JPH05310653A - Production of vanillylamine - Google Patents

Production of vanillylamine

Info

Publication number
JPH05310653A
JPH05310653A JP4148152A JP14815292A JPH05310653A JP H05310653 A JPH05310653 A JP H05310653A JP 4148152 A JP4148152 A JP 4148152A JP 14815292 A JP14815292 A JP 14815292A JP H05310653 A JPH05310653 A JP H05310653A
Authority
JP
Japan
Prior art keywords
vanillin
vanillylamine
metallic
amount
1mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4148152A
Other languages
Japanese (ja)
Inventor
Katsuyuki Imamiya
勝之 今宮
Kazumi Nakano
一美 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumika Fine Chemicals Co Ltd
Original Assignee
Sumika Fine Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumika Fine Chemicals Co Ltd filed Critical Sumika Fine Chemicals Co Ltd
Priority to JP4148152A priority Critical patent/JPH05310653A/en
Publication of JPH05310653A publication Critical patent/JPH05310653A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To obtain vanillylamine useful as a synthetic intermediate for capsaicin, etc., by catalytically reducing vanillin with hydrogen gas in the presence of aqueous ammonia using a metallic catalyst, then adding a metallic ion flocculant and removing metallic ions. CONSTITUTION:Vanillin is catalytically reduced with hydrogen gas in the presence of aqueous ammonia using a metallic catalyst (e.g. Raney nickel) at ordinary temperature under ordinary pressure or while being warmed under pressure. Metallic ions present in the reactional solution are then removed with a metallic ion flocculant (e.g. sodium dimethyl dithiocarbamate) to afford the subject compound. The aqueous ammonia is used in an amount of 1-10mol based on 1mol vanillin and the hydrogen gas is used in an amount of 0.9-1.5mol based on 1mol vanillin. The catalyst is used in an amount of 0.01-1mol based on 1mol vanillin and the metallic ion flocculant is added in an amount of 5-15ml/l. Since the metallic ions are not mixed in the vanillylamine, the resultant vanillylamine is not colored to dark gray and this method is extremely useful for producing the final product.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、カプサイシン等の合成
中間体として有用なバニリルアミンの製造方法に関す
る。さらに詳しくは、バニリン中のアルデヒド基を金属
触媒の存在下に還元アミノ化する際に、反応溶液中に溶
存する金属イオンを凝集除去するバニリルアミンの製造
方法に関する。
TECHNICAL FIELD The present invention relates to a process for producing vanillylamine useful as a synthetic intermediate for capsaicin and the like. More specifically, the present invention relates to a method for producing vanillylamine, in which metal ions dissolved in a reaction solution are aggregated and removed when reductive amination of aldehyde groups in vanillin in the presence of a metal catalyst.

【0002】[0002]

【従来の技術・発明が解決しようとする課題】一般的に
アルデヒド基を有する化合物を還元アミノ化する場合、
金属触媒を用い水素付加反応によって還元する方法が一
般的に行われている。該金属触媒としては、銅、銀、
金、ニッケル、鉄、パラジウム、白金、コバルトのよう
なものが使用されているが、還元反応後に反応溶液中に
多少なりともこれらの金属が溶解し残存することは避け
られない。即ち、例えば、バニリンからバニリルアミン
を製造する際に、ラネーニッケルの存在下に水素ガスを
作用させて接触還元する方法が開示されているが(米国
特許第 4,388,250号)、この場合、目的物であるバニリ
ルアミン中に溶解したニッケルが混在し、暗灰色に着色
するという問題が指摘される。従って、ガス状にして採
取する場合には特にこれらの金属の残留は問題にならな
いが、液状で採取する場合、溶存する金属イオンは有機
溶媒による抽出、イオン交換樹脂等による精製の手段を
用いて、目的物より除去する必要がある。これらの方法
では収量の低下、操作の煩雑さは免れず、効率的である
とは言えないため、バニリンを還元してバニリルアミン
を製造するに際し、工業的に有利に金属触媒に由来する
金属イオンを除去して、着色のない目的物を得る製造方
法の開発が期待されている。
BACKGROUND OF THE INVENTION Generally, when a compound having an aldehyde group is reductively aminated,
A method of reducing by a hydrogen addition reaction using a metal catalyst is generally performed. As the metal catalyst, copper, silver,
Although materials such as gold, nickel, iron, palladium, platinum, and cobalt are used, it is unavoidable that some of these metals will dissolve and remain in the reaction solution after the reduction reaction. That is, for example, when producing vanillylamine from vanillin, a method of catalytic reduction by acting hydrogen gas in the presence of Raney nickel has been disclosed (US Pat. No. 4,388,250), but in this case, the objective vanillylamine It is pointed out that the problem is that dissolved nickel is mixed in and it turns dark gray. Therefore, in the case of collecting in a gas state, the residue of these metals does not pose a problem, but in the case of collecting in a liquid state, the dissolved metal ions are extracted by an organic solvent and purified by an ion exchange resin or the like. , It should be removed from the target. In these methods, the yield is reduced, and the complexity of the operation is inevitable, and it cannot be said that the method is efficient. Therefore, when vanillin is reduced to produce vanillylamine, industrially advantageous metal ions derived from a metal catalyst are produced. It is expected to develop a manufacturing method for removing the target product without being removed.

【0003】[0003]

【課題を解決するための手段】本発明者らはこれらの問
題点を含まない簡便な製造方法を模索したところ、反応
溶液中に溶存する金属イオンを金属凝集剤で除去するこ
とが可能であることを見出し、本発明を完成するに至っ
た。すなわち、本発明の要旨は、バニリンをアンモニア
水の存在下に金属触媒により接触還元してバニリルアミ
ンを製造する方法において、反応溶液中に溶存する金属
イオンを金属イオン凝集剤によって除去することを特徴
とするバニリルアミンの製造方法に関する。
Means for Solving the Problems The inventors of the present invention sought a simple production method that does not include these problems, and found that the metal ions dissolved in the reaction solution can be removed with a metal coagulant. This has led to the completion of the present invention. That is, the gist of the present invention is a method for producing vanillylamine by catalytic reduction of vanillin with a metal catalyst in the presence of aqueous ammonia, wherein metal ions dissolved in the reaction solution are removed by a metal ion aggregating agent. To a method for producing vanillylamine.

【0004】本発明の製造方法に用いる金属触媒とし
て、例えば、ニッケル、鉄、銅等の金属触媒、あるいは
これらを炭素等の担体に保持させた担持触媒等、一般的
に用いられる触媒が挙げられ、特に限定されるものでは
ない。本発明における還元反応はアンモニア水の存在下
に行われるが、用いるアンモニア水の量はバニリン1モ
ルに対して通常1〜10モルであり、使用する水素ガス
の量は通常0.9〜1.5、好ましくは0.93〜1.
0モルである。また、触媒の使用量はバニリン1モルに
対して、通常0.01〜1モル、好ましくは0.1〜
0.5モルである。還元反応は常温常圧下で進行する
が、加温加圧により反応を促進させることができる。反
応時間は通常8時間である。
Examples of the metal catalyst used in the production method of the present invention include commonly used catalysts such as metal catalysts of nickel, iron, copper and the like, or supported catalysts in which these are supported on a carrier such as carbon. It is not particularly limited. The reduction reaction in the present invention is carried out in the presence of aqueous ammonia, and the amount of aqueous ammonia used is usually 1 to 10 mol per 1 mol of vanillin, and the amount of hydrogen gas used is usually 0.9 to 1. 5, preferably 0.93 to 1.
It is 0 mol. The amount of the catalyst used is usually 0.01 to 1 mol, preferably 0.1 to 1 mol of vanillin.
It is 0.5 mol. The reduction reaction proceeds at room temperature and atmospheric pressure, but the reaction can be accelerated by heating and pressurizing. The reaction time is usually 8 hours.

【0005】本発明で用いる金属イオン凝集剤として
は、上記したようなニッケルイオン、鉄イオン、銅イオ
ン等の金属イオンを凝集するものならば特に限定されな
い。このような金属凝集剤として炭素数1〜4のジアル
キルジチオカルバミン酸塩が挙げられる。該カルバミン
酸の塩としてはナトリウム、カリウム、ビスマス、銅、
鉄、ニッケル、セレン、亜鉛等の塩が例示される。なか
でもジメチルジチオカルバミン酸ナトリウムが好まし
い。金属イオン凝集剤は反応終了後、触媒を濾過により
除去した後、濾液に加えられる。該金属イオン凝集剤の
添加量は、その濾液中に存在する金属イオンの種類、量
等によるが、濾液中に残存する金属イオンの量はおよそ
500〜1000ppmであるから、5〜15ml/リ
ットル程度添加する。金属イオンは金属イオン凝集剤と
ともに凝集沈殿し、濾過することによって容易に除去さ
れる。過剰の金属イオン凝集剤とバニリルアミンとの分
離は結晶の濾取および水による洗浄によって容易に行わ
れる。このようにして得られるバニリルアミンは金属イ
オンの混在がないため、着色のないものである。また、
バニリルアミンはカプサイシン等の合成中間体として使
用されるが、暗灰色に着色されていないので、最終製品
の製造上極めて有用である。
The metal ion aggregating agent used in the present invention is not particularly limited as long as it aggregates metal ions such as nickel ions, iron ions and copper ions as described above. Examples of such a metal flocculant include dialkyldithiocarbamate having 1 to 4 carbon atoms. Examples of the carbamic acid salt include sodium, potassium, bismuth, copper,
Examples include salts of iron, nickel, selenium, zinc and the like. Of these, sodium dimethyldithiocarbamate is preferable. After completion of the reaction, the metal ion aggregating agent is added to the filtrate after removing the catalyst by filtration. The amount of the metal ion aggregating agent added depends on the type and amount of the metal ions present in the filtrate, but the amount of the metal ions remaining in the filtrate is about 500 to 1000 ppm, and therefore about 5 to 15 ml / liter. Added. The metal ions coagulate and precipitate together with the metal ion coagulant, and are easily removed by filtration. Separation of excess metal ion flocculant and vanillylamine is facilitated by filtration of the crystals and washing with water. The vanillylamine thus obtained is free from coloration because it contains no metal ions. Also,
Although vanillylamine is used as a synthetic intermediate for capsaicin and the like, it is extremely useful in the production of the final product because it is not colored dark gray.

【0006】[0006]

【実施例】以下、実施例により本発明をさらに詳しく説
明するが、本発明はこれらの実施例に何ら限定されるも
のではない。 実施例 水300ml、25%アンモニア水205g中にバニリ
ン91.3g(0.6モル)およびラネーニッケル2
8.2gを加え、内温35〜40℃で水素ガスを13.
4リットル吹き込んだ。反応終了液に水酸化ナトリウム
水溶液を加えて目的物を溶解させ、触媒を濾別した。溶
解している約1000ppmのニッケルイオンは13m
lのジメチルジチオカルバミン酸ナトリウムを加え、金
属塩として不溶化させた。活性炭を加え、不溶物を濾別
した後、塩酸を用いてpHを10.1に調整し、結晶化
させた。結晶を濾取し乾燥して、白色のバニリルアミン
80g(0.522モル)が得られた(収率87%)。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples. Example: Vanillin 91.3 g (0.6 mol) and Raney nickel 2 in 300 ml of water and 205 g of 25% ammonia water.
8.2g was added, and hydrogen gas was added at an internal temperature of 35 to 40 ° C.
I blew 4 liters. An aqueous sodium hydroxide solution was added to the reaction completed liquid to dissolve the target substance, and the catalyst was filtered off. About 1000ppm of dissolved nickel ion is 13m
1 of sodium dimethyldithiocarbamate was added to insolubilize it as a metal salt. Activated carbon was added, the insoluble matter was filtered off, and the pH was adjusted to 10.1 with hydrochloric acid for crystallization. The crystals were collected by filtration and dried to obtain 80 g (0.522 mol) of white vanillylamine (yield 87%).

【0007】比較例 水300ml、25%アンモニア水205g中にバニリ
ン91.3g(0.6モル)およびラネーニッケル2
8.2gを加え、内温35〜40℃で水素ガスを13.
4リットル吹き込んだ。反応終了液に水酸化ナトリウム
水溶液を加えて目的物を溶解させ、触媒を濾別し、目的
物を結晶化したところ、暗灰色の結晶が得られた。この
結晶を水酸化ナトリウム水溶液に溶かして活性炭処理を
した後、塩酸を用いてpHを約10.1に調整し、精製
して灰白色のバニリルアミン結晶を濾取し乾燥して、7
2g(0.47モル)が得られた(収率78.3%)。
Comparative Example 91.3 g of vanillin (0.6 mol) and Raney nickel 2 in 300 ml of water and 205 g of 25% aqueous ammonia.
8.2g was added, and hydrogen gas was added at an internal temperature of 35 to 40 ° C.
I blew 4 liters. An aqueous solution of sodium hydroxide was added to the reaction-terminated liquid to dissolve the target substance, the catalyst was filtered off, and the target substance was crystallized to obtain dark gray crystals. The crystals were dissolved in an aqueous solution of sodium hydroxide and treated with activated carbon, the pH was adjusted to about 10.1 with hydrochloric acid, and the crystals were purified and the off-white vanillylamine crystals were collected by filtration and dried.
2 g (0.47 mol) was obtained (yield 78.3%).

【0008】[0008]

【発明の効果】本発明の方法では目的化合物中に金属イ
オンが混在しないため、有機溶媒による抽出、イオン交
換樹脂等による精製の手段等の煩雑な工程を経ることが
なく、従って、この精製工程による収率の低下を回避で
きる。また、この方法は反応容器に直接金属イオン凝集
剤を加えることができることから、目的物の回収が容易
であり、金属イオンによる着色も発生しない。このよう
にして得られるバニリルアミンは金属イオンの混在がな
いため、着色のないものである。また、バニリルアミン
はカプサイシン等の合成中間体として使用されるが、暗
灰色に着色されていないので、最終製品の製造上極めて
有用である。
In the method of the present invention, since metal ions are not mixed in the target compound, complicated steps such as extraction with an organic solvent, purification means with an ion exchange resin, etc. do not occur, and therefore the purification step is carried out. It is possible to avoid a decrease in yield due to. Further, in this method, since the metal ion aggregating agent can be added directly to the reaction vessel, the target product can be easily recovered and coloring due to the metal ion does not occur. The vanillylamine thus obtained is free from coloration because it contains no metal ions. Further, vanillylamine is used as a synthetic intermediate for capsaicin and the like, but since it is not colored dark gray, it is extremely useful in the production of the final product.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 バニリンをアンモニア水の存在下に金属
触媒により接触還元してバニリルアミンを製造する方法
において、反応溶液中に溶存する金属イオンを金属イオ
ン凝集剤によって除去することを特徴とするバニリルア
ミンの製造方法。
1. A method for producing vanillylamine by catalytically reducing vanillin in the presence of aqueous ammonia with a metal catalyst, wherein metal ions dissolved in the reaction solution are removed by a metal ion aggregating agent. Production method.
【請求項2】 金属イオン凝集剤がジメチルジチオカル
バミン酸ナトリウムである請求項1記載の製造方法。
2. The method according to claim 1, wherein the metal ion aggregating agent is sodium dimethyldithiocarbamate.
【請求項3】 金属触媒がニッケルである請求項1記載
の製造方法。
3. The production method according to claim 1, wherein the metal catalyst is nickel.
JP4148152A 1992-05-13 1992-05-13 Production of vanillylamine Pending JPH05310653A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4148152A JPH05310653A (en) 1992-05-13 1992-05-13 Production of vanillylamine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4148152A JPH05310653A (en) 1992-05-13 1992-05-13 Production of vanillylamine

Publications (1)

Publication Number Publication Date
JPH05310653A true JPH05310653A (en) 1993-11-22

Family

ID=15446428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4148152A Pending JPH05310653A (en) 1992-05-13 1992-05-13 Production of vanillylamine

Country Status (1)

Country Link
JP (1) JPH05310653A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018505854A (en) * 2014-12-15 2018-03-01 オルガノフール スウェーデン エービー Synthesis of amides and amines from aldehydes or ketones by heterogeneous metal catalysis
CN110305031A (en) * 2019-07-03 2019-10-08 刘晓珍 The preparation method of capsaicine and the capsaicine being prepared using this method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018505854A (en) * 2014-12-15 2018-03-01 オルガノフール スウェーデン エービー Synthesis of amides and amines from aldehydes or ketones by heterogeneous metal catalysis
US10308588B2 (en) 2014-12-15 2019-06-04 Organofuel Sweden Ab Synthesis of amides and amines from aldehydes or ketones by heterogeneous metal catalysis
CN110305031A (en) * 2019-07-03 2019-10-08 刘晓珍 The preparation method of capsaicine and the capsaicine being prepared using this method
CN110305031B (en) * 2019-07-03 2022-07-12 遂宁晶安科技有限公司 Preparation method of capsaicin and capsaicin prepared by using same

Similar Documents

Publication Publication Date Title
SK10282001A3 (en) Method for producing l-phenylephrine hydrochloride
EP4282856A1 (en) Method for preparing taurine
EP0504381B1 (en) Method for obtaining acetic acid derivatives
JPH05310653A (en) Production of vanillylamine
NO760024L (en)
CN101643423A (en) Method for preparing 3,3'-dichlorobenzidine hydrochloride by hydrochloric acid translocation
JP4212473B2 (en) Process for preparing (R)-or (S) -aminocarnitine inner salt, salt and derivative thereof
JPH05286889A (en) Production of arylacetic acid and its alkali metal salt
JPH10120624A (en) Purification of 2-hydroxymephthalene-6-carboxylic acid
JP3716376B2 (en) Optical resolving agent and method for producing optically active 3-aminopyrrolidine derivative using the same
JP2569104B2 (en) Method for recovering iodine from waste liquid containing organic iodine compound
WO2007064663A2 (en) Process for the preparation of 1-(aminomethyl)cyclohexaneacetic acid
JPH05279326A (en) Production of optically active 3-hydroxypyrolidine
JPH05279325A (en) Production of optically active 3-hydroxypyrolidine
GB255884A (en) Manufacture of nickel catalyst
JPS6017780B2 (en) Method for producing 4-aminomethylbenzoic acid
CN109896967B (en) Preparation method of m-diethylaminophenol
CA2147373A1 (en) Method of recovering iodine from iodated organic compounds
US4812581A (en) Catalytic hydrogenolysis
JPH09151168A (en) Production of beta-alanine salt
JPH0517452A (en) Preparation of 2,4,5-triamino-6-hydroxypyrimidine
CN116375714A (en) Preparation method of key intermediate of cabazitaxel drug
CN117964505A (en) Synthesis method of N, N-bis (carboxymethyl) -L-lysine
JPH0717953A (en) Production of 5-isopropyluracil
SU1740471A1 (en) Process for recovering gold from iodide solution