JPH05315837A - High stable crystal oscillator - Google Patents

High stable crystal oscillator

Info

Publication number
JPH05315837A
JPH05315837A JP14488492A JP14488492A JPH05315837A JP H05315837 A JPH05315837 A JP H05315837A JP 14488492 A JP14488492 A JP 14488492A JP 14488492 A JP14488492 A JP 14488492A JP H05315837 A JPH05315837 A JP H05315837A
Authority
JP
Japan
Prior art keywords
frequency
crystal oscillator
oscillator
temperature
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14488492A
Other languages
Japanese (ja)
Inventor
Tomio Sato
富雄 佐藤
Makoto Sugano
誠 菅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Communication Equipment Co Ltd
Original Assignee
Toyo Communication Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Communication Equipment Co Ltd filed Critical Toyo Communication Equipment Co Ltd
Priority to JP14488492A priority Critical patent/JPH05315837A/en
Publication of JPH05315837A publication Critical patent/JPH05315837A/en
Pending legal-status Critical Current

Links

Landscapes

  • Oscillators With Electromechanical Resonators (AREA)

Abstract

PURPOSE:To provide a highly stable frequency signal just after application of power with a long service life of the oscillator by detecting a frequency difference between a constant temperature oven type crystal oscillator and a temperature compensation type crystal oscillator so as to control two oscillator outputs switchingly. CONSTITUTION:After application of power, since an internal temperature of a constant temperature oven 10 is low just after the application, the oscillating frequency is largely apart from a desired oscillating frequency. However, as an internal temperature of the constant temperature oven 10 approaches a prescribed value in response to the lapse of time, the oscillating frequency approaches the desired frequency. On the other hand, the temperature compensation type crystal oscillator 2 does not have high frequency stability but generates a signal having a frequency stability of some degree just after application of power. Thus, a switch circuit 3 is controlled to select the output of the oscillator 2 for a while just after application of power, and a comparator 4 compares an output signal frequency of the constant temperature over type crystal oscillator 1 with an output signal frequency of the oscillator 2. When the output signal frequency of the oscillator 1 is closer to the desired signal frequency than the output signal frequency of the oscillator 2, the switch circuit 3 is controlled to select the output of the oscillator 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高安定度水晶発振器に関
し、詳細には恒温槽型発振器と温度補償型水晶発振器と
を組み合わせて、電源投入時の恒温槽型発振器の不安定
性を温度補償発振器によって補い、電源投入時から高安
定度の周波数信号を得ることができる発振器に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-stability crystal oscillator, and more particularly to a combination of a constant-temperature bath oscillator and a temperature-compensated crystal oscillator to eliminate the instability of the constant-temperature oscillator when the power is turned on. The present invention relates to an oscillator capable of obtaining a high-stability frequency signal even after power is turned on.

【0002】[0002]

【従来技術】周波数計測装置やスペクトルアナライザ等
の測定器においては極めて高安定度の周波数信号が必要
であり、その安定度によって測定器の精度が決定される
と言っても過言ではない。そのため従来からできるだけ
高安定度の発振周波数を得るための対策が成されてい
る。
2. Description of the Related Art It is no exaggeration to say that a measuring device such as a frequency measuring device or a spectrum analyzer requires a frequency signal with extremely high stability, and the accuracy of the measuring device is determined by the stability. Therefore, conventionally, measures have been taken to obtain an oscillation frequency with the highest possible stability.

【0003】従来高精度の測定器に使用する発振器は、
水晶振動子やその他温度の影響を受け易い回路部品を一
定の温度を保つ恒温槽に密封した恒温槽型発振器が使用
されるが、恒温槽の内部温度は一般的に70〜80度等
の高い温度に設定されることから、電源投入直後は恒温
槽内部温度が急速に上昇せず、所要温度になるまでに凡
そ10分から30分を要し、その間は発振周波数が安定
しないため測定器としての機能を果たせないと云う欠点
があった。
The oscillator used in the conventional high-precision measuring instrument is
A constant temperature bath type oscillator is used in which a crystal unit and other circuit components that are easily affected by temperature are sealed in a constant temperature bath that maintains a constant temperature. The internal temperature of the constant temperature bath is generally high, such as 70 to 80 degrees. Since the temperature is set, the temperature inside the thermostatic chamber does not rise rapidly immediately after the power is turned on, and it takes about 10 to 30 minutes to reach the required temperature. During that time, the oscillation frequency is not stable, so There was a drawback that it could not fulfill its function.

【0004】従って、従来の恒温槽型発振器を使用する
測定器等においては、常時電源を投入しておく等の使用
方法をとらざるを得ず、消費電力が嵩むという欠点だけ
でなく、装置の耐用年数が短くなると云う問題があっ
た。
Therefore, in a conventional measuring instrument or the like using a constant temperature oven oscillator, there is no choice but to use the power source such as always turning on the power source, which is not only a drawback that power consumption increases but also the device There was a problem that the service life was shortened.

【0005】[0005]

【発明の目的】本発明はこのような従来の高安定度水晶
発振器の問題点を解決し、耐用年数が長く、しかも電源
投入直後から比較的高安定度の周波数信号を得ることが
できる水晶発振器を提供することを目的としている。
SUMMARY OF THE INVENTION The present invention solves the problems of the conventional high-stability crystal oscillator, has a long service life, and is capable of obtaining a relatively stable frequency signal immediately after the power is turned on. Is intended to provide.

【0006】[0006]

【発明の概要】この目的を達成するために本発明では、
水晶振動子の環境温度を所定温度に保った恒温槽型水晶
発振器と、温度補償型水晶発振器と、上記二つの発振器
の周波数差を検出する周波数検出回路と、上記二つの発
振器出力を切り替えて出力するスイッチ手段と、上記周
波数検出回路によって上記スイッチ手段を制御する手段
とを具えたことを特徴としている。
SUMMARY OF THE INVENTION To achieve this object, the present invention provides:
Temperature controlled crystal oscillator that keeps the ambient temperature of the crystal unit at a specified temperature, temperature compensated crystal oscillator, frequency detection circuit that detects the frequency difference between the two oscillators, and output by switching the two oscillator outputs And a means for controlling the switch means by the frequency detection circuit.

【0007】[0007]

【実施例】以下図面に示した実施例を参照しながら本発
明を詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below with reference to the embodiments shown in the drawings.

【0008】図1は本発明の一実施例を示したブロック
構成図であり、この図に示す水晶発振器は、恒温槽付き
水晶発振器1と、温度補償型水晶発振器2と、上記二つ
の水晶発振器の出力を切り替えて出力するスイッチ回路
3と、上記二つの水晶発振器の出力する信号周波数を比
較し両者の差によって上記スイッチを制御する周波数比
較回路4とを具えた構成となっている。
FIG. 1 is a block diagram showing an embodiment of the present invention. The crystal oscillator shown in this figure includes a crystal oscillator 1 with a thermostatic chamber, a temperature-compensated crystal oscillator 2, and the above-mentioned two crystal oscillators. The switch circuit 3 for switching and outputting the output of 1 and the frequency comparison circuit 4 for comparing the signal frequencies output by the two crystal oscillators and controlling the switch by the difference between the two.

【0009】更に各ブロックの構成を説明すると、上記
恒温槽付き水晶発振器1は、内部温度を一定に保った恒
温槽10と、その内部に収納された水晶振動子11と、
該水晶振動子を接続した発振回路12と、上記恒温槽1
0の温度を制御する温度制御回路13とを具えており、
温度制御回路は恒温槽内部温度をサ−ミスタ等の感温素
子によって検出すると共に内部温度が70度乃至は80
度に一定になるようにヒ−タに通電する。
The structure of each block will be further described. The crystal oscillator with a constant temperature oven 1 has a constant temperature oven 10 having a constant internal temperature, a crystal oscillator 11 housed inside the constant temperature oven 10.
Oscillation circuit 12 to which the crystal oscillator is connected, and the constant temperature bath 1
And a temperature control circuit 13 for controlling the temperature of 0,
The temperature control circuit detects the internal temperature of the constant temperature bath by a temperature sensitive element such as a thermistor, and the internal temperature is 70 to 80 degrees.
Energize the heater so that it becomes constant every time.

【0010】また周波数比較器4は、上記恒温槽付き水
晶発振器1の出力と温度補償型水晶発振器2の出力とを
混合するミキサ41と、この混合出力から両信号の差を
抽出する低域フィルタ42と、低域フィルタ出力波形を
整形する波形整形回路43と、整形されパルス信号とな
った出力のパルス数を計測し、計測結果に基づいて上記
スイッチ回路3を制御するパルス係数回路44とからな
っている。
The frequency comparator 4 includes a mixer 41 for mixing the output of the crystal oscillator 1 with a thermostat and the output of the temperature-compensated crystal oscillator 2, and a low-pass filter for extracting the difference between the two signals from the mixed output. 42, a waveform shaping circuit 43 that shapes the output waveform of the low-pass filter, and a pulse coefficient circuit 44 that measures the number of pulses of the output that has been shaped into a pulse signal and controls the switch circuit 3 based on the measurement result. Has become.

【0011】温度補償型水晶発振器2は水晶振動子の温
度特性に応じて発振周波数を所定値になるように制御し
たもので、例えば電圧制御可変容量ダイオ−ド等の可変
リアクタンスやサ−ミスタ等の感温素子を組み合わせた
種々のアナログ式回路或はデジタル式回路が知られてい
る。
The temperature-compensated crystal oscillator 2 controls the oscillation frequency to a predetermined value in accordance with the temperature characteristics of the crystal oscillator. For example, a variable reactance such as a voltage controlled variable capacitance diode or a thermistor. Various analog-type or digital-type circuits in which the temperature-sensitive elements are combined are known.

【0012】このように構成された発振回路は次のよう
に制御され且つ動作する。先ず、電源が投入されると、
その直後は恒温槽内部温度が低いため希望する発振周波
数からは大きく離れた値であり、時間の経過に応じて恒
温槽内部温度が所定値に近づくにつれ希望周波数に接近
する。一方、温度補償型水晶発振器2は周波数安定度は
さ程高くはないが電源投入直後からある程度の周波数安
定度をもった信号を発生する。そこで、電源投入直後か
らしばらくの間は温度補償型水晶発振回路2の出力を選
択するようにスイッチ回路を制御すると共に、周波数比
較回路4において恒温槽付き水晶発振器の出力信号と温
度補償型水晶発振器との出力信号周波数を比較し、恒温
槽付き水晶発振器の出力信号が温度補償型水晶発振器の
出力信号周波数より希望信号周波数に近づいた時点で、
上記スイッチ回路3を制御して、恒温槽付き水晶発振器
出力を選択する。
The oscillator circuit configured as described above is controlled and operates as follows. First, when the power is turned on,
Immediately after that, since the temperature inside the constant temperature bath is low, the value is far from the desired oscillation frequency, and approaches the desired frequency as the temperature inside the constant temperature chamber approaches a predetermined value over time. On the other hand, the temperature compensated crystal oscillator 2 generates a signal having a certain frequency stability immediately after the power is turned on, although the frequency stability is not so high. Therefore, the switch circuit is controlled so as to select the output of the temperature-compensated crystal oscillation circuit 2 for a while immediately after the power is turned on, and the output signal of the crystal oscillator with a thermostatic chamber and the temperature-compensated crystal oscillator are controlled in the frequency comparison circuit 4. Compare the output signal frequency with the, and when the output signal of the crystal oscillator with constant temperature bath is closer to the desired signal frequency than the output signal frequency of the temperature compensation type crystal oscillator,
The switch circuit 3 is controlled to select the crystal oscillator output with a constant temperature oven.

【0013】図2は上記制御の模様を説明するための図
であり、両者の発振器の発振周波数の時間的変化を図示
したものである。この図について説明すると、図の左半
分は縦軸の目盛りが10-6で横軸がmin(分)で示
し、図の右半分は縦軸が10-8、横軸がsec(秒)で
示されている。この図から明らかなように、恒温槽付き
水晶発振器では電源投入直後は周波数偏差が3*10-5
と大きくづれているが約30分後には周波数偏差が5*
10-8と高い安定度に達するのに対し、温度補償水晶発
振器では電源投入直後から5*10-7の周波数偏差を保
つ。そこで、この実施例では両者の周波数が交差するP
点近傍において上記スイッチ回路を制御し、それ以前は
温度補償型水晶発振器の出力を、またそれ以後は恒温槽
付き水晶発振器の出力を選択して出力するように制御す
る。
FIG. 2 is a diagram for explaining the pattern of the above-mentioned control, and illustrates the temporal changes in the oscillation frequencies of both oscillators. Explaining this figure, the left half of the figure shows the scale of the vertical axis as 10 -6 and the horizontal axis as min (minutes), and the right half of the figure shows the vertical axis as 10 -8 and the horizontal axis as sec (seconds). It is shown. As is clear from this figure, in the crystal oscillator with constant temperature chamber, the frequency deviation is 3 * 10 -5 immediately after the power is turned on.
The frequency deviation is 5 * after about 30 minutes.
While it reaches a high stability of 10 -8 , the temperature-compensated crystal oscillator maintains a frequency deviation of 5 * 10 -7 immediately after the power is turned on. Therefore, in this embodiment, P at which both frequencies cross
The switch circuit is controlled in the vicinity of the point, and the output of the temperature-compensated crystal oscillator before that and the output of the crystal oscillator with a thermostatic chamber are selected and output thereafter.

【0014】この制御は周波数比較回路4によって実行
するが、その制御例を図3に示す。図3は周波数比較回
路の各部の信号波形を図示したもので、先ず、この周波
数比較回路4のミキサ41には二つの発振器の差の信号
が発生するが、電源投入直後は非常に大きな周波数が出
力されることになり、その波形は図3のaのようにな
る。この混合信号には二つの周波数の和と差が含まれて
おり、次の低域フィルタによって両周波数の差のみが選
択され出力される(図3のb)。この信号は波形整形回
路43において図3のcに示すようにパルス波形に整え
られ、次の計数回路44によって単位時間あたりのパル
ス数が計数される。
This control is executed by the frequency comparison circuit 4, and an example of the control is shown in FIG. FIG. 3 shows the signal waveform of each part of the frequency comparison circuit. First, a signal of the difference between the two oscillators is generated in the mixer 41 of the frequency comparison circuit 4, but a very large frequency immediately after the power is turned on. It will be output, and its waveform will be as shown in FIG. This mixed signal contains the sum and difference of the two frequencies, and only the difference between the two frequencies is selected and output by the next low pass filter (b in FIG. 3). This signal is shaped into a pulse waveform by the waveform shaping circuit 43 as shown in FIG. 3C, and the number of pulses per unit time is counted by the next counting circuit 44.

【0015】両者の周波数は時間と共に接近し、上記P
点において両周波数が一致するから上記計数回路の結果
はゼロとなる。そこで、この結果によってそれまで温度
補償水晶発振器出力を選択していたスイッチ回路3を切
り替えて、恒温槽付き水晶発振器出力を出力する。
Both frequencies approach with time, and the P
Since both frequencies match at a point, the result of the counting circuit becomes zero. Therefore, according to this result, the switch circuit 3 which has previously selected the temperature-compensated crystal oscillator output is switched to output the crystal oscillator output with a thermostatic chamber.

【0016】なお、この切り替え後は、温度補償水晶発
振器は必要ないので、周波数比較回路と共々電源を遮断
してもよいが、何らかの原因で恒温槽付き水晶発振器出
力周波数が大きく変動した場合に具えて両者の電源をそ
のままにし常時二つの信号周波数を比較しておき、必要
に応じて温度補償型水晶発振器側に切り替えるように構
成することもできる。
Since the temperature-compensated crystal oscillator is not required after this switching, the power supply may be shut off together with the frequency comparison circuit. It is also possible to keep the power supplies of both devices as they are and compare the two signal frequencies at all times, and switch to the temperature-compensated crystal oscillator side if necessary.

【0017】以上のように構成すれば、電源投入直後か
ら恒温槽付き水晶発振器の出力周波数が所要値に達する
までは併設した温度補償型水晶発振器の出力を選択し、
より安定度の高い恒温槽付き水晶発振器出力が所望値に
達した後はこれに切り替えることができるから、両者の
特徴を生かした発振器を構成することができる。
With the above configuration, the output of the temperature-compensated crystal oscillator provided side by side is selected from immediately after the power is turned on until the output frequency of the crystal oscillator with the thermostat reaches the required value.
After the crystal oscillator output with a thermostat having a higher stability reaches a desired value, it can be switched to this value, so that an oscillator that makes the best use of the features of both can be constructed.

【0018】[0018]

【発明の効果】本発明は、以上説明したように周波数安
定度が極めて高いが周波数が安定するまでに長時間を要
する恒温槽付き水晶発振器と、立ち上がり時間は短いが
周波数安定度が劣る温度補償型水晶発振器とを組み合わ
せ、電源投入直後からしばらくの間は立ち上がり特性に
優れた温度補償型水晶発振器の出力を選択し、恒温槽付
き水晶発振器の出力が安定した後はこれを選択するよう
に構成したので、電源投入直後からある程度の安定度を
もった周波数情報を得ることができる。
As described above, the present invention provides a crystal oscillator with a thermostatic chamber which has extremely high frequency stability but requires a long time for the frequency to stabilize, and temperature compensation which has a short rise time but poor frequency stability. In combination with a crystal oscillator, the output of a temperature-compensated crystal oscillator with excellent startup characteristics is selected for a while immediately after the power is turned on, and is selected after the output of the crystal oscillator with an oven is stable. Therefore, it is possible to obtain frequency information with a certain degree of stability immediately after the power is turned on.

【0019】また、恒温槽付き水晶発振器使用時であっ
ても、これに障害が生じた場合、迅速に温度補償型発振
器に切り替えることができるから、発振器としての信頼
性を高める上でも効果がある。
Further, even when a crystal oscillator with a constant temperature oven is used, if a failure occurs in the crystal oscillator, the temperature-compensated oscillator can be switched to quickly, which is effective in improving the reliability of the oscillator. .

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示すブロック構成図であ
る。
FIG. 1 is a block diagram showing an embodiment of the present invention.

【図2】本発明の制御及び動作を説明するための周波数
特性図である。
FIG. 2 is a frequency characteristic diagram for explaining control and operation of the present invention.

【図3】本発明において使用する周波数比較回路の動作
例を説明する信号波形図であり、(a) はミキサ出力波
形、(b) は低域フィルタ出力波形、(c) は波形整形回路
出力波形である。
FIG. 3 is a signal waveform diagram illustrating an operation example of a frequency comparison circuit used in the present invention, (a) is a mixer output waveform, (b) is a low-pass filter output waveform, and (c) is a waveform shaping circuit output. It is a waveform.

【符号の説明】[Explanation of symbols]

1 恒温槽付き水晶発振器、 2 温度補償型水晶発
振器、3 スイッチ回路、 4 周波数比較回路、10
恒温槽、 11 水晶振動子、 12 発振回路、
13 恒温槽制御回路、 41 ミキサ、 42 低域
フィルタ、 43 波形整形回路、 44 計数回路。
1 crystal oscillator with constant temperature bath, 2 temperature compensated crystal oscillator, 3 switch circuit, 4 frequency comparison circuit, 10
Constant temperature bath, 11 crystal oscillator, 12 oscillator circuit,
13 constant temperature bath control circuit, 41 mixer, 42 low pass filter, 43 waveform shaping circuit, 44 counting circuit.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも水晶振動子の環境温度を所定
温度に保つ恒温槽型水晶発振器と、温度補償型水晶発振
器と、上記二つの発振器の周波数差を検出する周波数検
出回路と、上記二つの発振器出力を切り替えて出力する
スイッチ手段と、上記周波数検出回路によって上記スイ
ッチ手段を制御する手段とを具えたことを特徴とする高
安定度水晶発振器。
1. A constant temperature oven type crystal oscillator for keeping at least the ambient temperature of the crystal unit at a predetermined temperature, a temperature compensation type crystal oscillator, a frequency detection circuit for detecting a frequency difference between the two oscillators, and the two oscillators. A high-stability crystal oscillator, comprising switch means for switching and outputting the output, and means for controlling the switch means by the frequency detection circuit.
【請求項2】 少なくとも水晶振動子の環境温度を所定
温度に保つ恒温槽型水晶発振器と、温度補償型水晶発振
器と、上記二つの発振器出力を切り替えて出力するスイ
ッチ手段と、上記二つの発振器の周波数差を検出する周
波数検出回路とを備え、電源投入時は温度補償型水晶発
振器の出力を、また上記二つの発振器の周波数差が一定
値以下になった時は恒温槽型水晶発振器の出力を選択す
ることを特徴とする高安定度水晶発振器。
2. A constant temperature chamber type crystal oscillator for keeping at least the ambient temperature of the crystal unit at a predetermined temperature, a temperature compensation type crystal oscillator, a switch means for switching between the outputs of the two oscillators and outputting the two oscillators. Equipped with a frequency detection circuit that detects the frequency difference, the output of the temperature-compensated crystal oscillator when the power is turned on, and the output of the temperature-controlled crystal oscillator when the frequency difference between the two oscillators is below a certain value. High stability crystal oscillator characterized by selection.
JP14488492A 1992-05-11 1992-05-11 High stable crystal oscillator Pending JPH05315837A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14488492A JPH05315837A (en) 1992-05-11 1992-05-11 High stable crystal oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14488492A JPH05315837A (en) 1992-05-11 1992-05-11 High stable crystal oscillator

Publications (1)

Publication Number Publication Date
JPH05315837A true JPH05315837A (en) 1993-11-26

Family

ID=15372612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14488492A Pending JPH05315837A (en) 1992-05-11 1992-05-11 High stable crystal oscillator

Country Status (1)

Country Link
JP (1) JPH05315837A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112422123A (en) * 2020-11-24 2021-02-26 武汉滨湖电子有限责任公司 Low-phase noise frequency synthesizer and local oscillator implementation method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112422123A (en) * 2020-11-24 2021-02-26 武汉滨湖电子有限责任公司 Low-phase noise frequency synthesizer and local oscillator implementation method

Similar Documents

Publication Publication Date Title
US4305041A (en) Time compensated clock oscillator
US6356161B1 (en) Calibration techniques for a precision relaxation oscillator integrated circuit with temperature compensation
US6078208A (en) Precision temperature sensor integrated circuit
CA1139380A (en) Crystal oscillator temperature compensating circuit
US6784756B2 (en) On-board processor compensated oven controlled crystal oscillator
US5848355A (en) Frequency synthesizer correction using a temperature responsive divisor control
US4839613A (en) Temperature compensation for a disciplined frequency standard
WO1994003980A1 (en) Temperature compensated oscillator circuit
WO1999007069A1 (en) System for compensating for temperature induced delay variation in an integrated circuit
US5004987A (en) Temperature compensated crystal resonator found in a dual-mode oscillator
US9231520B2 (en) Wien-bridge oscillator and circuit arrangement for regulating a detuning
JPH05315837A (en) High stable crystal oscillator
JP2000183649A (en) Highly stable piezo-oscillator
JP2002076774A (en) Method for regulating temperature compensated oscillator
Jackson et al. The microcomputer compensated crystal oscillator a progress report
Filler Thermal hysteresis in quartz crystal resonators and oscillators
US6263194B1 (en) Transmitter cut off apparatus
JPS6016134B2 (en) Atomic frequency standard device
JP2975386B2 (en) Digital temperature compensated oscillator
JPS61264918A (en) Voltage controlled oscillator
JP2001165972A (en) Insulation-resistance measuring apparatus
JP3058425B2 (en) Temperature compensated oscillator
SU1494199A1 (en) Quartz generator with temperature compensation
JPH11194184A (en) Output frequency correction method for oscillation reference element, output frequency correction circuit of oscillation reference element and electronic control component
Frerking et al. Oscillator Frequency Stability