JPH05315055A - Ceramic heater - Google Patents

Ceramic heater

Info

Publication number
JPH05315055A
JPH05315055A JP4333647A JP33364792A JPH05315055A JP H05315055 A JPH05315055 A JP H05315055A JP 4333647 A JP4333647 A JP 4333647A JP 33364792 A JP33364792 A JP 33364792A JP H05315055 A JPH05315055 A JP H05315055A
Authority
JP
Japan
Prior art keywords
ceramic heater
heating element
pattern
ceramic
heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4333647A
Other languages
Japanese (ja)
Other versions
JP3436769B2 (en
Inventor
Keizo Furusaki
圭三 古崎
Yoshitake Kawachi
良毅 川地
Yasushi Matsuo
康司 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26427519&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH05315055(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP33364792A priority Critical patent/JP3436769B2/en
Publication of JPH05315055A publication Critical patent/JPH05315055A/en
Application granted granted Critical
Publication of JP3436769B2 publication Critical patent/JP3436769B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)
  • Resistance Heating (AREA)

Abstract

PURPOSE:To contrive extension of a life by improving a pattern metallic material itself so as to prevent generation of a pattern wire break phenomenon, in a ceramic heater in which a heating unit pattern of high melting point metal of tungsten or the like is buried in a ceramic sintered body mainly composed of alumina. CONSTITUTION:A heating unit pattern is formed of metallic material of high melting point of containing 10wt.% or more rhenium (Re). Thus by obtaining improvement of durability to also provide advantage relating to also generation of a ceramic crack due to a thermal expansion difference, miniaturization can be also attained. A heater is suited for an oxygen sensor.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、セラミック焼結体中に
高融点金属の発熱体パターンを埋設したセラミックヒー
タ、特に内燃機関の排気管に装着され排気ガス中酸素濃
度を検出する酸素センサの加熱用等の、長期間連続して
高温で使用されるのに適したセラミックヒータに関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ceramic heater in which a heating element pattern of a refractory metal is embedded in a ceramic sintered body, and more particularly to an oxygen sensor mounted on an exhaust pipe of an internal combustion engine for detecting the oxygen concentration in exhaust gas. The present invention relates to a ceramic heater suitable for continuous use at a high temperature for a long period of time such as for heating.

【0002】[0002]

【従来の技術】従来、セラミック基材としてアルミナ
(Al2 3 )を用い、その未焼成のアルミナ基材、高
融点金属例えばタングステン(W)の、例えばペースト
印刷法で形成した発熱体パターン、およびアルミナのグ
リーンシートがその順序で積層され、一体焼成してなる
セラミックヒータが知られている。この場合、グリーン
シートは焼成後において発熱パターンの保護層となる。
2. Description of the Related Art Conventionally, alumina (Al 2 O 3 ) has been used as a ceramic substrate, and an unsintered alumina substrate, a heating element pattern of a refractory metal such as tungsten (W) formed by, for example, a paste printing method, A ceramic heater is known in which green sheets of alumina and alumina are laminated in that order and integrally fired. In this case, the green sheet becomes a protective layer for the heating pattern after firing.

【0003】しかし、この種のセラミックヒータは高温
に長期間晒される酸素センサの加熱に使用した場合、発
熱体の抵抗が増大して発熱体が断線すると共に、保護層
にクラックが発生し、最悪の場合にはそれが崩壊し、ヒ
ータ寿命が低下する問題を有する。この場合、外観的に
は発熱体の陰極に近い発熱部付近が黒ずみ、いわゆる黒
色化現象を生じている。
However, when this type of ceramic heater is used for heating an oxygen sensor that is exposed to high temperatures for a long time, the resistance of the heating element increases, the heating element is disconnected, and cracks occur in the protective layer, which is the worst case. In that case, there is a problem that it collapses and the life of the heater is shortened. In this case, in appearance, a so-called blackening phenomenon occurs in the vicinity of the heat generating portion near the cathode of the heat generating body, which is darkened.

【0004】このため、使用条件を検知して必要な時だ
け通電することにより耐久寿命を維持することが行なわ
れているが、検知手段および通電制御手段が別途必要と
なって装置が複雑化する他、検知手段等の故障による新
たな寿命低下原因を生じ根本的な解決策とはなり得な
い。
For this reason, it has been attempted to maintain the durable life by detecting the use condition and energizing only when necessary, but the detecting means and the energization controlling means are separately required and the apparatus becomes complicated. In addition, a new cause of shortening the life due to a failure of the detection means or the like is generated and cannot be a fundamental solution.

【0005】[0005]

【発明が解決しようとする課題】本発明では、別途手段
の外的付与を必要とせず、セラミックヒータ自体の改良
によってヒータ寿命を長期化できるセラミックヒータを
提供することを目的とした。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a ceramic heater which can extend the life of the heater by improving the ceramic heater itself without requiring external addition of a separate means.

【0006】本発明者は、こうした見地に立って先ず高
温下で使用されるときのセラミックヒータ劣化要因を分
析し、従来セラミックヒータの断線現象のメカニズムを
考察した。その結果は、既に特開平1−225087に
も開示されている如く以下のとおりである。
From the above viewpoint, the present inventor first analyzed the cause of deterioration of the ceramic heater when it is used at high temperature, and considered the mechanism of the disconnection phenomenon of the conventional ceramic heater. The results are as follows, as already disclosed in JP-A 1-225087.

【0007】先ず、従来セラミックヒータの断線発生後
の状態についてのEPMA(元素分析)の結果を模式的
に図4(A),(B)に示す。又、セラミックヒータを
1000℃の大気雰囲気中におき、直流17Vで連続印
加することにより通電し、発熱体の抵抗値の変化を調べ
た結果を図5に示す。これらの結果から次の現象、
およびが認められた。 発熱体の陰極に近い発熱部、即ち陰極側第1パター
ン(PN1)の部分が局部的に白色(アルミナの通常
色)から黒色に変化していること。 発熱体の陽極に近い発熱部、即ち陽極側第1パター
ン(PP1)の部分が局部的にクラックを生じているこ
と。 発熱体の陽極側第1パターン(PP1)部の抵抗が
陽極側第2、第3パターン部に比して著しく増大してい
ること。
First, the results of EPMA (elemental analysis) regarding the state after the occurrence of disconnection of the conventional ceramic heater are schematically shown in FIGS. 4 (A) and 4 (B). Further, FIG. 5 shows the results of examining the change in the resistance value of the heating element by placing the ceramic heater in the atmosphere of 1000 ° C. and continuously energizing it by applying a direct current of 17 V. From these results the following phenomena,
And were recognized. The heating portion near the cathode of the heating element, that is, the portion of the cathode side first pattern (PN1) locally changes from white (normal color of alumina) to black. The heat generating portion of the heat generating element near the anode, that is, the portion of the first pattern (PP1) on the anode side is locally cracked. The resistance of the first pattern (PP1) on the anode side of the heating element is significantly increased as compared with the second and third pattern sections on the anode side.

【0008】上記現象を解明するための理論的考察は次
のとおりである。セラミックヒータを構成するアルミナ
基材は主成分としてのアルミナの他、焼結促進成分とし
て種々の金属酸化物が含有されて焼結され、これら金属
酸化物は焼結体においてはアルミナ粒界のガラス相とし
て存在する。こうしたセラミックヒータを高温下にて直
流通電させるとガラス相中に存在するマグネシウム(M
g)、カルシウム(Ca)原子が陽イオンとなって陰極
側に移動する一方、該成分の近傍に存在する酸素(O)
原子が電気的中性を維持するため酸素イオンとなり陽極
側に移動する。そのため、マグネシウム、カルシウム成
分が単体又は酸化物等として陰極端子付近に堆積し、そ
の部位の黒色化をもたらす。即ち直流印加によりアルミ
ナ粒界のガラス相中のフラックス成分が電気分解を受け
るものと考えられる〔現象〕。又、陽極側に移動した
酸素イオンにより発熱体材料、例えばタングステンが酸
化され、その部位の抵抗値を増大させる〔現象〕。
又、この酸化反応によって発熱体は体積膨脹を起こし、
発熱体に断線を生ずると共に、保護層に応力が加わり、
クラックを生ずる〔現象〕。なお、酸化した発熱体材
料はその一部が拡散により保護層、更には外界へ移動
し、この意味でも発熱体の抵抗値を増大させる〔現象
〕。その後、こうしたセラミックヒータが高温に晒さ
れ続けると、保護層のクラックから侵入した外気酸素に
より、爆発的に発熱体材料が酸化され、より一層の体積
膨脹を起こし、保護層の剥離、崩壊に至る。
Theoretical consideration for clarifying the above phenomenon is as follows. The alumina base material forming the ceramic heater is sintered by containing not only alumina as a main component but also various metal oxides as a sintering promoting component, and these metal oxides are glass of alumina grain boundaries in the sintered body. Exists as a phase. When DC current is applied to such a ceramic heater at a high temperature, magnesium (M
g), calcium (Ca) atoms become cations and move to the cathode side, while oxygen (O) existing in the vicinity of the component
Since the atoms maintain electrical neutrality, they become oxygen ions and move to the anode side. Therefore, magnesium and calcium components are deposited in the vicinity of the cathode terminal as a simple substance or as an oxide, which causes blackening of the site. That is, it is considered that the flux component in the glass phase of the alumina grain boundary is electrolyzed by the application of direct current [phenomenon]. Also, the oxygen ions that have moved to the anode side oxidize the heating element material, for example, tungsten, and increase the resistance value at that portion [phenomenon].
In addition, the heating element causes volume expansion due to this oxidation reaction,
As the wire breaks in the heating element, stress is applied to the protective layer,
A crack is generated [phenomenon]. A part of the oxidized heating element material moves to the protective layer and further to the outside due to diffusion, and in this sense also increases the resistance value of the heating element [phenomenon]. After that, when such a ceramic heater is continuously exposed to high temperature, the oxygen in the outside air that has entered through the cracks in the protective layer explosively oxidizes the heating element material, causing further volume expansion, leading to peeling and collapse of the protective layer. ..

【0009】即ち、発熱体の断線メカニズムの要点は、
酸素イオンの高電位側への移動により発熱体材料、例え
ばタングステン(W)が酸化されることにあると考えら
れるに至った。
That is, the main points of the disconnection mechanism of the heating element are
It has been considered that the heating element material, for example, tungsten (W) is oxidized by the movement of oxygen ions to the high potential side.

【0010】[0010]

【課題を解決するための手段】即ち、本発明者等は上記
ヒータ断線のメカニズムの考察結果に基づき、発熱体材
料、例えばタングステンの酸化を効果的に抑制するべく
高融点金属でしかも耐酸化性に優れたレニウムを発熱体
に添加することを着想した。なお、タングステンへのレ
ニウムの添加は、先に特公昭63−35895におい
て、セラミックグロープラグ内部の高融点金属の発熱線
にレニウムを5〜30重量%添加することにより、発熱
線の比抵抗を増加方向に調整してグロープラグの発熱効
率を向上させる技術が開示されているが、本発明者等
は、レニウムの優れた耐酸化性に着目し、アルミナを主
成分とするセラミックヒータの寿命向上を果たすべく研
究を重ね、レニウムの添加量が10重量%以上のとき、
上記セラミックヒータの寿命が著しく向上され、しかも
耐熱衝撃についても満足されることを見出した。
That is, the inventors of the present invention, based on the result of consideration of the mechanism of the above-mentioned heater wire breakage, use a refractory metal and an oxidation resistance in order to effectively suppress the oxidation of the heating element material such as tungsten. The idea was to add excellent rhenium to the heating element. In addition, the addition of rhenium to tungsten increases the specific resistance of the heating wire by adding 5 to 30% by weight of rhenium to the heating wire of the refractory metal inside the ceramic glow plug in Japanese Patent Publication No. 63-35895. A technique for adjusting the heat generation efficiency of the glow plug by adjusting the direction is disclosed. However, the present inventors have focused on the excellent oxidation resistance of rhenium, and have improved the life of a ceramic heater containing alumina as a main component. After repeated research to achieve the above, when the amount of rhenium added is 10% by weight or more,
It has been found that the life of the ceramic heater is remarkably improved and the thermal shock resistance is also satisfied.

【0011】即ち本発明は、アルミナを主成分とするセ
ラミック焼結体中に、高融点金属の発熱パターンを埋設
したセラミックヒータにおいて、発熱体パターンが10
重量%以上のレニウムを含有することを特徴とするセラ
ミックヒータである。
That is, according to the present invention, in a ceramic heater in which a heating pattern of a refractory metal is embedded in a ceramic sintered body containing alumina as a main component, the heating element pattern is 10
It is a ceramic heater characterized by containing rhenium in an amount of at least wt%.

【0012】本発明はその特徴を備える限りにおいて、
ヒータ要素の外に他の要素例えばセンサ素子要素を併設
させてもよい。
As long as the present invention has its features,
Other elements, for example, sensor element elements may be provided in addition to the heater elements.

【0013】主成分としてのアルミナは、平均結晶粒径
10μm以下、相対理論密度94%以上であることが熱
伝導特性に優れた高温高強度材料とするために好まし
い。
Alumina as a main component preferably has an average crystal grain size of 10 μm or less and a relative theoretical density of 94% or more in order to obtain a high temperature and high strength material having excellent heat conduction characteristics.

【0014】本発明のセラミックヒータにおいて好まし
く用いることができる基材は、その形状としては被加熱
体例えばセンサの状況に応じて棒状、板状、管状等種々
のものが採用でき、その材質としてはアルミナの他、ム
ライト、スピネル等のアルミナ類似セラミック等の高温
高強度セラミックが使用できる。また、基材を用いたと
きに好ましく用いることができるアルミナを主成分とす
るセラミックのグリーンシートは、パターンを包含する
ように配置・積層され、基材とパターンとの接合性を向
上させ、また高温環境下において高融点金属のパターン
を保護する。
The base material that can be preferably used in the ceramic heater of the present invention can adopt various shapes such as a rod shape, a plate shape, and a tubular shape depending on the condition of the object to be heated, for example, the sensor. In addition to alumina, high-temperature high-strength ceramics such as alumina-like ceramics such as mullite and spinel can be used. Further, the ceramic green sheet containing alumina as a main component, which can be preferably used when the base material is used, is arranged and laminated so as to include the pattern to improve the bondability between the base material and the pattern. Protects the pattern of refractory metal in a high temperature environment.

【0015】発熱体パターンは、本発明に従ってレニウ
ム(Re)を10重量%以上を含有し残部が実質的にタ
ングステン(W)やモリブデン(Mo)等の高融点金属
からなる高融点金属材料、または実質的にレニウムから
なる高融点金属材料で構成する。なお、抵抗特性に悪影
響を与えない限りにおいて若干酸化物等を存在させても
もよい。ここで発熱体パターンは、高抵抗性の発熱部
と、電源との接続に供されかつ多くの場合発熱部よりも
巾広に形成されて比較的低抵抗性とされる接続部とから
なり、その発熱部はセンサ等の被加熱体の状況に応じて
所定の大きさ、形状に形成されるが、その発熱部と接続
部との区別はここでは厳密ではない。なお、本発明にお
いて、発熱体パターンのうちの端末側の温度が比較的低
くかつ安定に保たれる部分の高融点金属材料を発熱体パ
ターンの発熱部の高融点金属材料とは異なる材料、例え
ばレニウムを含有しないタングステン等の高融点金属材
料で置き換えて形成しても差し支えない。
According to the present invention, the heating element pattern contains a refractory metal material containing 10% by weight or more of rhenium (Re) and the balance substantially consisting of refractory metal such as tungsten (W) or molybdenum (Mo), or It is composed of a refractory metal material consisting essentially of rhenium. It should be noted that some oxides may be present as long as they do not adversely affect the resistance characteristics. Here, the heating element pattern is composed of a highly resistive heating portion and a connection portion that is used for connection with a power source and is formed wider than the heating portion in many cases and has relatively low resistance. The heat generating portion is formed in a predetermined size and shape according to the situation of a heated object such as a sensor, but the distinction between the heat generating portion and the connecting portion is not strict here. In the present invention, the refractory metal material of the portion of the heating element pattern where the temperature on the terminal side is kept relatively low and stable is different from the refractory metal material of the heating portion of the heating element pattern, for example, It may be formed by replacing it with a refractory metal material such as tungsten that does not contain rhenium.

【0016】製法について例示すれば、次の通りであ
る。原料として主成分アルミナからなる粉末を湿式混合
したものを用意する。緻密な高温高強度体とするために
粉末としては純度90%以上の高純度粉末を用い、その
粒径は2μm以下にする。なお、焼結促進成分、即ちシ
リカ(SiO2 )、マグネシア(MgO)、カルシア
(CaO)、ベリリア(B2 3 )等は焼成過程におい
て酸化物、ひいては所定の網目構造となりうるもの、例
えば水酸化物、塩(例えば炭酸塩等)として配合しても
よい。
An example of the manufacturing method is as follows. As a raw material, a wet-mixed powder of the main component alumina is prepared. High-purity powder having a purity of 90% or more is used as the powder in order to obtain a dense high-temperature and high-strength body, and the particle size thereof is 2 μm or less. It should be noted that the sintering promoting components, namely silica (SiO 2 ), magnesia (MgO), calcia (CaO), beryllia (B 2 O 3 ) and the like are oxides that can form a predetermined network structure during the firing process, such as water. You may mix | blend as an oxide and salt (for example, carbonate etc.).

【0017】配合粉末の成形は加圧成形(例えば靜水圧
成形、ドクターブレード成形)、押出成形など種々の方
法で行いうる。成形にあたり、所定の溶剤および結合剤
等を適時配合する。
The compounded powder can be molded by various methods such as pressure molding (for example, hydrostatic molding, doctor blade molding) and extrusion molding. At the time of molding, a predetermined solvent, a binder and the like are blended at appropriate times.

【0018】発熱体パターンの形成はメッキ、気相析出
法、例えばスパッタリング、蒸着など種々の手段が採れ
るが、特には、金属ペーストを第1のグリーンシート上
に例えばスクリーン印刷によって所定形状の厚膜パター
ンに印刷形成し、このグリーンシートのパターン印刷面
側に第2のグリーンシートを重ねて圧着して発熱体パタ
ーンを被覆する。基体を用いる場合は上記のパターン被
覆・積層体を以て基材材料との接合に供するようにする
とよい。パターンを直接基材に接合するようにすると相
互密着性が不十分となり、気孔発生に基づく発熱体成分
の酸化原因(断線原因)を招くおそれがあるからであ
る。
The heating element pattern can be formed by various means such as plating, vapor phase deposition method such as sputtering and vapor deposition. In particular, a metal paste is formed on the first green sheet by, for example, screen printing to form a thick film having a predetermined shape. A pattern is printed and formed, and a second green sheet is overlaid on the pattern printing surface side of this green sheet and pressure-bonded to cover the heating element pattern. When a substrate is used, it is advisable to use the above-mentioned pattern coating / laminated body for joining to a substrate material. This is because if the pattern is directly bonded to the base material, mutual adhesion becomes insufficient, and there is a risk of causing a cause of oxidation (cause of disconnection) of the heating element component due to generation of pores.

【0019】焼結は、基材および各層の相互密着性を高
めるため同時焼成することが好ましい。焼結方法として
は型加圧(HP,HIP)焼結、雰囲気加圧焼結、反応
焼結等種々のものを採用でき、その焼結温度は1450
〜1600℃の範囲から選択するとよい。雰囲気は不活
性ガス(例えばAr,N2 )、酸化性雰囲気(例えば大
気)、還元雰囲気(例えばH2 )のいずれであってもよ
い。
In the sintering, it is preferable that the base material and each layer are co-fired in order to enhance mutual adhesion. Various sintering methods such as mold pressure (HP, HIP) sintering, atmosphere pressure sintering, and reaction sintering can be adopted, and the sintering temperature is 1450.
It is good to select from the range of up to 1600 ° C. The atmosphere may be an inert gas (eg Ar, N 2 ), an oxidizing atmosphere (eg air) or a reducing atmosphere (eg H 2 ).

【0020】こうして得られたセラミックヒーターは、
その発熱体パターンの接続部の露出する末端の近傍をメ
タライズ処理して端末部を形成し、電源からのリード線
を例えばロー付けで接続できるようにする。
The ceramic heater thus obtained is
The vicinity of the exposed end of the connection portion of the heating element pattern is metallized to form a terminal portion so that the lead wire from the power source can be connected by brazing, for example.

【0021】本発明のセラミックヒーターは、特に高温
下で長期間使用される内燃機関の空燃比制御用酸素セン
サを加熱するためのヒーターとして好適である。この場
合セラミックヒーターは、棒状に形成して試験管型固体
電解質酸素センサ素子の中空部内に挿入してもよいし、
板状に形成して板状酸素センサ素子に付設してもよい
し、又セラミックヒーターの中、例えば基材とグリーン
シートとの間にセンサ素子を組み込んで用いてもよいこ
とは勿論である。
The ceramic heater of the present invention is particularly suitable as a heater for heating an oxygen sensor for controlling the air-fuel ratio of an internal combustion engine which is used for a long period of time at a high temperature. In this case, the ceramic heater may be formed in a rod shape and inserted into the hollow portion of the test tube type solid electrolyte oxygen sensor element,
Of course, it may be formed in a plate shape and attached to the plate-shaped oxygen sensor element, or the sensor element may be incorporated and used in the ceramic heater, for example, between the base material and the green sheet.

【0022】[0022]

【作用】セラミックヒータの発熱体パターンに添加され
たレニウムは、上述の通りのメカニズムによる高融点金
属の酸化を顕著に抑制して高温度に長期間曝されるセラ
ミックヒータの寿命を顕著に高めるとともに、その熱膨
張係数が、例えばタングステンを例にとると、 タングステン:4.8×10-6/℃ レニウム :7.2×10-6/℃ とタングステンに比べて大きく、基材であるアルミナの
熱膨張係数:7.8×10-6/℃に近いため、体積膨張
差による応力の発生が少なく、クラックも発生しにく
い。
The function of rhenium added to the heating element pattern of the ceramic heater remarkably suppresses the oxidation of the refractory metal due to the mechanism as described above, and prolongs the life of the ceramic heater exposed to high temperature for a long time. , The coefficient of thermal expansion is, for example, tungsten: 4.8 × 10 -6 / ° C rhenium: 7.2 × 10 -6 / ° C, which is larger than that of tungsten, Since the thermal expansion coefficient is close to 7.8 × 10 −6 / ° C., the stress due to the difference in volume expansion is small and cracks are not easily generated.

【0023】[0023]

【実施例】以下、本発明の実施例を図1、図2および図
3を参照して説明する。 (a) 原料粉末の混合 平均粒径1.5μm、純度99.9%のアルミナ粉末、
焼結促進剤として平均粒径2μm、純度98%のシリカ
粉末、平均粒径2μm、純度90%のマグネシア粉末、
平均粒径2μm、純度93%のカルシア粉末を、97.
2:2.5:0.1:0.1の割合で配合し、ボールミ
ルで20〜60時間湿式混合した後、脱水乾燥した。
Embodiments of the present invention will be described below with reference to FIGS. 1, 2 and 3. (A) Mixing of raw material powder Alumina powder having an average particle size of 1.5 μm and a purity of 99.9%,
Silica powder having an average particle size of 2 μm and a purity of 98% as a sintering accelerator, magnesia powder having an average particle size of 2 μm and a purity of 90%,
Calcia powder having an average particle size of 2 μm and a purity of 93% was used as 97.
The ingredients were blended in a ratio of 2: 2.5: 0.1: 0.1, wet mixed in a ball mill for 20 to 60 hours, and then dehydrated and dried.

【0024】(b) 基材の作成 前記(a)で得た配合粉末にメチルセルロース1%、マ
クセロン(商品名)15%、水10%を添加し、混練し
た。次に、押出成形法で円筒状に成形し、所定寸法に切
断後、1200℃で仮焼して外径約2.3mmの基材1
1を得た。
(B) Preparation of base material To the compounded powder obtained in (a) above, 1% of methyl cellulose, 15% of Maxellon (trade name) and 10% of water were added and kneaded. Next, the base material 1 having an outer diameter of about 2.3 mm is formed into a cylindrical shape by an extrusion molding method, cut into a predetermined size, and calcined at 1200 ° C.
Got 1.

【0025】(c) 第1グリーンシート12、第2グ
リーンシート13、および発熱体パターン14の製作 前記(a)で得た配合粉末にポリビニルブチラール8
%、DBP4%、メチルエチルケトン、トルエン70%
を添加し、ボールミルで混合してスラリー状とした。減
圧脱泡後、ドクターブレード法により、厚さ0.2〜
0.4mmの第1グリーンシート12を作った。次に、
このシート12の表面にレニウムとタングステンとを種
々の割合で混合調整したペーストを、厚膜印刷法により
10〜30μmにスクリーン印刷して、所定形状の発熱
体パターン14を形成した。更に、この印刷表面に第1
グリーンシートと同様の方法にて成形してなる厚さ0.
05mmの第2グリーンシート13を圧着した。なお、
第1グリーンシート12の所定位置にはスルーホール1
21・121、端子接続部122・122及び端子部1
23・123を上記ペーストの充填ないし印刷により形
成しておく。
(C) Production of the first green sheet 12, the second green sheet 13, and the heating element pattern 14 The polyvinyl butyral 8 was added to the blended powder obtained in the above (a).
%, DBP 4%, methyl ethyl ketone, toluene 70%
Was added and mixed by a ball mill to form a slurry. After defoaming under reduced pressure, a thickness of 0.2 to
A 0.4 mm first green sheet 12 was made. next,
A paste prepared by mixing and adjusting rhenium and tungsten in various ratios was screen-printed on the surface of the sheet 12 to a thickness of 10 to 30 μm by a thick film printing method to form a heating element pattern 14 having a predetermined shape. In addition, the first
Thickness formed by the same method as the green sheet.
The 05 mm second green sheet 13 was pressure bonded. In addition,
Through holes 1 are provided at predetermined positions on the first green sheet 12.
21/121, terminal connecting portions 122/122 and terminal portion 1
23 and 123 are formed by filling or printing the above paste.

【0026】(d) 基材11と、第1グリーンシート
12、発熱体パターン14および第2グリーンシート1
3の積層体との一体化 前記(c)で得られた積層体の第2グリーンシート側表
面に、前記(a)で得た配合粉末にポリビニルブチラー
ル25%、DBP8%、ブチルカルビドール30%を添
加してなるペーストを塗布した。次に、この塗布面を基
材との接合に供するようにして、基材11の周囲にグリ
ーンシート等を巻き付け、加圧密着させた。次に、25
0℃で樹脂抜きした後、水素炉雰囲気中にて1500〜
1600℃で焼成して、一体化焼結されたセラミックヒ
ーター16を得た。
(D) Base material 11, first green sheet 12, heating element pattern 14, and second green sheet 1
Integration with the laminate of No. 3 on the surface of the laminate obtained in (c) on the side of the second green sheet, 25% of polyvinyl butyral, 8% of DBP and 30% of butyl carbidol were added to the compounded powder obtained in (a). Was applied to apply a paste. Next, a green sheet or the like was wound around the base material 11 such that the coated surface was used for bonding with the base material, and they were brought into close contact with each other under pressure. Then 25
After removing the resin at 0 ° C, in a hydrogen furnace atmosphere,
The ceramic heater 16 was fired at 1600 ° C. to obtain an integrally sintered ceramic heater 16.

【0027】なお、このセラミックヒーター16の端子
部123・123をNiメッキし、ロー材を用いてリー
ド線引出用端子線15・15を接合した。
The terminal portions 123 of the ceramic heater 16 were plated with Ni, and the lead wire lead-out terminal wires 15 were joined by using a brazing material.

【0028】こうして製作したセラミックヒーター16
を、パターン金属材料のレニウムの含有量(残部タング
ステン)をゼロ%から100%まで種々変更した9種類
(内、2種類は比較例)を準備した。なおパターンの抵
抗値は主として発熱体パターンの発熱部の線密度を調整
することによりほぼ3.5Ω(20℃)に調整した。こ
れらのセラミックヒータを用いて2段階の高温耐久試験
を実施した。第1の高温耐久試験としての主高温耐久試
験は850℃の大気加熱雰囲気下で直流17Vの連続通
電を1000時間まで行ないその間の発熱体パターン抵
抗値の変化率[(耐久中の抵抗値−初期抵抗値)/初期
抵抗値]を測定することにより実施した。その結果を図
2に示す。図2から明らかな通り、レニウムを10重量
%以上含有した実施例のセラミックヒーター(本発明の
範囲内)は比較例(本発明の範囲外)のものに比べて抵
抗値の経時変化が顕著に少ないことが認められる。
Ceramic heater 16 manufactured in this way
9 types (of which 2 types are comparative examples) were prepared in which the rhenium content (the remaining tungsten) of the pattern metal material was variously changed from 0% to 100%. The resistance value of the pattern was adjusted to approximately 3.5Ω (20 ° C.) mainly by adjusting the linear density of the heating portion of the heating element pattern. A two-stage high temperature durability test was performed using these ceramic heaters. The main high-temperature durability test as the first high-temperature durability test was to continuously conduct electricity of 17 V DC for up to 1000 hours under an atmosphere heated at 850 ° C., and the rate of change in the resistance value of the heating element pattern during that period [(resistance value during durability-initial value Resistance value / initial resistance value]. The result is shown in FIG. As is clear from FIG. 2, the ceramic heater of the example containing 10% by weight or more of rhenium (within the range of the present invention) showed a remarkable change in resistance value with time as compared with the comparative example (outside the range of the present invention). It is recognized that there are few.

【0029】次ぎに第2の高温耐久試験としての参考的
高温耐久試験は、大気加熱雰囲気の温度をより安全を見
込んだ1000℃の高温として直流17Vの連続通電を
350時間まで行い、主高温耐久試験の場合と同様な調
査を行った結果を、図3に示す。図3から明らかな通り
殊にレニウム30重量%越えとすることにより1000
℃の高温雰囲気下においてもなお発熱体パターンの抵抗
値がよく安定していることが認められる。
Next, in the reference high temperature durability test as the second high temperature durability test, the temperature of the atmosphere heating atmosphere was set to a high temperature of 1000 ° C. for further safety, and continuous energization of DC 17 V was carried out for up to 350 hours. The results of the same investigation as in the case of the test are shown in FIG. As is clear from FIG. 3, especially when the amount of rhenium exceeds 30% by weight, 1000
It can be seen that the resistance value of the heating element pattern is good and stable even in a high temperature atmosphere of ℃.

【0030】[0030]

【効果】以上の如く本発明のセラミックヒータは、特に
高温下に長期間曝されても抵抗値変化が少なく安定な加
熱特性を維持できて耐久性に優れ、急激な温度変化に曝
されても発熱体パターンを含むパターンとセラミックと
の熱膨張差に起因するセラミックのクラック発生の恐れ
が少くて熱衝撃性にも優れ、また発熱体パターンの比抵
抗が大となるのでヒータを小型化できると言う顕著な効
果を奏するものである。殊に酸素センサ加熱用ヒーター
等の小型化と耐久安定性が要求されるセラミックヒータ
として有用なものである。
[Effect] As described above, the ceramic heater of the present invention has a small change in resistance value even when it is exposed to a high temperature for a long period of time, can maintain stable heating characteristics, is excellent in durability, and is exposed to a sudden temperature change. There is little risk of cracks in the ceramics due to the difference in thermal expansion between the pattern including the heating element pattern and the ceramic, and the thermal shock resistance is excellent, and the specific resistance of the heating element pattern is large, so the heater can be downsized. It has a remarkable effect. In particular, it is useful as a ceramic heater, such as a heater for heating an oxygen sensor, which requires miniaturization and durability stability.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例であるセラミックヒータの製
造過程の説明に供する斜視図である。
FIG. 1 is a perspective view for explaining a manufacturing process of a ceramic heater that is an embodiment of the present invention.

【図2】この発明の実施例であるセラミックヒータの第
1の高温耐久試験(主高温耐久試験)の結果を、比較例
の結果とともに示す図である。
FIG. 2 is a diagram showing the results of a first high temperature durability test (main high temperature durability test) of a ceramic heater that is an example of the present invention, together with the results of a comparative example.

【図3】この発明の実施例であるセラミックヒータの第
2の高温耐久試験(参考的高温耐久試験)の結果を、比
較例の結果とともに示す図である。
FIG. 3 is a diagram showing the results of a second high temperature durability test (reference high temperature durability test) of the ceramic heater according to the example of the present invention, together with the results of the comparative example.

【図4】従来のセラミックヒータでの発熱体断線現象発
生後の状態を示す図である。
FIG. 4 is a diagram showing a state after the occurrence of a heating element disconnection phenomenon in a conventional ceramic heater.

【図5】従来のセラミックヒータでの発熱体断線現象発
生に至る間の、発熱体パターンの抵抗値の変化状況を示
す図である。
FIG. 5 is a diagram showing how the resistance value of the heating element pattern changes during the occurrence of the heating element disconnection phenomenon in the conventional ceramic heater.

【符号の説明】[Explanation of symbols]

14 発熱体パターン 16 セラミックヒター 14 Heating element pattern 16 Ceramic hitter

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 アルミナを主成分とするセラミック焼結
体中に、高融点金属の発熱体パターンを埋設したセラミ
ックヒータにおいて、上記発熱体パターンが10重量%
以上のレニウム(Re)を含有する高融点金属からなる
ことを特徴とするセラミックヒータ。
1. A ceramic heater in which a heating element pattern made of a refractory metal is embedded in a ceramic sintered body containing alumina as a main component, wherein the heating element pattern is 10% by weight.
A ceramic heater comprising the above refractory metal containing rhenium (Re).
【請求項2】 発熱体パターンが30重量%を越えるレ
ニウム(Re)を含有する高融点金属からなる請求項1
記載のセラミックヒータ。
2. The heating element pattern comprises a refractory metal containing more than 30% by weight of rhenium (Re).
The described ceramic heater.
JP33364792A 1992-03-09 1992-11-18 Ceramic heater for oxygen sensor heating Expired - Lifetime JP3436769B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33364792A JP3436769B2 (en) 1992-03-09 1992-11-18 Ceramic heater for oxygen sensor heating

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP4-86384 1992-03-09
JP8638492 1992-03-09
JP33364792A JP3436769B2 (en) 1992-03-09 1992-11-18 Ceramic heater for oxygen sensor heating

Publications (2)

Publication Number Publication Date
JPH05315055A true JPH05315055A (en) 1993-11-26
JP3436769B2 JP3436769B2 (en) 2003-08-18

Family

ID=26427519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33364792A Expired - Lifetime JP3436769B2 (en) 1992-03-09 1992-11-18 Ceramic heater for oxygen sensor heating

Country Status (1)

Country Link
JP (1) JP3436769B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003257593A (en) * 2002-02-27 2003-09-12 Kyocera Corp Wafer support member
KR20110063635A (en) 2008-09-26 2011-06-13 쿄세라 코포레이션 Ceramic heater
WO2012133800A1 (en) 2011-03-31 2012-10-04 京セラ株式会社 Ceramic heater

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003257593A (en) * 2002-02-27 2003-09-12 Kyocera Corp Wafer support member
KR20110063635A (en) 2008-09-26 2011-06-13 쿄세라 코포레이션 Ceramic heater
WO2012133800A1 (en) 2011-03-31 2012-10-04 京セラ株式会社 Ceramic heater
KR101488751B1 (en) * 2011-03-31 2015-02-03 쿄세라 코포레이션 Ceramic heater
JP5665973B2 (en) * 2011-03-31 2015-02-04 京セラ株式会社 Ceramic heater
US9668302B2 (en) 2011-03-31 2017-05-30 Kyocera Corporation Ceramic heater

Also Published As

Publication number Publication date
JP3436769B2 (en) 2003-08-18

Similar Documents

Publication Publication Date Title
EP0963137B1 (en) Ceramic heater and oxygen sensor using the same
EP2977364B1 (en) Joined body, and production method therefor
EP3002270B1 (en) Joined body
EP0701979A1 (en) Alumina-based sintered material for ceramic heater and ceramic heater
EP1260882B1 (en) "refsicoat" heat resistant material and high-temperature electric heaters using said material
JP2001196152A (en) Ceramics heater
JP2010524816A (en) Ceramic material having composition adjusted to thermal expansion coefficient defined by metal material
JP2971167B2 (en) Ceramic heater
JP3436769B2 (en) Ceramic heater for oxygen sensor heating
JP3100295B2 (en) Joining method of solid electrolyte made of ceramic material
JP3110974B2 (en) Alumina ceramic heater with metallized heating layer
JP3016669B2 (en) Ceramic heater
JP2632347B2 (en) Ceramic heater
JP3038039B2 (en) Ceramic heater and method of manufacturing the same
JP2000340349A (en) Ceramic heater
JP3125976B2 (en) Ceramic heater
JP2001041922A (en) Oxygen sensor element integrated with heater
JP4044245B2 (en) Silicon nitride ceramic heater
JPH04329291A (en) Ceramic hater and its manufacture
JP3813685B2 (en) Ceramic heater
JP3886684B2 (en) Ceramic heater
KR0141656B1 (en) Method for manufacturing ceramic heaters of rod or tube type
JP2004342622A (en) Ceramic heater
JP3462280B2 (en) Alumina-based sintered material for ceramic heater and ceramic heater
JP4698041B2 (en) Air-fuel ratio sensor element

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080606

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090606

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090606

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090606

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100606

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100606

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 10

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 10