes low, and when it exceeds 625 ° C., the surface condition of the crystal deteriorates, which is not preferable.

【0019】[0019]

【発明の効果】本発明は以上に述べたように、V族原料
として有機金属を用いたCドーピングにおいて、AsH
3とn型ドーピングガス(Si26)を周期的に混入す
ることにより容易にドーピング超格子を形成することが
出来る。また、AsH3を混入する周期を変えることに
より容易にCのドーピング量を制御することが出来る。
本発明の方法によれば、AsH3を混入することによ
り、Cの混入を防ぐことが出来るため、各層の境界面で
成長中断や成長温度の変更を行わなくても済むという利
点がある。このことは、単に時間の節約になるばかりで
なく、成長中断中に界面に不用な不純物や欠陥が導入さ
れにくく、良好な界面が得られることから、エピタキシ
ャル層の品質の向上にも効果がある。
INDUSTRIAL APPLICABILITY As described above, according to the present invention, in the C doping using an organic metal as a V group raw material, AsH
A doping superlattice can be easily formed by periodically mixing 3 and n-type doping gas (Si 2 H 6 ). Further, the doping amount of C can be easily controlled by changing the cycle of mixing AsH 3 .
According to the method of the present invention, the incorporation of AsH 3 can prevent the incorporation of C, and thus there is an advantage that it is not necessary to interrupt the growth or change the growth temperature at the boundary surface of each layer. This not only saves time, but is also effective in improving the quality of the epitaxial layer because unwanted impurities and defects are less likely to be introduced into the interface during growth interruption and a good interface is obtained. .

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の気相成長方法により作製したドーピン
グ超格子の2結晶X線回折の結果を示す図である。
FIG. 1 is a diagram showing a result of 2-crystal X-ray diffraction of a doping superlattice produced by a vapor phase growth method of the present invention.

【図2】ヘテロ接合・バイポーラ・トランジスタ(HB
T)の断面構造略図である。
FIG. 2 Heterojunction bipolar transistor (HB
It is a cross-sectional schematic diagram of T).

【図3】本発明の実施例3におけるGaAsエピタキシ
ャル膜中の正孔濃度の深さ方向のプロファイルを示すグ
ラフである。
FIG. 3 is a graph showing a profile of a hole concentration in a GaAs epitaxial film in a depth direction in Example 3 of the present invention.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】III−V族化合物半導体の有機金属気相成
長方法において、V族原料として有機金属化合物を用い
て炭素をドーピングする際に、V族水素化物を周期的に
供給することにより超格子を作製することを特徴とする
気相成長方法。
1. In a metal-organic vapor phase epitaxy method for a III-V compound semiconductor, a group V hydride is periodically supplied when carbon is doped using an organometallic compound as a group V raw material. A vapor-phase growth method characterized by producing a lattice.
【請求項2】III−V族化合物半導体の有機金属気相成
長方法において、V族水素化物と同時にn型不純物のド
ーピングガスを周期的に供給することによりドーピング
超格子を作製することを特徴とする請求項1記載の気相
成長方法。
2. A metal-organic vapor phase epitaxy method for a III-V compound semiconductor, wherein a doping superlattice is produced by periodically supplying a doping gas of an n-type impurity simultaneously with a Group V hydride. The vapor phase growth method according to claim 1.
【請求項3】III−V族化合物半導体の有機金属気相成
長方法において、V族原料として有機金属化合物を用い
て炭素をドーピングする際に、V族水素化物を同時に周
期的に供給し、その周期を変化させることにより炭素の
ドーピング量を制御することを特徴とする気相成長方
法。
3. A III-V compound semiconductor metalorganic vapor phase epitaxy method, wherein when doping carbon with an organometallic compound as a V-group source, a V-group hydride is simultaneously and periodically supplied. A vapor phase growth method characterized in that the doping amount of carbon is controlled by changing the period.
【請求項4】n型不純物のドーピングガスが、シラン、
ジシラン、セレン化水素、硫化水素、ジメチルテルルま
たはジエチルテルルの中から選ばれた1または2以上の
化合物を含むガスであることを特徴とする請求項2記載
の気相成長方法。
4. An n-type impurity doping gas is silane,
3. The vapor phase growth method according to claim 2, wherein the gas contains one or more compounds selected from disilane, hydrogen selenide, hydrogen sulfide, dimethyl tellurium or diethyl tellurium.
【請求項5】III−V族化合物半導体がGaAsであ
り、III族原料がトリメチルガリウムまたはトリエチル
ガリウムであり、V族有機金属化合物がトリメチルヒ素
またはトリエチルヒ素であり、V族水素化物がアルシン
であることを特徴とする請求項1、2、3または4記載
の気相成長方法。
5. A Group III-V compound semiconductor is GaAs, a Group III raw material is trimethylgallium or triethylgallium, a Group V organometallic compound is trimethylarsenic or triethylarsenic, and a Group V hydride is arsine. The vapor phase growth method according to claim 1, 2, 3, or 4.
【請求項6】III−V族化合物半導体がAlGaAsで
あり、III族原料がトリメチルガリウムまたはトリエチ
ルガリウム、およびトリメチルアルミニウムであり、V
族有機金属化合物がトリメチルヒ素またはトリエチルヒ
素であり、V族水素化物がアルシンであることを特徴と
する請求項1、2、3または4記載の気相成長方法。
6. A group III-V compound semiconductor is AlGaAs, a group III raw material is trimethylgallium or triethylgallium, and trimethylaluminum, and V
5. The vapor phase growth method according to claim 1, wherein the group-organic metal compound is trimethylarsenic or triethylarsenic, and the group-V hydride is arsine.
【請求項7】請求項1〜6のいずれか1項に記載の気相
成長方法において、成長温度が625℃以下であり、成
長圧力が5.3×103Pa以下であることを特徴とす
る気相成長方法。
7. The vapor phase growth method according to claim 1, wherein the growth temperature is 625 ° C. or lower and the growth pressure is 5.3 × 10 3 Pa or lower. Vapor growth method.
JP03184302A 1990-09-27 1991-07-24 Compound semiconductor crystal growth method Expired - Fee Related JP3109149B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03184302A JP3109149B2 (en) 1990-09-27 1991-07-24 Compound semiconductor crystal growth method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2-260103 1990-09-27
JP26010390 1990-09-27
JP03184302A JP3109149B2 (en) 1990-09-27 1991-07-24 Compound semiconductor crystal growth method

Publications (2)

Publication Number Publication Date
JPH053160A true JPH053160A (en) 1993-01-08
JP3109149B2 JP3109149B2 (en) 2000-11-13

Family

ID=26502426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03184302A Expired - Fee Related JP3109149B2 (en) 1990-09-27 1991-07-24 Compound semiconductor crystal growth method

Country Status (1)

Country Link
JP (1) JP3109149B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5753545A (en) * 1994-12-01 1998-05-19 Hughes Electronics Corporation Effective constant doping in a graded compositional alloy
EP1790701B2 (en) 2005-11-25 2012-02-01 Sicpa Holding Sa IR-absorbing intaglio ink

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5753545A (en) * 1994-12-01 1998-05-19 Hughes Electronics Corporation Effective constant doping in a graded compositional alloy
EP1790701B2 (en) 2005-11-25 2012-02-01 Sicpa Holding Sa IR-absorbing intaglio ink

Also Published As

Publication number Publication date
JP3109149B2 (en) 2000-11-13

Similar Documents

Publication Publication Date Title
US4767494A (en) Preparation process of compound semiconductor
JP3124861B2 (en) Thin film growth method and semiconductor device manufacturing method
US5168077A (en) Method of manufacturing a p-type compound semiconductor thin film containing a iii-group element and a v-group element by metal organics chemical vapor deposition
EP0523917A2 (en) Atomic layer epitaxy of compound semiconductor
US6352884B1 (en) Method for growing crystals having impurities and crystals prepared thereby
JPH07321041A (en) Iii-v compound semiconductor crystal growth method
JP2001024221A (en) Gallium nitride compound semiconductor and its manufacture
US5858818A (en) Formation of InGaSa p-n Junction by control of growth temperature
JP3109149B2 (en) Compound semiconductor crystal growth method
JP3013992B2 (en) Method for growing compound semiconductor crystal
JP3155007B2 (en) Compound semiconductor and manufacturing method thereof
JP2000068497A (en) GaN-BASED COMPOUND SEMICONDUCTOR DEVICE
KR960004591B1 (en) Doped crystal growing method
JP2885435B2 (en) Method for manufacturing compound semiconductor thin film
JP2861192B2 (en) Vapor phase growth of compound semiconductor crystals
JPH0714785A (en) Semiconductor epitaxial substrate and production thereof
JPS63143810A (en) Vapor growth of compound semiconductor
JPH07201761A (en) Growth of compound semiconductor
JP3141628B2 (en) Compound semiconductor device and method of manufacturing the same
JP2936620B2 (en) Vapor phase growth of compound semiconductor crystals
JP3424315B2 (en) Vapor phase growth method of III-V compound mixed crystal semiconductor thin film
JP2861199B2 (en) Vapor phase growth of compound semiconductor crystals
JP2000124444A (en) Semiconductor device and epitaxial wafer
JPS6317293A (en) Method for forming thin film of compound semiconductor and device therefor
JP2793239B2 (en) Method for manufacturing compound semiconductor thin film

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20070914

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20080914

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090914

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20090914

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees