JPH05315015A - Capacity deterioration rate calculating method for storage battery and deterioration diagnosing device - Google Patents

Capacity deterioration rate calculating method for storage battery and deterioration diagnosing device

Info

Publication number
JPH05315015A
JPH05315015A JP4120984A JP12098492A JPH05315015A JP H05315015 A JPH05315015 A JP H05315015A JP 4120984 A JP4120984 A JP 4120984A JP 12098492 A JP12098492 A JP 12098492A JP H05315015 A JPH05315015 A JP H05315015A
Authority
JP
Japan
Prior art keywords
storage battery
temperature
deterioration
calculated
calculation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4120984A
Other languages
Japanese (ja)
Other versions
JP2936441B2 (en
Inventor
Hidemi Fukunaga
秀美 福永
Yukihiro Onoda
幸弘 小野田
Kazumi Yamaguchi
和美 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4120984A priority Critical patent/JP2936441B2/en
Publication of JPH05315015A publication Critical patent/JPH05315015A/en
Application granted granted Critical
Publication of JP2936441B2 publication Critical patent/JP2936441B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/3644Constructional arrangements
    • G01R31/3647Constructional arrangements for determining the ability of a battery to perform a critical function, e.g. cranking
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To enable numerical diagnosis of a deterioration state by measuring continuously the surface temperature of a storage battery, in which a trickle or a float is used, and calculating an aged deterioration rate based on a specific experimental equation, from its average temperature and the elapsed years after installation. CONSTITUTION:Temperature data 29 of the surface of a storage battery is continuously measured by a CPU 19A to calculate an average temperature, and when a calculation of a capacity deterioration rate (f) is commanded, it is calculated in the following equation by means of the CPU 19A or 19B from the average temperature (t) and the elapsed years Y after the installation of the storage battery. Initial capacity maintaining period Yb=a-bXlogt and f=1-(c+dXt<n>)X(Y-Yb)<m> where (a), (b), (c), (d), (n), and (m) represent experimental constants different from each other depending on standard characteristics of the storage battery, and the application range is 1.0>f>0. Accordingly, dischargeable hours at its life time and the rate of deterioration can be judged by calculation with no discharge test, so that whether or not replacement is needed can be diagnosed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、蓄電池の容量劣化率を
演算する方法と劣化診断装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for calculating a capacity deterioration rate of a storage battery and a deterioration diagnosis device.

【0002】[0002]

【従来の技術】従来、鉛蓄電池の寿命や劣化程度を検知
する方法としては、(1)蓄電池の各セル電圧のばらつ
きにより検知する方法(特開平2−304876号公報
記載)、(2)鉛蓄電池の電解液である硫酸の比重測定
により検知する方法、(3)微分内部抵抗の増加により
検知する方法(特開昭63−168582号公報記
載)、(4)鉛蓄電池の正極板の膨脹度合いにより検知
する方法(特開昭62−47975号公報記載)、
(5)液面センサーにより電解液の減少を検知する方
法、(6)蓄電池を定期的に放電試験することにより検
知する方法、(7)充電電気量を積算し、充電電気量に
基づいて寿命を推定する方法(特開平2−288075
号公報記載)、(8)蓄電池の設置経過年数よりおよそ
の劣化程度を推定する方法、などがあり通常これらの複
数項目の測定結果から総合的に容量の劣化状態が診断さ
れるが、蓄電池の充電電圧が正常範囲に管理され、また
補液式の鉛蓄電池の場合に電解液が正常範囲に管理され
ている場合は不具合品が含まれる場合を除き蓄電池の設
置環境温度が電池の寿命に最も影響する。
2. Description of the Related Art Conventionally, as a method for detecting the life and deterioration degree of a lead storage battery, (1) a method of detecting the variation of each cell voltage of the storage battery (described in JP-A-2-304876), (2) lead A method of detecting by measuring the specific gravity of sulfuric acid which is an electrolytic solution of a storage battery, (3) a method of detecting by an increase in differential internal resistance (described in JP-A-63-168582), and (4) degree of expansion of a positive electrode plate of a lead storage battery. Detection method (described in JP-A-62-47975),
(5) Method of detecting decrease of electrolyte by liquid level sensor, (6) Method of detecting by periodically discharging test of storage battery, (7) Life time based on accumulated charge quantity and accumulated charge quantity Method for estimating the
No.), (8) A method of estimating the degree of deterioration from the number of years that the storage battery has been installed, etc., but normally the deterioration state of capacity is diagnosed comprehensively from the measurement results of these multiple items. When the charging voltage is controlled within the normal range, and in the case of a replenishment type lead acid battery, the electrolyte environment is controlled within the normal range, except when defective products are included. To do.

【0003】そして上記従来の方法の(6)は、放電試
験中の事故による設備の停止の可能性もあり、通信用設
備等をバックアップしている電源では実施できないのが
殆どである。また、上記従来の方法の(8)について
は、鉛蓄電池の設置環境は、空調設備のある恒温の場所
に設置される場合もあるが、ほとんどは換気扇が付いて
いる程度で外部環境温度と同じように四季および昼夜の
温度変化のある環境に設置される場合がほとんどであ
る。それにもかかわらず、経過年数による劣化率は通常
20〜25℃一定環境と仮定して寿命が推定されてい
る。通常鉛蓄電池は、ある温度までは、設置環境温度が
低い方が寿命が長く容量劣化が少なくなり、反対に設置
環境温度が高くなると寿命が短くなる。例えば、トリク
ルやフロート使用における寿命は25℃と40℃では温
度差はわずか15度であるが、40℃における寿命は2
5℃の約1/3程度になり、設置環境温度が鉛蓄電池の
寿命に影響を与える大きな要因の一つになっている。こ
のため、蓄電池の設置環境温度が一定でない場合は推定
寿命と実寿命の差が大きくなり、実際の停電時に必要な
放電持続時間が維持出来なかったり、反対に蓄電池の寿
命時期と推定して交換した後、放電性能を調べると十分
性能を維持しており、資源的な無駄が発生する等の問題
点を有していた。また従来の方法はいずれも寿命時期で
あるかどうかの判定機能だけであり、寿命時期に初期容
量に対してどの程度放電可能な状態であるかの数値的な
判定演算機能を持っておらず、負荷が比較的小さい場合
は蓄電池が劣化しつつある時期でもまだ数年使用可能な
場合もあり、蓄電池設備更新の緊急度の判断があいまい
である等の問題点を有していた。
The above-mentioned conventional method (6) cannot be carried out by a power source backing up communication equipment or the like because there is a possibility that the equipment may be stopped due to an accident during the discharge test. Regarding the above-mentioned conventional method (8), the installation environment of the lead storage battery may be installed in a constant temperature place with air conditioning equipment, but most of them are equipped with a ventilation fan and are the same as the external environment temperature. It is almost always installed in an environment where the temperature changes during the four seasons and day and night. Nevertheless, the life is estimated assuming that the deterioration rate due to the number of years is usually constant at 20 to 25 ° C. Normally, a lead-acid battery has a long life at a lower installation environment temperature and a smaller capacity deterioration up to a certain temperature, and conversely has a shorter life at a higher installation environment temperature. For example, the life difference in using trickle or float is only 15 degrees at 25 ° C and 40 ° C, but the life difference at 40 ° C is 2 degrees.
It becomes about 1/3 of 5 ° C, and the installation environment temperature is one of the major factors affecting the life of the lead storage battery. Therefore, when the storage environment temperature of the storage battery is not constant, the difference between the estimated service life and the actual service life becomes large, and the required discharge duration cannot be maintained at the time of an actual power failure. After that, when the discharge performance was examined, the performance was maintained sufficiently, and there was a problem such as waste of resources. In addition, each of the conventional methods has only a function of judging whether or not it is a life period, and does not have a numerical judgment calculation function of how much dischargeable state with respect to the initial capacity at the life time, When the load is comparatively small, it may still be usable for several years even when the storage battery is deteriorating, and there is a problem that the urgency of updating the storage battery equipment is ambiguous.

【0004】[0004]

【発明が解決しようとする課題】従来の問題点は、蓄電
池の初期容量に対して、どの程度放電可能であるか、つ
まり容量劣化率が数値的に把握できない点であった。
The problem with the prior art is that it is not possible to numerically grasp the extent to which the initial capacity of the storage battery can be discharged, that is, the capacity deterioration rate.

【0005】本発明は上記従来の問題点を解消すること
を課題とするもので、実際の放電試験をしないで蓄電池
の劣化状態を判定し、負荷に対する放電可能時間を演算
して、出力するための容量劣化率を演算する方法と劣化
診断装置を提供することを目的とするものである。
An object of the present invention is to solve the above-mentioned conventional problems, and to determine the deterioration state of a storage battery without performing an actual discharge test, calculate a dischargeable time for a load, and output the dischargeable time. It is an object of the present invention to provide a method for calculating the capacity deterioration rate and a deterioration diagnosis device.

【0006】[0006]

【課題を解決するための手段】本発明の容量劣化率演算
方法および劣化診断装置は、蓄電池の表面温度測定手段
を持つマイクロプロセッサによりトリクルまたはフロー
ト使用における蓄電池の表面温度を継続的に測定し、基
準温度以下は基準温度として平均温度を算出すると共
に、前記平均温度と蓄電池の設置経過年数から本発明に
よる実験式を基に蓄電池の経年劣化率を演算し、蓄電池
の劣化状態即ち初期容量をどの程度維持している状態で
あるかを数値的に検知することを実現したものである。
A method for calculating a capacity deterioration rate and a deterioration diagnosing device of the present invention continuously measure the surface temperature of a storage battery in a trickle or float use by a microprocessor having a surface temperature measuring means of the storage battery, Below the reference temperature, the average temperature is calculated as a reference temperature, and the aged deterioration rate of the storage battery is calculated based on the empirical formula according to the present invention from the average temperature and the number of years that the storage battery has been installed. It realizes to detect numerically whether or not the state is maintained.

【0007】[0007]

【作用】本発明の構成においては、蓄電池の寿命時期に
おける放電可能時間や劣化度合を蓄電池の放電試験を行
うことなく、蓄電池の劣化状態を演算により判定し、負
荷に対する放電可能時間を知ることができ、また取り換
えが必要かどうかなどの劣化診断を行うことができるも
のである。
In the structure of the present invention, the dischargeable time and the degree of deterioration of the storage battery can be determined by calculating the deterioration state of the storage battery without knowing the discharge test of the storage battery and performing the dischargeable time for the load. In addition, deterioration diagnosis such as whether replacement is necessary can be performed.

【0008】[0008]

【実施例】【Example】

(実施例1)以下本発明の1実施例を示す。図1は、シ
ール形の鉛蓄電池について蓄電池温度と蓄電池設置経過
年数による容量劣化率の推移を本発明による演算式を基
にして示したものである。図1において1は蓄電池温度
が常時20℃(本発明の実施例のシール形鉛蓄電池の基
準温度)以下の環境で使用された場合の経過年数による
容量劣化係数の標準的な推移を示している。同様に図1
において2〜5は前記平均温度が25,30,35,4
0℃の場合の容量劣化係数の推移を示している。また図
1の6(Yb)は前記平均温度が25℃における容量劣
化係数が1.0の期間、すなわち本発明の演算式1、Yb
=a−b×log tにより求められる初期の放電容量維持
期間が約5年であることを示しており、ここで実験定数
は a=25.55 b=14.69 を使用している。同様に図1において7〜10は前記平
均温度が20,30,35,40℃における容量劣化係
数が1.0の期間を示しており、40℃では容量劣化係数
が1.0の期間が設置後約2年であることを示している。
次に鉛蓄電池の設置期間が前記容量劣化係数が1.0の期
間を過ぎた場合は本発明の演算式2、f=1−(c+d
×tn )×(Y−Yb)m により容量劣化係数が求めら
れ、実験定数は c=3.43×10-5 d=2.87×10-8 n=3.6 m=3 を使用している。
(Example 1) One example of the present invention will be described below. FIG. 1 shows the transition of the capacity deterioration rate depending on the storage battery temperature and the number of years of storage battery installation for the sealed lead storage battery based on the arithmetic expression according to the present invention. In FIG. 1, 1 indicates a standard transition of the capacity deterioration coefficient depending on the elapsed years when the storage battery temperature is always 20 ° C. (reference temperature of the sealed lead storage battery of the embodiment of the present invention) or lower. .. Similarly, FIG.
2-5, the average temperature is 25, 30, 35, 4
The change of the capacity deterioration coefficient at 0 ° C. is shown. Further, 6 (Yb) in FIG. 1 is a period in which the capacity deterioration coefficient is 1.0 at the average temperature of 25 ° C., that is, the arithmetic expression 1, Yb of the present invention.
= A−b × log t indicates that the initial discharge capacity maintenance period is about 5 years, and the experimental constants used here are a = 25.55 b = 14.69. Similarly, in FIG. 1, 7 to 10 indicate a period in which the capacity deterioration coefficient is 1.0 at the average temperature of 20, 30, 35, and 40 ° C., and a period in which the capacity deterioration coefficient is 1.0 is set at 40 ° C. It shows that it is about two years from now.
Next, when the installation period of the lead storage battery exceeds the period in which the capacity deterioration coefficient is 1.0, the calculation formula 2 of the present invention, f = 1− (c + d)
The capacity deterioration coefficient is calculated by × t n ) × (Y−Yb) m , and the experimental constant is c = 3.43 × 10 −5 d = 2.87 × 10 −8 n = 3.6 m = 3. is doing.

【0009】(実施例2)図2には図1と同様の補液式
の大形鉛蓄電池の蓄電池設置経過年数による各平均温度
での容量劣化係数の推移を示しており、各実験定数は a=55.88 b=32.82 c=5.56×10-6 d=4.30×10-6 n=4.7 m=3.0 を使用している。また基準温度は図2に示すように25
℃に設定している。図2において11〜14は25,3
0,35,40℃の各平均温度における劣化係数の推移
を示している。同様に図2において15〜18は本発明
の演算式1、Yb=a−b×log tにより求められる各
平均温度における劣化係数が1.0の期間を示している。
(Embodiment 2) FIG. 2 shows the transition of the capacity deterioration coefficient at each average temperature according to the years of storage battery installation of a replenishment type large lead acid battery similar to that of FIG. 1, and each experimental constant is a = 5.588 b = 32.82 c = 5.56 × 10 −6 d = 4.30 × 10 −6 n = 4.7 m = 3.0. The reference temperature is 25 as shown in FIG.
Set to ℃. In FIG. 2, 11 to 14 are 25 and 3
The change of the deterioration coefficient in each average temperature of 0,35,40 degreeC is shown. Similarly, reference numerals 15 to 18 in FIG. 2 denote periods in which the deterioration coefficient at each average temperature is 1.0, which is obtained by the calculation formula 1 of the present invention, Yb = ab × log t.

【0010】(実施例3)図3は本発明の実施例を示す
鉛蓄電池の劣化診断装置のブロック図である。図3にお
いて19Aは制御・演算部であるマイクロプロセッサ、
20はプログラムメモリ、21は停電等の時に放電可能
時間を演算するための蓄電池の標準特性データや蓄電池
の設置日付および劣化係数等を格納したバッテリーバッ
クアップ付メモリでIC−RAMカード等を使用する。
22はモデム(23A,23B)を介してパーソナルコ
ンピュータ(PC)等ホストCPU(19B)にデータ
を送信するためのRS−232Cインターフェイスであ
る。24はカレンダーICでメモリ(21)に格納され
ている蓄電池の設置日付から蓄電池設備設置後の経過年
数を演算するため等に使用する。25は入出力インター
フェイスで、26の操作スイッチや蓄電池の劣化係数や
停電時の放電可能時間を表示する液晶等の表示装置(2
7)や蓄電池の温度データ(29)、蓄電池電圧データ
(30)、蓄電池放電電流データ(31)のアナログデ
ータをマイクロプロセッサ(19A)に取り込むA/D
コンバータ(28)等を接続する。
(Embodiment 3) FIG. 3 is a block diagram of a lead-acid battery deterioration diagnosing apparatus showing an embodiment of the present invention. In FIG. 3, 19A is a microprocessor which is a control / arithmetic unit,
Reference numeral 20 is a program memory, and 21 is a memory with a battery backup that stores standard characteristic data of a storage battery for calculating a dischargeable time at the time of a power failure or the like, an installation date of the storage battery, a deterioration coefficient, etc., and uses an IC-RAM card or the like.
Reference numeral 22 is an RS-232C interface for transmitting data to the host CPU (19B) such as a personal computer (PC) via the modems (23A, 23B). Reference numeral 24 is a calendar IC, which is used to calculate the number of years elapsed after the storage battery equipment is installed from the installation date of the storage battery stored in the memory (21). Reference numeral 25 denotes an input / output interface, which is a display device such as a liquid crystal display for displaying the deterioration coefficient of the operation switch and the storage battery of 26 and the dischargeable time at the time of power failure (2
7), storage battery temperature data (29), storage battery voltage data (30), storage battery discharge current data (31) analog data to the microprocessor (19A)
A converter (28) etc. are connected.

【0011】次に本発明による前記劣化診断装置の劣化
係数の演算プロセスについて図4の1実施例のフローチ
ャートによって説明する。
Next, the process of calculating the deterioration coefficient of the deterioration diagnosing device according to the present invention will be described with reference to the flowchart of the embodiment of FIG.

【0012】1.先ず蓄電池表面の温度データ(29)
は1時間に1回測定し、測定温度が基準温度より低い場
合は基準温度として(例えば基準温度が20℃で測定し
た表面温度が15℃の場合は表面温度が20℃とする)
マイクロプロセッサ(19A)に取り込み、平均温度
(t)を演算する処理を継続的にくり返す。
1. First, the temperature data on the surface of the storage battery (29)
Is measured once an hour, and when the measured temperature is lower than the reference temperature, it is used as the reference temperature (for example, when the reference temperature is 20 ° C and the measured surface temperature is 15 ° C, the surface temperature is 20 ° C).
The process of taking in the microprocessor (19A) and calculating the average temperature (t) is continuously repeated.

【0013】2.次に操作スイッチ(26)による劣化
係数(f)の演算指示またはプログラムによる演算イン
ターバル時間になった時(32)にカレンダIC(2
4)の現在日付とメモリ(21)に記憶されている蓄電
池設備設置日付から蓄電池設置後の経過年数(Y)を求
める(33)。
2. Next, when the calculation instruction of the deterioration coefficient (f) by the operation switch (26) or the calculation interval time by the program is reached (32), the calendar IC (2)
From the present date of 4) and the storage battery equipment installation date stored in the memory (21), the elapsed years (Y) after the installation of the storage battery is obtained (33).

【0014】3.1で継続的に演算されている平均温度
(t)から演算式1により劣化係数が1.0の期間(Y
b)を求める。
From the average temperature (t) continuously calculated in 3.1, the deterioration coefficient is 1.0 (Y) according to the calculation formula 1.
Find b).

【0015】4.設置後の経過年数(Y)と劣化係数が
1.0の期間(Yb)を比較し(35)YがYbより短い
場合は劣化係数(f)を1.0とする(37)。
4. The number of years elapsed since installation (Y) is compared with the period (Yb) where the deterioration coefficient is 1.0 (35). If Y is shorter than Yb, the deterioration coefficient (f) is set to 1.0 (37).

【0016】5.YがYbより長い場合は演算式2によ
り劣化係数(f)を求める(36)。
5. When Y is longer than Yb, the deterioration coefficient (f) is calculated by the arithmetic expression 2 (36).

【0017】以上のプロセスにより演算された劣化係数
は、操作スイッチ(26)の操作による表示指示により
蓄電池の経年劣化係数として表示装置(27)に表示さ
れるとともに、停電や整流器の故障時に、放電可能時間
を表示する際に前記劣化係数(f)を乗じて放電可能時
間の補正を行う。なお本発明の演算式1および演算式2
は指数演算があるために蓄電池設備の近くに設置するマ
イクロプロセッサ(19)ではプログラムメモリ(2
0)の容量が小さいので負荷が大きくなることからは、
演算式1,2の機能を付加しないで前記平均温度データ
をRS−232Cインターフェイス(22)からモデム
(23A,23B)を介してパーソナルコンピュータ
(PC)等(19B)に送信し、PC(19B)側で演
算式1,2を行い演算結果の劣化係数(f)を受信して
メモリ(21)に格納するとともに表示装置(27)に
表示したり停電時の放電可能時間の演算時に前記劣化係
数(f)を乗じて放電可能時間の補正をする方がコスト
的に有利な場合があり、この場合劣化診断装置は蓄電池
設備の近くに設置した図3の装置と通常蓄電池設備から
離れた場所に設置されるPC(19B)とからなる。
(表1)は本発明の劣化診断装置を使用して2V150
Ahのシール形鉛蓄電池25個組の蓄電池設備を40℃
の恒温室で2.25V/セルの電圧でトリクル充電を行
い、6ケ月に一度0.1CAの定電流で放電試験を行い、
1.8V/セルまでの放電初期の放電可能時間の演算値
と、実放電時間の比較を従来の方法と比較した結果であ
る。このように従来の方法では設置後3.5年目以降の寿
命末期に実放電時間と放電可能時間の演算値の間に大き
な差が出ているが本発明による劣化診断装置を使用した
場合は、実残時間にほぼ近い予測値を出している。
The deterioration coefficient calculated by the above process is displayed on the display device (27) as an aged deterioration coefficient of the storage battery according to a display instruction by operating the operation switch (26), and is discharged at the time of power failure or failure of the rectifier. When the available time is displayed, the dischargeable time is corrected by multiplying the deterioration coefficient (f). The arithmetic expression 1 and the arithmetic expression 2 of the present invention
Since there is an index calculation, the microprocessor (19) installed near the storage battery facility has a program memory (2
Since the capacity of 0) is small and the load is large,
The average temperature data is transmitted from the RS-232C interface (22) to the personal computer (PC) or the like (19B) through the modem (23A, 23B) without adding the functions of the arithmetic expressions 1 and 2, and the PC (19B) Side performs the arithmetic expressions 1 and 2, receives the deterioration coefficient (f) of the calculation result, stores it in the memory (21), displays it on the display device (27), and calculates the deterioration coefficient when calculating the dischargeable time at the time of power failure. It may be more cost-effective to correct the dischargeable time by multiplying by (f), and in this case, the deterioration diagnosis device is installed in a place far from the device of FIG. 3 installed near the storage battery facility and the normal storage battery facility. It consists of a PC (19B) installed.
(Table 1) shows 2V150 using the deterioration diagnosis device of the present invention.
Ah's sealed lead storage battery 25 pieces storage battery equipment at 40 ℃
Trickle charge at a voltage of 2.25V / cell in a constant temperature room at 6 months and a discharge test at a constant current of 0.1 CA once every 6 months.
It is the result of comparing the calculated value of the dischargeable time at the initial stage of discharge up to 1.8 V / cell and the actual discharge time with the conventional method. As described above, according to the conventional method, there is a large difference between the calculated values of the actual discharge time and the dischargeable time at the end of life 3.5 years after the installation, but when the deterioration diagnosis apparatus according to the present invention is used, , The predicted value is close to the actual remaining time.

【0018】[0018]

【表1】 [Table 1]

【0019】また(表2)は、環境温度を約4ケ月間3
0℃、約2ケ月40℃の繰り返しにして同様の試験を行
った結果を示す。この結果でも、従来は初期の放電可能
時間の表示しかできなかったが、本発明による容量劣化
率の演算方法を使用すると蓄電池設置環境温度の変化に
対応して実放電時間に近い放電可能時間の予測演算結果
が得られた。
In addition, (Table 2) shows that the environmental temperature is about 3 months for about 4 months.
The results of the same test repeated at 0 ° C. and 40 ° C. for about two months are shown. Even in this result, conventionally, only the initial dischargeable time was displayed, but when the calculation method of the capacity deterioration rate according to the present invention is used, the dischargeable time close to the actual discharge time corresponding to the change in the storage battery installation environmental temperature is displayed. The prediction calculation result was obtained.

【0020】[0020]

【表2】 [Table 2]

【0021】[0021]

【発明の効果】前記実施例に示したように本発明による
容量劣化率演算方法および劣化診断装置は、蓄電池の放
電試験を行うことなく従来よりも正確に寿命時期を検知
することができるとともに、停電等による蓄電池放電時
にも放電可能時間を従来より正確に演算表示することが
できる。
As described in the above embodiment, the capacity deterioration rate calculating method and the deterioration diagnosing device according to the present invention can detect the life time more accurately than before without performing the discharge test of the storage battery. The dischargeable time can be calculated and displayed more accurately than before even when the storage battery is discharged due to a power failure or the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1における演算式1,2による
シール形鉛蓄電池の劣化係数の推移
FIG. 1 shows the transition of the deterioration coefficient of a sealed lead-acid battery according to Formulas 1 and 2 in Example 1 of the present invention.

【図2】本発明の実施例2における演算式1,2による
補液式鉛蓄電池の劣化係数の推移
FIG. 2 is a graph showing a change in deterioration coefficient of a replenishment type lead acid battery according to Formulas 1 and 2 in Example 2 of the present invention.

【図3】本発明の実施例における劣化診断装置のブロッ
ク図
FIG. 3 is a block diagram of a deterioration diagnosis device according to an embodiment of the present invention.

【図4】本発明の実施例における劣化係数演算プロセス
を示すフローチャート図
FIG. 4 is a flowchart showing a deterioration coefficient calculation process in the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

19A マイクロプロセッサ 19B パーソナルコンピュータ等ホストCPU 20 プログラムメモリ 29 鉛蓄電池表面温度の測定データ 19A Microprocessor 19B Personal computer, etc. Host CPU 20 Program memory 29 Lead-acid battery surface temperature measurement data

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 トリクルまたはフロート使用の蓄電池の
表面温度を継続的に測定する手段を備えた蓄電池におい
て、前記蓄電池の初期の容量劣化率(f)=1.0とした
初期容量維持期間(Yb)を求める演算式1としてYb
=a−b×logtと、前記初期容量維持期間以降の容量
劣化率(f)を求める演算式2としてf=1−(c+d
×tn )×(Y−Yb)m の両演算式により蓄電池の劣
化状態を検知することを特徴とする蓄電池の容量劣化率
演算方法。(ただし、a,b,c,d,n,mは蓄電池
の標準特性により異なる実験定数、tは蓄電池の表面温
度が基準温度以下の場合は基準温度として継続的に測定
演算された蓄電池表面の平均温度、Yは蓄電池の設置後
の経過年数、Ybは演算式1により演算された初期容量
維持期間とし、演算式2の適用範囲は1.0>f>0とす
る)
1. A storage battery equipped with means for continuously measuring the surface temperature of a storage battery using a trickle or a float, wherein an initial capacity maintenance period (Yb) in which the initial capacity deterioration rate (f) of the storage battery is 1.0. ) Is calculated as Yb.
= Ab−logt, and f = 1− (c + d) as an arithmetic expression 2 for obtaining the capacity deterioration rate (f) after the initial capacity maintenance period.
A method for calculating the capacity deterioration rate of a storage battery, characterized in that the deterioration state of the storage battery is detected by both calculation formulas of × t n ) × (Y−Yb) m . (However, a, b, c, d, n, m are experimental constants that differ depending on the standard characteristics of the storage battery, and t is the reference temperature when the surface temperature of the storage battery is below the reference temperature. (The average temperature, Y is the number of years that have passed since the storage battery was installed, Yb is the initial capacity maintenance period calculated according to calculation formula 1, and the applicable range of calculation formula 2 is 1.0>f> 0.)
【請求項2】 蓄電池の表面温度測定手段を備えたマイ
クロプロセッサにより蓄電池の表面温度を継続的に自動
測定し、蓄電池の表面温度が基準温度以下の場合は基準
温度として測定して蓄電池の平均温度を継続的に演算す
るとともに、前記平均温度と蓄電池の設置経過年数か
ら、演算式1としてYb=a−b×log tと、演算式2
としてf=1−(c+d×tn )×(Y−Yb)m とし
た両演算式による容量劣化率の演算処理と、演算結果を
出力する蓄電池の劣化診断装置。(ただし、a,b,
c,d,n,mは蓄電池の標準特性により異なる実験定
数、tは蓄電池の表面温度が基準温度以下の場合は基準
温度として継続的に測定演算された蓄電池表面の平均温
度、Yは蓄電池の設置後の経過年数、Ybは演算式1に
より演算された初期容量維持期間とし、演算式2の適用
範囲は1.0>f>0とする)
2. The average temperature of the storage battery is obtained by continuously and automatically measuring the surface temperature of the storage battery by a microprocessor equipped with the surface temperature measuring means of the storage battery, and measuring the surface temperature of the storage battery as the reference temperature when the surface temperature of the storage battery is below the reference temperature. Is calculated continuously, and Yb = ab−log t as the calculation formula 1 and the calculation formula 2 from the average temperature and the elapsed years of installation of the storage battery.
A storage battery deterioration diagnosing device which outputs a calculation result of a capacity deterioration rate by both calculation formulas, where f = 1− (c + d × t n ) × (Y−Yb) m . (However, a, b,
c, d, n, m are experimental constants that differ depending on the standard characteristics of the storage battery, t is the average temperature of the storage battery surface continuously measured and calculated as the reference temperature when the surface temperature of the storage battery is lower than or equal to the reference temperature, and Y is the storage battery The number of years elapsed since installation, Yb is the initial capacity maintenance period calculated by calculation formula 1, and the applicable range of calculation formula 2 is 1.0>f> 0)
【請求項3】 蓄電池の表面温度測定手段と負荷電流に
対する蓄電池の放電可能時間の演算・表示機能を備えた
マイクロプロセッサにより蓄電池の表面温度を継続的に
自動測定し、蓄電池の表面温度が基準温度以下の場合は
基準温度として測定して蓄電池の平均温度を継続的に演
算するとともに、前記平均温度と蓄電池の設置経過年数
から、演算式1としてYb=a−b×log tと、演算式
2としてf=1−(c+d×tn )×(Y−Yb)m
した両演算式による容量劣化率の演算処理と、前記演算
処理により求められた前記容量劣化率を前記放電可能時
間に乗じて負荷に対する放電可能時間を演算・出力する
蓄電池の劣化診断装置。(ただし、a,b,c,d,
n,mは蓄電池の標準特性により異なる実験定数、tは
蓄電池の表面温度が基準温度以下の場合は基準温度とし
て継続的に測定演算された蓄電池表面の平均温度、Yは
蓄電池の設置後の経過年数、Ybは演算式1により演算
された初期容量維持期間とし、演算式2の適用範囲は
1.0>f>0とする)
3. The surface temperature of the storage battery is continuously and automatically measured by a microprocessor having a surface temperature measuring means of the storage battery and a function of calculating / displaying the dischargeable time of the storage battery with respect to a load current, and the surface temperature of the storage battery is a reference temperature. In the following cases, the average temperature of the storage battery is continuously calculated by measuring as the reference temperature, and Yb = ab−log t and the calculation formula 2 are calculated as the calculation formula 1 from the average temperature and the years of installation of the storage battery. F = 1− (c + d × t n ) × (Y−Yb) m, and the dischargeable time is multiplied by the capacity deterioration rate calculation processing by both calculation expressions and the capacity deterioration rate obtained by the calculation processing. Storage battery deterioration diagnosis device that calculates and outputs the dischargeable time for the load. (However, a, b, c, d,
n and m are experimental constants that differ depending on the standard characteristics of the storage battery, t is the average temperature of the storage battery surface that is continuously measured and calculated as the reference temperature when the surface temperature of the storage battery is below the reference temperature, and Y is the progress after the storage battery is installed. The number of years and Yb are the initial capacity maintenance period calculated by the calculation formula 1, and the applicable range of the calculation formula 2 is 1.0>f> 0.)
JP4120984A 1992-05-14 1992-05-14 Calculation method of capacity deterioration rate of storage battery and deterioration diagnosis device Expired - Lifetime JP2936441B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4120984A JP2936441B2 (en) 1992-05-14 1992-05-14 Calculation method of capacity deterioration rate of storage battery and deterioration diagnosis device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4120984A JP2936441B2 (en) 1992-05-14 1992-05-14 Calculation method of capacity deterioration rate of storage battery and deterioration diagnosis device

Publications (2)

Publication Number Publication Date
JPH05315015A true JPH05315015A (en) 1993-11-26
JP2936441B2 JP2936441B2 (en) 1999-08-23

Family

ID=14799905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4120984A Expired - Lifetime JP2936441B2 (en) 1992-05-14 1992-05-14 Calculation method of capacity deterioration rate of storage battery and deterioration diagnosis device

Country Status (1)

Country Link
JP (1) JP2936441B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100730335B1 (en) * 1998-07-28 2007-06-19 가부시키가이샤 엔티티 퍼실리티즈 Apparatus for managing a battery unit having storage batteries
WO2007105456A1 (en) * 2006-02-28 2007-09-20 Matsushita Electric Industrial Co., Ltd. Battery service life judging device and battery service life judging method
JP2010019856A (en) * 2009-10-19 2010-01-28 Ntt Facilities Inc Device and method for monitoring secondary battery
JP2010066160A (en) * 2008-09-11 2010-03-25 Mitsumi Electric Co Ltd Battery state detection device and battery pack incorporated therewith
US8649988B2 (en) 2008-07-02 2014-02-11 Panasonic Corporation Service life estimation method for lead storage battery and power source system
JP2016167336A (en) * 2015-03-09 2016-09-15 中国電力株式会社 Storage battery remaining life estimation method, storage battery inspection date determination method, storage battery remaining life estimation device, and storage battery remaining life estimation system
CN110476072A (en) * 2017-03-29 2019-11-19 株式会社杰士汤浅国际 Degradation estimating device, method for estimating deterioration and computer program
CN113640674A (en) * 2021-06-30 2021-11-12 昆明理工大学 Lithium ion battery available capacity estimation method based on optimized Gaussian process regression

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100730335B1 (en) * 1998-07-28 2007-06-19 가부시키가이샤 엔티티 퍼실리티즈 Apparatus for managing a battery unit having storage batteries
WO2007105456A1 (en) * 2006-02-28 2007-09-20 Matsushita Electric Industrial Co., Ltd. Battery service life judging device and battery service life judging method
US8035395B2 (en) 2006-02-28 2011-10-11 Panasonic Corporation Battery life predicting device and battery life predicting method
KR101285896B1 (en) * 2006-02-28 2013-07-15 파나소닉 주식회사 Battery service life judging device and battery service life judging method
US8649988B2 (en) 2008-07-02 2014-02-11 Panasonic Corporation Service life estimation method for lead storage battery and power source system
JP2010066160A (en) * 2008-09-11 2010-03-25 Mitsumi Electric Co Ltd Battery state detection device and battery pack incorporated therewith
JP2010019856A (en) * 2009-10-19 2010-01-28 Ntt Facilities Inc Device and method for monitoring secondary battery
JP2016167336A (en) * 2015-03-09 2016-09-15 中国電力株式会社 Storage battery remaining life estimation method, storage battery inspection date determination method, storage battery remaining life estimation device, and storage battery remaining life estimation system
CN110476072A (en) * 2017-03-29 2019-11-19 株式会社杰士汤浅国际 Degradation estimating device, method for estimating deterioration and computer program
CN113640674A (en) * 2021-06-30 2021-11-12 昆明理工大学 Lithium ion battery available capacity estimation method based on optimized Gaussian process regression
CN113640674B (en) * 2021-06-30 2022-09-06 昆明理工大学 Lithium ion battery available capacity estimation method based on optimized Gaussian process regression

Also Published As

Publication number Publication date
JP2936441B2 (en) 1999-08-23

Similar Documents

Publication Publication Date Title
US6469512B2 (en) System and method for determining battery state-of-health
US4390841A (en) Monitoring apparatus and method for battery power supply
US10203375B2 (en) Method for ascertaining storage battery state, state-ascertaining system, and computer program
JP2019510970A (en) Device and method for detecting battery health status
JP2007309839A (en) Battery pack condition measuring device, degradation of battery pack discrimination method and program for the same
CN1228540A (en) Monitoring technique for accurately determining residual capacity of battery
US20040036475A1 (en) Battery monitoring
JP2007311255A (en) Battery pack status measuring device, battery pack deterioration determining method, and battery pack deterioration determining program
JP2012032267A (en) Remaining capacitance detection apparatus and battery control ic
US6556020B1 (en) Battery state of charge indicator
JP2936441B2 (en) Calculation method of capacity deterioration rate of storage battery and deterioration diagnosis device
US11733309B2 (en) Method and system for self-discharge prognostics for vehicle battery cells with an internal short circuit
JP2002343444A (en) Status-monitoring system for lead-acid battery
US6838883B2 (en) Method and system for monitoring state of lead acid battery
JP3136981B2 (en) Storage battery life prediction method and life prediction device
WO2023157373A1 (en) Battery management device and battery management program
JP3944904B2 (en) Storage battery life diagnosis device and life diagnosis method
WO2017026175A1 (en) Power storage system and method for managing same
JP4011303B2 (en) Lead storage battery condition monitoring method
JP2001250590A (en) Method for deciding deterioration of storage battery
JP2976808B2 (en) Storage battery deterioration diagnosis device
JP3129150B2 (en) Battery life prediction device
JP2007132738A (en) Method and device for diagnosing degradation of storage battery
CN117686918B (en) Battery SOC prediction method, device, battery management equipment and storage medium
WO2024053143A1 (en) Battery management device, battery management method, and battery management program

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080611

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090611

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100611

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100611

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110611

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120611

Year of fee payment: 13

EXPY Cancellation because of completion of term