JPH05312359A - Continuous ice making type heat accumulating method and device therefor - Google Patents

Continuous ice making type heat accumulating method and device therefor

Info

Publication number
JPH05312359A
JPH05312359A JP14326892A JP14326892A JPH05312359A JP H05312359 A JPH05312359 A JP H05312359A JP 14326892 A JP14326892 A JP 14326892A JP 14326892 A JP14326892 A JP 14326892A JP H05312359 A JPH05312359 A JP H05312359A
Authority
JP
Japan
Prior art keywords
ice
heat exchanger
heat
ice making
chiller solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14326892A
Other languages
Japanese (ja)
Inventor
Hiroshi Omori
宏 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwatani International Corp
Iwatani Techno Construction Co Ltd
Original Assignee
Iwatani International Corp
Iwatani Techno Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwatani International Corp, Iwatani Techno Construction Co Ltd filed Critical Iwatani International Corp
Priority to JP14326892A priority Critical patent/JPH05312359A/en
Publication of JPH05312359A publication Critical patent/JPH05312359A/en
Pending legal-status Critical Current

Links

Landscapes

  • Other Air-Conditioning Systems (AREA)

Abstract

PURPOSE:To obtain a heat accumulating system, capable of releasing produced ice efficiently and manufacturing the ice continuously, even through the size of the device of the system is small. CONSTITUTION:An ice making section 2 and an ice reserving section 3 are formed in a heat accumulating tank 1 in a condition that two sections are continued in the direction of up-and-down. The title device is constituted so as to be capable of switching and supplying hot gas, pressurized by a compressor 15, and cold gas, obtained by reducing the pressure of the pressurized gas after condensing and liquefying it, to a heat exchanger arranged in the ice making section 2. When a sensor detects that the thickness of ice, adhering to the surface of the heat exchanger, has grown to a given thickness, hot gas is supplied to the heat exchanger to melt the contacting part of the ice, adhering to the surface of the heat exchanger, with the heat exchanger by supplying hot gas to the heat exchanger to release the ice from the heat exchanger.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、氷蓄熱システムに関す
るものであり、より具体的には夜間電力を利用して冷凍
機と氷蓄熱槽との間にガス冷媒を循環させ、氷蓄熱槽内
の液体を一部氷結させて冷熱を蓄熱する氷蓄熱システム
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ice heat storage system. More specifically, the night heat power is used to circulate a gas refrigerant between a refrigerator and an ice heat storage tank to provide an ice heat storage tank. The present invention relates to an ice heat storage system for storing cold heat by partially freezing the liquid.

【0002】[0002]

【従来技術】近年、住宅やビルなどの冷房・給冷水利用
について、省エネルギー、経済性の面から、夜間電力を
利用して蓄熱槽に冷水や氷の形態で寒冷エネルギーを貯
溜し、昼間この冷熱を冷房等に利用することが行われて
いる。この場合、水蓄熱方式と氷蓄熱方式では、氷蓄熱
方式の方が水蓄熱方式よりも冷蓄熱容積を大幅に縮小で
きるといった利点を有し、この氷蓄熱方式が広く採用さ
れている。
2. Description of the Related Art In recent years, regarding the use of cooling and hot water supply for houses and buildings, from the viewpoint of energy saving and economical efficiency, night energy is used to store cold energy in the form of cold water or ice in the form of cold water during the daytime. Is used for air conditioning. In this case, in the water heat storage method and the ice heat storage method, the ice heat storage method has an advantage that the cold heat storage volume can be significantly reduced as compared with the water heat storage method, and the ice heat storage method is widely adopted.

【0003】従来、氷蓄熱方式をとる蓄熱システムとし
て、例えば特開昭51−7746号公報や特公平4−2
871号公報に開示されたものがある。特開昭51−7
746号公報に開示された蓄熱システムは、水槽内に複
数経路の製氷管を沈設し、ガス冷凍機から製氷管へのガ
ス液化冷媒の供給を一定時間ごとに切り換えることによ
り、同一の製氷管で製氷工程と脱氷工程とを交互に繰り
返すようにして断続的に製氷し、水槽内の貯溜水を冷水
と氷の混合液にして冷熱エネルギーを貯蔵するようにし
たものである。
Conventionally, as a heat storage system adopting an ice heat storage system, for example, Japanese Patent Laid-Open No. 51-7746 and Japanese Patent Publication No. 4-2.
There is one disclosed in Japanese Patent No. 871. JP-A-51-7
In the heat storage system disclosed in Japanese Patent No. 746, a plurality of paths of ice making pipes are sunk in a water tank, and the supply of the gas liquefied refrigerant from the gas refrigerator to the ice making pipes is switched at regular time intervals, so that the same ice making pipes are used. The ice making process and the deicing process are alternately repeated to intermittently make ice, and the stored water in the water tank is made into a mixed liquid of cold water and ice to store cold energy.

【0004】一方、特公平4−2871号公報に開示さ
れた蓄熱システムは、水槽内の下部に凹凸部が交互に連
続して形成される上下方向に変形可能な伝熱プレートを
配置し、この伝熱プレートの下部にブラインを流通させ
ることにより、伝熱プレートの凹部で水を氷結させ、伝
熱プレート下方に供給するブラインの圧力を変化させる
ことにより伝熱プレートを湾曲変形させて伝熱プレート
の凹部で氷結した氷を伝熱プレートから離脱させ、水槽
内の貯溜水を冷水と氷の混合液にするようにしたもので
ある。
On the other hand, the heat storage system disclosed in Japanese Examined Patent Publication No. 4-2871 has a vertically-deformable heat transfer plate in which concave and convex portions are alternately formed continuously in the lower portion of a water tank. By circulating the brine under the heat transfer plate, water is frozen in the recesses of the heat transfer plate, and by changing the pressure of the brine supplied below the heat transfer plate, the heat transfer plate is curved and deformed. The ice that has frozen in the concave portions is removed from the heat transfer plate, and the stored water in the water tank is made into a mixed liquid of cold water and ice.

【0005】[0005]

【発明が解決しようとする課題】ところが、前記特開昭
51−7746号公報に開示された蓄熱システムでは、
氷を効率よく生成するためには水槽の中に複数系統の製
氷管を配置しなければならず、蓄熱装置全体が大型化す
るという問題がある。そのうえ、脱氷工程時にはガス液
化冷媒の供給を停止するだけであるから、氷結した氷が
製氷管から離脱するまでに時間がかかるという問題があ
る。
However, in the heat storage system disclosed in JP-A-51-7746,
In order to efficiently generate ice, a plurality of systems of ice making pipes must be arranged in the water tank, which causes a problem that the entire heat storage device becomes large. Moreover, since the supply of the gas liquefied refrigerant is only stopped during the deicing process, there is a problem that it takes time for the frozen ice to separate from the ice making tube.

【0006】一方、特公平4−2871号公報に開示さ
れた蓄熱システムでは、水槽内底部にブライン循環室を
区画形成し、このブライン循環室と冷却水貯溜室との区
画壁を上下方向に湾曲変形可能な伝熱プレートで構成し
ていることから、製氷部が水槽底面の二次元的平面とな
り、大量の氷を生成するためには広い水槽設置面積を必
要とし、装置全体が大型化するという問題がある。
On the other hand, in the heat storage system disclosed in Japanese Patent Publication No. 2871/1992, a brine circulation chamber is formed at the bottom of the water tank, and the partition wall between the brine circulation chamber and the cooling water storage chamber is curved in the vertical direction. Since it is composed of a deformable heat transfer plate, the ice making part becomes a two-dimensional flat surface of the bottom of the water tank, a large water tank installation area is required to generate a large amount of ice, and the entire device becomes large. There's a problem.

【0007】本発明はこのような点に着目してなされた
もので、小型でありながら氷の離脱を効率よく行って氷
を連続的に製造することができる蓄熱方法及びその方法
を実施する装置を提供することを目的とする。
The present invention has been made by paying attention to such a point, and it is a small-sized heat storage method capable of efficiently removing ice and continuously producing ice, and an apparatus for carrying out the method. The purpose is to provide.

【0008】[0008]

【課題を解決するための手段】上述の目的を達成するた
めに、本発明方法は、蓄熱槽内に配置した熱交換器にガ
ス冷凍機を接続し、蓄熱槽内のチラー溶液を熱交換器に
作用させることにより、蓄熱槽内に氷と低温液体の混合
液を貯蔵するようにした蓄熱方法において、蓄熱槽の内
部に製氷部と貯氷部とを上下に連続して形成し、この製
氷部に配置した熱交換器とガス冷凍機の圧縮機とを接続
するガス冷媒通路に四方弁を配置し、四方弁の切換えで
熱交換器にコールドガスとホットガスとを切換供給可能
に構成するとともに、熱交換器に上方からチラー溶液を
作用させるように構成し、熱交換器にコールドガスを供
給している状態でチラー溶液を熱交換器の表面に凍結さ
せてチラー溶液の氷を生成し、熱交換器の表面に付着し
た氷が一定厚さに成長した際、四方弁を切り換えて熱交
換器にホットガスを一定時間供給することにより、熱交
換器に着氷したチラー溶液氷を熱交換器の表面から離脱
させ、この離脱氷を貯氷部内でチラー溶液に浮かした状
態で貯蔵し、製氷工程と離氷工程とを順次繰り返し、チ
ラー溶液を冷熱源液体として使用するように構成したこ
とを特徴とする。
In order to achieve the above object, the method of the present invention is such that a gas refrigerator is connected to a heat exchanger arranged in a heat storage tank, and a chiller solution in the heat storage tank is exchanged with the heat exchanger. In the heat storage method in which a mixed liquid of ice and a low-temperature liquid is stored in the heat storage tank, the ice making section and the ice storage section are continuously formed inside the heat storage tank, and the ice making section is formed. A four-way valve is placed in the gas refrigerant passage that connects the heat exchanger and the compressor of the gas refrigerator, and the cold gas and hot gas can be switched and supplied to the heat exchanger by switching the four-way valve. The chiller solution is configured to act on the heat exchanger from above, and the chiller solution is frozen on the surface of the heat exchanger while cold gas is being supplied to the heat exchanger to generate ice of the chiller solution, The ice adhered to the surface of the heat exchanger has a certain thickness. When the temperature has increased, the four-way valve is switched and hot gas is supplied to the heat exchanger for a certain period of time, so that the chiller solution ice that has accumulated on the heat exchanger is separated from the surface of the heat exchanger, and this separated ice is stored in the ice storage unit. It is characterized in that the chiller solution is stored in a floating state, and the ice making step and the ice releasing step are sequentially repeated to use the chiller solution as a cold heat source liquid.

【0009】[0009]

【作用】本発明方法では、蓄熱槽内に配置した熱交換器
にガス冷凍機を接続し、蓄熱槽内のチラー溶液を熱交換
器に作用させることにより、蓄熱槽内に氷と低温液体の
混合液を貯蔵するようにした蓄熱方法において、蓄熱槽
の内部に製氷部と貯氷部とを上下に連続して形成し、こ
の製氷部に配置した熱交換器とガス冷凍機の圧縮機とを
接続するガス冷媒通路に四方弁を配置し、四方弁の切換
えで熱交換器にコールドガスとホットガスとを切換供給
可能に構成するとともに、熱交換器に上方からチラー溶
液を作用させるように構成し、熱交換器にコールドガス
を供給している状態でチラー溶液を熱交換器の表面に凍
結させてチラー溶液の氷を生成し、熱交換器の表面に付
着した氷が一定厚さに成長した際、四方弁を切り換えて
熱交換器にホットガスを一定時間供給することにより、
熱交換器に着氷した氷を熱交換器の表面から離脱させ、
この離脱氷を貯氷部内でチラー溶液に浮かした状態で貯
蔵し、製氷工程と離氷工程とを順次繰り返し、チラー溶
液を冷熱源液体として使用するように構成しているの
で、熱交換器にコールドガスと圧縮機で圧縮されたホッ
トガスとが切り換え供給されることになるから、コール
ドガス供給時に熱交換器の表面に氷結した氷が、ホット
ガスの保有熱で熱交換器の表面から短時間に離脱するす
ることになる。
In the method of the present invention, a gas refrigerator is connected to the heat exchanger arranged in the heat storage tank, and the chiller solution in the heat storage tank is caused to act on the heat exchanger, whereby ice and low-temperature liquid are stored in the heat storage tank. In the heat storage method adapted to store the mixed liquid, an ice making part and an ice storing part are continuously formed inside the heat storage tank, and the heat exchanger and the compressor of the gas refrigerator arranged in this ice making part are connected to each other. A four-way valve is arranged in the gas refrigerant passage to be connected, and the cold gas and hot gas can be switched and supplied to the heat exchanger by switching the four-way valve, and the chiller solution is made to act on the heat exchanger from above. Then, the chiller solution is frozen on the surface of the heat exchanger while cold gas is being supplied to the heat exchanger to generate ice of the chiller solution, and the ice adhering to the surface of the heat exchanger grows to a certain thickness. When switching, the four-way valve is switched and the heat exchanger is hot. By a certain period of time supplying a scan,
Remove the ice that has accumulated on the heat exchanger from the surface of the heat exchanger,
The desorbed ice is stored in a chiller solution in a floating state in the ice storage unit, and the ice making process and the deicing process are sequentially repeated to use the chiller solution as a cold heat source liquid. Since the gas and hot gas compressed by the compressor are switched and supplied, the ice that has frozen on the surface of the heat exchanger during the cold gas supply is retained by the hot gas for a short time from the surface of the heat exchanger. Will leave.

【0010】[0010]

【実施例】図面は冷房装置に本発明方法を適用した場合
の系統図である。図中符号(1)は蓄熱槽で、この蓄熱槽
(1)の内部に製氷部(2)と貯氷部(3)を連続する状態で
上下に配置してある。製氷部(2)には冷凍システムの蒸
発器となる熱交換器(4)が配置してあり、この熱交換器
(4)の上方に2系統の散液管(5)(6)が配設してある。
そして、一方の散液管(5)に貯氷部(3)の底部から導出
したチラー溶液通路が送液ポンプ(7)を介して接続する
ことにより蓄冷用チラー溶液循環路(8)を形成してあ
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The drawings are system diagrams in the case where the method of the present invention is applied to a cooling device. Reference numeral (1) in the figure is a heat storage tank.
Inside (1), an ice making section (2) and an ice storage section (3) are arranged vertically in a continuous state. A heat exchanger (4), which is an evaporator of the refrigeration system, is arranged in the ice making unit (2).
Above the (4), there are two systems of sprinkler tubes (5) and (6).
Then, a chiller solution passage leading from the bottom of the ice storage part (3) is connected to one of the sprinkling pipes (5) through a liquid feed pump (7) to form a cool storage chiller solution circulation path (8). There is.

【0011】また、貯氷部(3)の底壁から導出したチラ
ー溶液通路を第2送液ポンプ(9)及び冷房負荷(10)を介
して他の散液管(6)に接続して冷熱取出用循環路(11)を
形成している。そして、この冷熱取出用循環路(11)の冷
房負荷(10)への送給路に混合弁(12)を介装し、この混合
弁(12)の混合流体ポートに冷房負荷(10)からの戻り路(1
3)から分岐導出したバイパス路(14)を接続して、冷房負
荷(10)に送り込むチラー溶液の温度を調整するように構
成してある。
The chiller solution passage led out from the bottom wall of the ice storage part (3) is connected to another sprinkling pipe (6) through the second liquid feed pump (9) and the cooling load (10) to cool the ice. It forms the take-out circulation path (11). Then, a mixing valve (12) is provided in the supply path to the cooling load (10) of the cold heat extraction circulation path (11), and the cooling fluid (10) is connected to the mixed fluid port of the mixing valve (12). Return path (1
The bypass passage (14) branched from 3) is connected to adjust the temperature of the chiller solution fed into the cooling load (10).

【0012】製氷部(2)に配置した熱交換器(4)はプレ
ート式の熱交換器で形成してあり、この熱交換器(4)と
圧縮機(15)とを閉サイクルで接続して、冷凍機回路(16)
を形成している。この冷凍機回路(16)には、2個の膨張
弁ユニット(17)と凝縮器(18)及び四方弁(19)が直列に配
置してあり、各膨張弁ユニット(17)はそれぞれ膨張弁(2
0)と逆止弁(21)を並列に配置して構成してある。
The heat exchanger (4) arranged in the ice making section (2) is formed by a plate type heat exchanger, and the heat exchanger (4) and the compressor (15) are connected in a closed cycle. Refrigerator circuit (16)
Is formed. In this refrigerator circuit (16), two expansion valve units (17), a condenser (18) and a four-way valve (19) are arranged in series, and each expansion valve unit (17) is an expansion valve unit. (2
0) and the check valve (21) are arranged in parallel.

【0013】冷凍機回路(16)に配置した四方弁(19)は、
熱交換器(4)からの戻り路(22)が圧縮機(15)の吸入ポー
ト(23)に接続し、圧縮機(15)の吐出ポート(24)が凝縮器
(18)に接続する製氷工程と、熱交換器(3)からの戻り路
(22)が圧縮機(15)の吐出ポート(24)に接続し、圧縮機(1
5)の吸入ポート(23)が凝縮器(18)に接続する解氷工程と
に制御装置(25)からの指令で切り換わるように構成して
ある。
The four-way valve (19) arranged in the refrigerator circuit (16) is
The return path (22) from the heat exchanger (4) is connected to the suction port (23) of the compressor (15) and the discharge port (24) of the compressor (15) is the condenser.
Ice making process connected to (18) and return path from heat exchanger (3)
(22) connects to the discharge port (24) of the compressor (15) and the compressor (1
The suction port (23) of 5) is configured to switch to the deicing process in which it is connected to the condenser (18) according to a command from the control device (25).

【0014】制御装置(25)には製氷部(2)に配置されて
いる熱交換器(3)に対応させて配置した氷厚検出センサ
ーからのリード線が接続してある。そして、この氷厚検
出センサーは熱交換器プレート同士間にプレート表面か
ら一定間隔へだてて配置してあり、プレート表面に付着
した氷が一定厚みになったことを検出して制御装置(25)
に信号を伝達するようになっている。また、この制御装
置(25)には時計機能を有するタイマーと2つの経過時間
測定タイマーとが組み込んであり、この2つの時間設定
タイマーの内の一方に製氷時間を設定し、他方のタイマ
ーに解氷時間が設定してある。
A lead wire from an ice thickness detection sensor arranged corresponding to the heat exchanger (3) arranged in the ice making section (2) is connected to the control device (25). Then, this ice thickness detection sensor is arranged between the heat exchanger plates with a certain distance from the plate surface, and detects that the ice adhered to the plate surface has a certain thickness, and the control device (25)
It is designed to transmit signals to. In addition, the control device (25) has a timer having a clock function and two elapsed time measuring timers incorporated therein. One of the two time setting timers is set with the ice making time and the other timer is set with the ice making time. Ice time is set.

【0015】以上の構成からなる蓄熱装置を利用しての
蓄熱方法を説明する。この蓄熱装置は、夜間電力供給時
間を利用して製氷工程と解氷工程を繰り返して冷熱を蓄
熱し、昼間に蓄熱した冷熱を利用して冷房するようにし
てある。 (a) 製氷工程 製氷工程時には、冷凍機回路(16)に配置した四方弁(19)
は、熱交換器(4)からの戻り路(22)が圧縮機(15)の吸入
ポート(23)に接続し、圧縮機(15)の吐出ポート(24)が凝
縮器(18)に接続する状態になっている。この状態では、
圧縮機(15)で圧縮された冷媒ガスは、四方弁(19)を介し
て凝縮器(18)に送り込まれ、ここで放熱液化し、膨張弁
ユニット(17)で膨張減圧されてコールドガスとして熱交
換器(4)に流入する。
A heat storage method using the heat storage device having the above structure will be described. This heat storage device is configured to store the cold heat by repeating the ice making process and the defrosting process by using the nighttime power supply time, and cool the air by using the cold heat stored in the daytime. (a) Ice making process During the ice making process, the four-way valve (19) placed in the refrigerator circuit (16)
The return path (22) from the heat exchanger (4) connects to the suction port (23) of the compressor (15) and the discharge port (24) of the compressor (15) connects to the condenser (18). It is ready to go. In this state,
The refrigerant gas compressed by the compressor (15) is sent to the condenser (18) through the four-way valve (19), where it radiates heat and is expanded and decompressed by the expansion valve unit (17) to become cold gas. It flows into the heat exchanger (4).

【0016】一方、蓄熱槽(1)の貯氷部(3)に貯蔵され
ているチラー溶液は送液ポンプ(8)で散液管(5)に送り
込まれ、散液管(5)から熱交換器(4)に向けて噴出され
る。この噴出されたチラー溶液は熱交換器(4)の表面を
流下して熱交換器(4)内を流れるコールドガスと熱交換
する。運転開始後しばらくの間は、チラー溶液は冷却さ
れて液温が低下するだけであるが、液温が凝固点温度に
なると、熱交換器(4)のプレート表面に氷着を開始す
る。そして、氷着した氷の厚みが所定の厚さになったこ
とを氷厚検出センサーが検出すると、制御装置(25)が作
動して四方弁(19)を切り換える。なお、氷厚検出センサ
ーが所定厚みを検出する前に製氷時間設定タイマーで設
定した達すると、制御装置(25)が作動して四方弁(19)を
切り換えるように構成してある。
On the other hand, the chiller solution stored in the ice storage part (3) of the heat storage tank (1) is sent to the sprinkling pipe (5) by the liquid feeding pump (8), and heat is exchanged from the sprinkling pipe (5). It is ejected toward the vessel (4). The jetted chiller solution flows down the surface of the heat exchanger (4) and exchanges heat with the cold gas flowing in the heat exchanger (4). For a while after the start of operation, the chiller solution is cooled and the liquid temperature only decreases, but when the liquid temperature reaches the freezing point temperature, icing starts on the plate surface of the heat exchanger (4). Then, when the ice thickness detection sensor detects that the thickness of the iced ice reaches a predetermined thickness, the control device (25) operates to switch the four-way valve (19). The control device (25) is operated to switch the four-way valve (19) when the ice-making time setting timer reaches the set value before the ice-thickness detecting sensor detects the predetermined thickness.

【0017】(b) 解氷工程 解氷工程では、熱交換器(4)からの戻り路(22)が圧縮機
(15)の吐出ポート(24)に接続し、圧縮機(15)の吸入ポー
ト(23)が凝縮器(18)に接続し、熱交換器(4)に圧縮機(1
5)で圧縮されたガス冷媒がホットガスの状態で流入す
る。そして、四方弁(19)が切替わることにより制御装置
(25)に配置されている解氷時間設定タイマーが作動を開
始する。この圧縮されたガス冷媒(ホットガス)は圧縮熱
を保有していることから、このホットガスが保有してい
る熱により熱交換器(4)のプレート表面に付着している
部分を融解して脱氷する。脱氷した氷は貯氷部(3)に落
下するが、このとき、生成された氷は過冷却氷にならず
氷点付近の温度であることから、落下貯氷時に板状が崩
れやすく貯氷部(3)内ではスラッシュ状になる。解氷時
間設定タイマーが設定時間に達すると四方弁(19)を切り
換えて製氷工程に切り換わる。
(B) Thawing step In the thawing step, the return path (22) from the heat exchanger (4) is compressed by the compressor.
The discharge port (24) of (15) is connected, the suction port (23) of the compressor (15) is connected to the condenser (18), and the heat exchanger (4) is connected to the compressor (1
The gas refrigerant compressed in 5) flows in as hot gas. The control device is switched by switching the four-way valve (19).
The deicing time setting timer located at (25) starts operating. Since this compressed gas refrigerant (hot gas) retains the heat of compression, the heat retained by this hot gas melts the portion adhering to the plate surface of the heat exchanger (4). De-ice. The de-iced ice falls into the ice storage section (3). At this time, the ice generated does not become supercooled ice and has a temperature near the freezing point. In), it becomes a slash. When the defrosting time setting timer reaches the set time, the four-way valve (19) is switched to switch to the ice making process.

【0018】(C) 冷房工程 冷房工程では、冷凍機回路(16)に配置した四方弁(19)
を、熱交換器(4)からの戻り路(22)が圧縮機(15)の吸入
ポート(23)に接続し、圧縮機(15)の吐出ポート(24)が凝
縮器(18)に接続した状態で冷凍機を作動させ、冷熱取出
用循環路(11)を作動させて貯氷部(3)に貯蔵されている
低温のチラー溶液を冷房負荷(10)に送り込み、ここで低
温のチラー溶液は室内空気と熱交換して温度上昇し、冷
房負荷(10)で冷熱エネルギーを放出したチラー溶液は返
送路(13)により蓄熱槽(1)内の製氷部(2)に配置した散
液管(6)に供給され、熱交換器(4)に向けてチラー溶液
が噴出される。この製氷部(2)に向けて噴出したチラー
溶液は熱交換器(4)を流下する間に熱交換器(4)内を流
れるコールドガスとを熱交換して、冷却された状態で貯
氷部(3)に戻る。
(C) Cooling Step In the cooling step, the four-way valve (19) arranged in the refrigerator circuit (16)
The return path (22) from the heat exchanger (4) is connected to the suction port (23) of the compressor (15) and the discharge port (24) of the compressor (15) is connected to the condenser (18). In this state, the refrigerator is operated to operate the cold heat extraction circulation path (11) to send the low temperature chiller solution stored in the ice storage section (3) to the cooling load (10), where the low temperature chiller solution is Is a sprinkler pipe that is placed in the ice making part (2) in the heat storage tank (1) by the return path (13) for the chiller solution that has exchanged heat with the indoor air to raise the temperature and has released cooling energy with the cooling load (10). It is supplied to (6) and the chiller solution is jetted toward the heat exchanger (4). The chiller solution ejected toward the ice making part (2) exchanges heat with the cold gas flowing in the heat exchanger (4) while flowing down the heat exchanger (4), and in the cooled state, the ice storage part. Return to (3).

【0019】なお、この冷房工程では、チラー溶液の送
給路に配置した混合弁(12)で貯氷部(3)から送り出され
て来た低温のチラー溶液と冷房負荷(10)からの返送され
る冷熱を放出したチラー溶液とを混合して冷房負荷(10)
に流入するチラー溶液の液温を調整するようにしてあ
る。
In this cooling process, the low temperature chiller solution sent from the ice storage section (3) and the cooling load (10) are returned by the mixing valve (12) arranged in the chiller solution feed path. Cooling load by mixing with chiller solution that released cold heat (10)
The temperature of the chiller solution flowing into the is adjusted.

【0020】なお、上記実施例では、蓄熱槽(1)内のチ
ラー溶液を冷房負荷(10)に供給して冷房用の冷媒として
使用したが、蓄熱槽(1)内に冷水を貯溜するようにし、
この冷水を直接低温水として使用消費するようにしても
よい。この場合、貯氷部(3)の底壁から導出した冷水取
出路は閉サイクルにならず、製氷部(2)に配置した一方
の散液管(6)に給水管を接続することになる。
In the above embodiment, the chiller solution in the heat storage tank (1) was supplied to the cooling load (10) and used as a refrigerant for cooling. However, cold water should be stored in the heat storage tank (1). West,
This cold water may be directly used and consumed as low-temperature water. In this case, the cold water take-out path led from the bottom wall of the ice storage part (3) does not form a closed cycle, and the water supply pipe is connected to one of the sprinkling pipes (6) arranged in the ice making part (2).

【0021】[0021]

【発明の効果】本発明方法では、製氷部と貯氷部とを上
下に連続する状態に形成した蓄熱槽内に配置した熱交換
器に圧縮機で加圧したホットガスとこのホットガスを凝
縮液化させたのち膨張させたコールドガスとを切換供給
可能に構成し、熱交換器の表面に付着した氷の厚みが一
定に成長すると、熱交換器にホットガスを供給して付着
した氷を融解離脱させるように構成しているので、氷を
過冷却にすることなく生成することができ、離脱した氷
は貯氷部で容易に崩れて、貯氷部に氷をスラリー状で貯
蔵することができる。これにより、小型の装置で貯氷部
に貯蔵されている冷却液体での冷熱保有量を大幅に増や
すことができる。
According to the method of the present invention, the hot gas pressurized by the compressor and the hot gas compressed by the compressor are condensed and liquefied in the heat exchanger arranged in the heat storage tank in which the ice making part and the ice storing part are vertically connected. The cold gas that has been expanded and then expanded can be switched and supplied, and when the thickness of the ice adhered to the surface of the heat exchanger grows constant, hot gas is supplied to the heat exchanger to melt and separate the adhered ice. Since it is configured so that the ice can be generated without being supercooled, the detached ice can be easily collapsed in the ice storage part, and the ice can be stored in a slurry state in the ice storage part. As a result, the amount of cold heat retained in the cooling liquid stored in the ice storage unit can be significantly increased with a small device.

【0022】一般に熱交換器で製氷する場合、氷が成長
して厚みを増すと、熱伝達が悪化し、冷凍機の冷媒温度
か低下して冷凍装置の成績係数が低下するが、本発明で
は、コールドガスとホットガスとを交互に供給して氷が
一定の厚みに成長すると自動的に脱氷するようにしてい
ることから、熱交換器の表面に生成される氷は常時生成
中の状態となって氷温が0℃以下に過冷却されることは
なく、冷凍装置の冷媒温度が低温にならず高い成績係数
の冷凍装置で効率よく冷熱エネルギーを蓄積することが
できる。
Generally, in the case of ice making with a heat exchanger, when the ice grows and the thickness increases, heat transfer deteriorates and the refrigerant temperature of the refrigerator lowers to lower the coefficient of performance of the refrigerating apparatus. Since the cold gas and the hot gas are alternately supplied so that the ice is automatically deiced when it grows to a certain thickness, the ice generated on the surface of the heat exchanger is in the state of being constantly generated. Therefore, the ice temperature is not supercooled to 0 ° C. or lower, and the refrigerant temperature of the refrigeration system does not become low, so that cold energy can be efficiently accumulated in the refrigeration system having a high coefficient of performance.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法を冷房装置に適用した場合の系統図
である。
FIG. 1 is a system diagram when the method of the present invention is applied to a cooling device.

【符号の説明】[Explanation of symbols]

1…蓄熱槽、 2…製氷部、
3…貯氷部、 4…熱交換
器、5…散液管、 7…送液
ポンプ、8…チラー溶液循環路、 15…
圧縮機、16…冷凍機回路、 17…
膨張弁ユニット、18…凝縮器、
19…四方弁、20…膨張弁、
21…逆止弁。
1 ... Heat storage tank, 2 ... Ice making section,
3 ... Ice storage part, 4 ... Heat exchanger, 5 ... Dispersion pipe, 7 ... Liquid transfer pump, 8 ... Chiller solution circulation path, 15 ...
Compressor, 16 ... Refrigerator circuit, 17 ...
Expansion valve unit, 18 ... condenser,
19 ... four-way valve, 20 ... expansion valve,
21 ... Check valve.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 夜間電力を利用して蓄熱槽(1)内の貯氷
して冷熱エネルギーを貯蔵するようにした蓄熱方法にお
いて、 蓄熱槽(1)の内部に製氷部(2)と貯氷部(3)とを上下に
連続して形成し、この製氷部(2)に配置した熱交換器
(4)と圧縮機(15)とを接続する冷凍機回路(16)に四方弁
(19)を配置し、四方弁(19)の切換えで熱交換器(4)にコ
ールドガスとホットガスとを切換供給可能に構成すると
ともに、熱交換器(4)に上方からチラー溶液を作用させ
るように構成し、熱交換器(4)にコールドガスを供給し
ている状態でチラー溶液を熱交換器(4)の表面に凍結さ
せてチラー溶液の氷を生成し、熱交換器(4)の表面に付
着したチラー溶液の氷が一定厚さに成長した際、四方弁
(19)を切り換えて熱交換器(4)に圧縮機(15)からのホッ
トガスを一定時間供給することにより、熱交換器(4)に
着氷したチラー溶液の氷を熱交換器(4)の表面から離脱
させ、この離脱氷を貯氷部(3)内でチラー溶液に浮かし
た状態で貯蔵し、製氷工程と離氷工程とを順次繰り返
し、チラー溶液を冷熱源液体として使用するように構成
したことを特徴とする連続製氷式蓄熱方法。
1. A heat storage method for storing cold heat energy by storing ice in a heat storage tank (1) by using nighttime electric power, wherein an ice making section (2) and an ice storage section (1) are provided inside the heat storage tank (1). 3) and the upper and lower sides are continuously formed, and the heat exchanger is arranged in the ice making section (2).
A four-way valve in the refrigerator circuit (16) that connects (4) and the compressor (15)
(19) is arranged so that cold gas and hot gas can be switched and supplied to the heat exchanger (4) by switching the four-way valve (19), and the chiller solution is applied to the heat exchanger (4) from above. The chiller solution is frozen on the surface of the heat exchanger (4) while cold gas is being supplied to the heat exchanger (4) to generate ice of the chiller solution, When the ice of the chiller solution adhering to the surface of) has grown to a certain thickness, a four-way valve
(19) is switched to supply the hot gas from the compressor (15) to the heat exchanger (4) for a certain period of time so that the ice of the chiller solution that has iced on the heat exchanger (4) is transferred to the heat exchanger (4). ) Is detached from the surface, and the detached ice is stored in the chiller solution in the ice storage part (3) in a floating state, and the ice making step and the ice releasing step are sequentially repeated so that the chiller solution is used as a cold heat source liquid. A continuous ice-making heat storage method characterized by being configured.
【請求項2】 夜間電力を利用して蓄熱槽(1)内の貯氷
して冷熱エネルギーを貯蔵するようにした蓄熱装置にお
いて、 蓄熱槽(1)の内部に製氷部(2)と貯氷部(3)とを上下に
連続して形成し、製氷部(2)に冷凍機の蒸発器を構成す
るプレート式熱交換器(4)を配置し、この熱交換器(4)
のプレート同士間に氷着した氷の厚みを検出する厚み検
出センサーを配置し、熱交換器(4)の上側に散液管(5)
を配置するとともに、貯氷部(3)から導出したチラー溶
液通路を送液ポンプ(7)を介して散液管(5)に接続する
ことにより蓄冷用チラー溶液循環路(8)を形成し、圧縮
機(15)と熱交換器(4)とを接続する冷凍機回路(16)に2
つの膨張弁ユニット(17)と凝縮器(18)及び四方弁(19)と
を直列に配置し、各膨張弁ユニット(17)を逆止弁(21)と
膨張弁(20)とを並列に配置して構成し、四方弁(19)を厚
み検出センサーからの検出信号に基づき切り換えること
により、熱交換器(4)にコールドガスとホットガスとを
切換え供給するように構成したことを特徴とする連続製
氷式蓄熱装置。
2. A heat storage device for storing cold energy by storing ice in the heat storage tank (1) by using nighttime electric power, wherein the ice making section (2) and the ice storage section ( 3) are formed vertically and continuously, and a plate heat exchanger (4) constituting an evaporator of a refrigerator is arranged in the ice making part (2), and this heat exchanger (4)
A thickness detection sensor that detects the thickness of ice on the ice is placed between the plates, and the sprinkler pipe (5) is placed above the heat exchanger (4).
And the chiller solution passage derived from the ice storage part (3) is connected to the sprinkling pipe (5) via the liquid feed pump (7) to form a cool storage chiller solution circulation path (8), 2 in the refrigerator circuit (16) that connects the compressor (15) and the heat exchanger (4)
The two expansion valve units (17), the condenser (18) and the four-way valve (19) are arranged in series, and each expansion valve unit (17) is connected in parallel with the check valve (21) and the expansion valve (20). The arrangement is such that the cold gas and the hot gas are switched and supplied to the heat exchanger (4) by switching the four-way valve (19) based on the detection signal from the thickness detection sensor. Continuous ice making type heat storage device.
JP14326892A 1992-05-09 1992-05-09 Continuous ice making type heat accumulating method and device therefor Pending JPH05312359A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14326892A JPH05312359A (en) 1992-05-09 1992-05-09 Continuous ice making type heat accumulating method and device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14326892A JPH05312359A (en) 1992-05-09 1992-05-09 Continuous ice making type heat accumulating method and device therefor

Publications (1)

Publication Number Publication Date
JPH05312359A true JPH05312359A (en) 1993-11-22

Family

ID=15334801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14326892A Pending JPH05312359A (en) 1992-05-09 1992-05-09 Continuous ice making type heat accumulating method and device therefor

Country Status (1)

Country Link
JP (1) JPH05312359A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100758248B1 (en) * 2006-05-03 2007-09-12 한국식품연구원 Pcm manufacturing device
CN113865173A (en) * 2021-09-08 2021-12-31 常州大学 Piece ice type ice maker and ice storage air conditioning system thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5770250A (en) * 1980-10-16 1982-04-30 Nissan Motor Co Ltd Nickel base cast alloy excellent in resistance to wear and seizure
JPH01263442A (en) * 1988-04-14 1989-10-19 Daikin Ind Ltd Thermal accumulation device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5770250A (en) * 1980-10-16 1982-04-30 Nissan Motor Co Ltd Nickel base cast alloy excellent in resistance to wear and seizure
JPH01263442A (en) * 1988-04-14 1989-10-19 Daikin Ind Ltd Thermal accumulation device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100758248B1 (en) * 2006-05-03 2007-09-12 한국식품연구원 Pcm manufacturing device
CN113865173A (en) * 2021-09-08 2021-12-31 常州大学 Piece ice type ice maker and ice storage air conditioning system thereof

Similar Documents

Publication Publication Date Title
CN109028404B (en) Ice water mixture cold accumulation air conditioning system and control method thereof
JPH0120334B2 (en)
CN105588241B (en) A kind of ice-storage air-conditioning and ice cold-storage method
KR200377788Y1 (en) Refrigerator for drinking water
CN100455942C (en) Device of preventing drained water from freezing of air conditioner outdoor unit
US4970869A (en) Tube type freezing unit and in-tube freezing method
JPH05312359A (en) Continuous ice making type heat accumulating method and device therefor
JPH1054591A (en) Ice storage apparatus
JP2514583B2 (en) Continuous ice making type heat storage device
KR101650189B1 (en) Ice Storage System
KR20160060524A (en) A heat hump system having a defrost device
JP2000121107A (en) Ice storage system
JPH102644A (en) Ice cold heat storage apparatus
JPH05312360A (en) Cold heat of ice accumulating type cooling and heating device and operating method therefor
CN101498488B (en) Air-conditioning unit with ice production and cold water production function
CN219063628U (en) Ice cold accumulation system
JP6582102B1 (en) Cooling system
CN1719144B (en) Device of air conditioner outdoor unit for preventing drained water from freezing
CN115451628B (en) Ice machine system for preparing solid pipe ice
KR970000500B1 (en) Heat storing system
CN217636364U (en) High-efficient air-cooler
JPS58195725A (en) Air conditioning system utilising heat accumulated in ice
JPH02187546A (en) Heat source system based on in-pipe ice making unit
JPS6229866Y2 (en)
KR100189625B1 (en) Defroster and its method of a refrigerator