JPH05306405A - Furnace protecting wall provided with slow-cooling type stave cooler - Google Patents

Furnace protecting wall provided with slow-cooling type stave cooler

Info

Publication number
JPH05306405A
JPH05306405A JP11161492A JP11161492A JPH05306405A JP H05306405 A JPH05306405 A JP H05306405A JP 11161492 A JP11161492 A JP 11161492A JP 11161492 A JP11161492 A JP 11161492A JP H05306405 A JPH05306405 A JP H05306405A
Authority
JP
Japan
Prior art keywords
furnace
stave cooler
cooling
pipe
slow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11161492A
Other languages
Japanese (ja)
Other versions
JP2778348B2 (en
Inventor
Yoshihisa Nakamura
義久 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP4111614A priority Critical patent/JP2778348B2/en
Publication of JPH05306405A publication Critical patent/JPH05306405A/en
Application granted granted Critical
Publication of JP2778348B2 publication Critical patent/JP2778348B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Blast Furnaces (AREA)

Abstract

PURPOSE:To provide a slow-cooling type stave cooler and a furnace protecting wall constructed with the stave cooler together with a furnace wall brick, in which the occurrence of reduced powdering phenomenon of sintered ore and the generation of the material deposited on the furnace wall can be restrained, by forming refractory heat insulating layer between the inner and the outer pipes of double cooling pipe. CONSTITUTION:The slow-cooling type stave cooler is composed so that a cooling pipe forming three layer double pipe is inserted into a spheroidal graphite cast iron or a gray cast iron 2-1 by drawing the inner and the outer pipes 3-1', 3-2' after forming the refractory heat insulating layer 4 between the inner and the outer pipes 3-1', 3-2'. Further, by constituting the slow-cooling type stave cooler together with the furnace wall brick arranged in inside of the furnace, the furnace protecting wall can be constituted.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、内外2重管の間に耐
火断熱層を密着介在させてなる緩冷却型ステーブクーラ
を備えた炉体保護壁に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a furnace body protective wall provided with a slow cooling type stave cooler in which a fireproof heat insulating layer is closely interposed between inner and outer double tubes.

【0002】[0002]

【従来の技術】一般に炉壁は、反応炉の内部現象に対し
て物流および熱流の境界条件を与えるものである。しか
しながら、高炉等の冶金炉における炉壁条件は、初期の
構造および稼働後の内面プロフイルの損耗などによって
変化していく。このような内面プロフィルの異常な損耗
は、装入物の充填状態を乱し、ガス流を不安定にすると
ともに、炉壁を通しての熱流出を増加させる。特にステ
ーブクーラ冷却方式の高炉においてステーブクーラ前面
の炉壁煉瓦が脱落すると、ステーブクーラが炉内に露出
し、炉内を過度に冷却するようになる。これらの現象は
安定操業の阻害因子となり、炉命中期(4〜6年)での
煉瓦脱落により炉況が乱される事例は、これに該当する
ものと考えられている。
2. Description of the Related Art In general, a furnace wall provides boundary conditions of flow and heat flow to internal phenomena of a reactor. However, the conditions of the furnace wall in a metallurgical furnace such as a blast furnace change depending on the initial structure and wear of the inner profile after the operation. Such abnormal wear of the inner surface profile disturbs the charge fill, destabilizes the gas flow and increases heat outflow through the furnace wall. In particular, in a stave cooler cooling type blast furnace, when the furnace wall brick in front of the stave cooler falls off, the stave cooler is exposed inside the furnace and excessively cools the inside of the furnace. These phenomena are factors that hinder stable operation, and it is considered that cases in which the reactor condition is disturbed due to brick falling off during the middle period of the reactor life (4 to 6 years) fall under this.

【0003】ところで、炉壁における熱流の境界条件
は、稼働後の内面プロフィル変化以前では炉体の冷却構
造に依存する。近年、炉体プロフィルの維持、高炉の長
寿命化、および改修コストの低減の観点から、炉体の保
護・耐久性の向上をねらって、炉壁冷却の強化が図られ
ている。高炉操業の基本は、炉体への熱負荷を極力抑制
しながら、通気・熱交換・還元の各機能を最大限に生か
すことにあるが、炉壁冷却の強化により炉体からの熱損
失が増加すると、炉内温度、特に炉壁近傍での温度低下
を招くことから、いわゆる不活性化が進行して、炉況不
調に陥るおそれがある。
By the way, the boundary condition of the heat flow on the furnace wall depends on the cooling structure of the furnace body before the change of the inner surface profile after the operation. In recent years, from the viewpoints of maintaining the furnace body profile, extending the life of the blast furnace, and reducing the repair cost, the furnace wall cooling has been strengthened in order to improve the protection and durability of the furnace body. The basis of blast furnace operation is to maximize the functions of aeration, heat exchange, and reduction while suppressing the heat load on the furnace body as much as possible, but heat loss from the furnace body is reduced by strengthening the cooling of the furnace wall. If it increases, the temperature inside the furnace, especially the temperature near the wall of the furnace, is lowered, so that so-called deactivation progresses, and there is a risk that the furnace condition will fall into a poor condition.

【0004】従来提案されているステーブクーラには、
冷却管が1重であって、鋳鉄製のステーブ母材との間を
非融着とした、いわゆる非融着型のもの、または冷却管
が2重であってステーブ母材との間を非融着とした非融
着型のもの、あるいは冷却管が2重であってステーブ母
材との間を融着とした融着型のものがあるが、これらの
ステーブクーラは、その前面の炉内側炉壁煉瓦が脱落す
ると炉内に露出する。
The conventionally proposed stave coolers include:
The cooling pipe has a single layer and is non-fused to the stave base material made of cast iron, that is, a so-called non-fusion type, or the cooling pipe has a double layer and is not fused to the stave base material. There are a non-fusing type that is fused and a fusion type that has a double cooling pipe and is fused to the stave base material. These stave coolers have a furnace in front of them. When the inner furnace wall brick falls off, it is exposed in the furnace.

【0005】従って、炉内からの熱負荷を受けてステー
ブ母材が損傷しないように、またステーブ母材に発生し
た亀裂がそれに鋳込まれた冷却管にまで波及しないよう
に、さらに冷却装置としての伝熱効率を上げるために、
非融着層の鋳鉄とのギャップを極力小さくしたり、ある
いは冷却管を2重冷却管にして、外管と内管との密着度
を高めることがなされている。
Therefore, the stave base material is not damaged by the heat load from the inside of the furnace, and the cracks generated in the stave base material do not spread to the cooling pipe cast into the stave base material. To increase the heat transfer efficiency of
The gap between the non-fusing layer and cast iron is made as small as possible, or the cooling pipe is made into a double cooling pipe to increase the degree of adhesion between the outer pipe and the inner pipe.

【0006】しかしながら、上述したような従来のステ
ーブクーラが、炉内に露出した場合、高炉のシャフト上
部では炉壁近傍を過度に冷却することになって、焼結鉱
の還元粉化現象を促進して、図2に示すように、焼結鉱
が還元粉化した中間部H(炉を左右からみて)を避けて
炉壁方向へ流れようとするガス抜け現象が生じ易くなっ
たり、炉内で気化した亜鉛が析出して炉内微粉と結合
し、付着物が生成するなどの問題があった。また、必要
以上の炉体冷却に伴う過度の熱損失は、単に投入熱量の
損失が増えるのみならず、炉内状態が変化して安定操業
にも悪影響を与えることが明らかとなった。
[0006] However, when the conventional stave cooler as described above is exposed in the furnace, the vicinity of the furnace wall is excessively cooled in the upper part of the shaft of the blast furnace, which promotes the reduction and pulverization phenomenon of the sintered ore. Then, as shown in FIG. 2, a gas escape phenomenon that tends to flow toward the furnace wall while avoiding the intermediate portion H (when the furnace is viewed from the left and right) where the sinter ore is reduced and powdered is likely to occur, or There was a problem that zinc vaporized at 3 was deposited and combined with the fine powder in the furnace to form deposits. In addition, it became clear that excessive heat loss due to excessive cooling of the furnace body not only increases the loss of the amount of heat input, but also changes the state of the furnace and adversely affects stable operation.

【0007】[0007]

【発明が解決しようとする課題】この発明は、高炉等の
ステーブクーラにおける従来の欠点を解決することを目
的とし、炉体保護と操業安定性との双方を両立させうる
という二律背反の炉体冷却条件、即ち”冷やし過ぎない
ようにして冷やす”という概念に基づき、焼結鉱の還元
粉化現象の発生と炉壁付着物の生成を抑制しうる、緩冷
却型ステーブクーラを備えた炉体保護壁を提供すること
を目的とする。
SUMMARY OF THE INVENTION The present invention is intended to solve the conventional drawbacks of stave coolers for blast furnaces and the like, and is a contradictory cooling of the furnace body that can achieve both the protection of the furnace body and the operational stability. Furnace protection with a slow cooling type stave cooler that can suppress the generation of reduction powdering phenomenon of sinter and the formation of deposits on the furnace wall based on the condition, that is, "cool without overcooling" Intended to provide a wall.

【0008】[0008]

【課題を解決するための手段】この発明は、内管の外表
面に耐火断熱層を形成させ、それに外管を挿入し、内外
管を引抜いて3層2重管とした冷却管を鋳鉄と鋳合わせ
てなる緩冷却型ステーブクーラを備えた炉体保護壁を要
旨とする。
SUMMARY OF THE INVENTION According to the present invention, a refractory heat insulating layer is formed on the outer surface of an inner pipe, the outer pipe is inserted into the outer pipe, and the inner and outer pipes are pulled out to form a three-layer double pipe. The gist is a furnace body protection wall provided with a slowly cooled stave cooler formed by casting.

【0009】以下図面を参照して、この発明の具体例お
よびその作用効果について詳細に説明する。
Specific examples of the present invention and their effects will be described in detail below with reference to the drawings.

【0010】まず、図1を参照すると、ステーブクーラ
冷却方式の高炉においては、朝顔部Eからシャフト中部
Bまでの部位が高炉本体の炉熱を最大に受ける熱負荷の
最も高い場所である。これらの場所には、従来、図3
(b)に示すような冷却強化型ステーブクーラ2′、即
ち、4〜6本の冷却パイプ3(内側)と通常1本の蛇管
状パイプ3′(外側)とを2段に配設し、炉内側の鋳込
み煉瓦2−2とともに、鋳物(鋳鉄)2−1により1体
とされたステーブクーラが配置されている。また装入原
料(コークスおよび焼結鉱)と炉下部からの還元ガスと
の向流移動層となる等熱還元帯であるシャフト上部Aに
は、図3(a)に示すようなステーブクーラ2が配置さ
れている。このシャフト上部Aは、シャフト中部B以下
より熱負荷がやや低い場所であるため、そのステーブク
ーラ2は、鋳物2−1の炉外側に2〜4本の冷却パイプ
3と炉内側に鋳込み煉瓦2−2とを配設して1体に鋳込
んだものである。
First, referring to FIG. 1, in the stave cooler cooling type blast furnace, the portion from the bosh portion E to the middle shaft portion B is the place where the heat load of the blast furnace main body is the highest. These locations are traditionally shown in FIG.
A cooling enhanced stave cooler 2'as shown in (b), that is, four to six cooling pipes 3 (inside) and usually one serpentine pipe 3 '(outside) are arranged in two stages, A stave cooler integrated by casting (cast iron) 2-1 is arranged together with the cast brick 2-2 inside the furnace. Further, the stave cooler 2 as shown in FIG. Are arranged. Since this shaft upper part A is a place where the heat load is slightly lower than the shaft middle part B and below, the stave cooler 2 has 2 to 4 cooling pipes 3 outside the furnace of the casting 2-1 and the cast brick 2 inside the furnace. -2 is arranged and cast into one body.

【0011】しかしながら、上述したように、シャフト
上部Aの炉内側の炉壁煉瓦5が損耗、脱落した場合、図
2に示す炉壁からの熱損失Fが大きくなり、炉壁側(冷
却側)のステーブクーラ設置部位が冷却される結果、図
4(a)の破線で示すようにシャフト上部Aのステーブ
クーラ2近傍の温度が水冷却による伝熱効果により急激
に低下し、炉内側(加熱側)と炉壁側(冷却側)との間
に500°C近い温度差が生じ、図2のHで示す焼結鉱
の還元粉化範囲より炉壁側Gは過冷却部位となる。なお
図4(a)の実線は、炉壁煉瓦5が健全な場合の温度分
布である。
However, as described above, when the furnace wall brick 5 inside the furnace at the shaft upper part A is worn or dropped, the heat loss F from the furnace wall shown in FIG. 2 becomes large, and the furnace wall side (cooling side). As a result of cooling of the stave cooler installation part of No. 2, the temperature near the stave cooler 2 on the shaft upper part A sharply decreases due to the heat transfer effect of water cooling, as shown by the broken line in FIG. 2) and the furnace wall side (cooling side), a temperature difference of about 500 ° C. occurs, and the furnace wall side G becomes a supercooling site from the reduction powdering range of the sintered ore shown by H in FIG. The solid line in FIG. 4A is the temperature distribution when the furnace wall brick 5 is sound.

【0012】次に図4(b)に、炉内側(加熱側)、炉
壁側(冷却側)間の焼結鉱の還元粉化率を示す。実線は
炉壁煉瓦5が健全な場合を示し、破線は炉壁煉瓦5が脱
落した場合を示している。焼結鉱は400〜600°C
の温度で還元粉化を起こしやすく、炉壁煉瓦5が脱落す
ると図4(b)の破線で示すように、炉内側(加熱側)
から炉壁側(冷却側)に向かって粉化現象が進行する
が、冷却の強いステーブクーラ2近傍では、還元が極端
に落ちるため、図2の中間部Hに比べて粉化が抑制され
るのが特徴的である。これが、図2に示すように、実炉
のシャフト上部Aで、中間部Hを避けて炉壁側へ流れよ
うとするガス抜けが生じ易くなる原因と推定される。
Next, FIG. 4 (b) shows the reduction powdering rate of the sintered ore between the inside of the furnace (heating side) and the furnace wall side (cooling side). The solid line shows the case where the furnace wall brick 5 is sound, and the broken line shows the case where the furnace wall brick 5 falls off. Sintered ore is 400-600 ° C
When the furnace wall brick 5 falls off as shown by the broken line in Fig. 4 (b), the inside of the furnace (heating side)
Although the pulverization phenomenon progresses from the furnace wall side (cooling side) to the furnace wall side, the reduction is extremely reduced in the vicinity of the stave cooler 2 where cooling is strong, so that the pulverization is suppressed as compared with the intermediate portion H in FIG. Is characteristic. As shown in FIG. 2, this is presumed to be the cause of easy escape of gas at the shaft upper portion A of the actual furnace, avoiding the intermediate portion H and flowing toward the furnace wall side.

【0013】ここで図5の断面図に示すような従来のス
テーブクーラは、その本来の機能である冷却能の向上
と、ステーブ母材に発生した亀裂が冷却パイプにまで波
及しないこととに主眼を置いている。図5(a)は、冷
却パイプ3の表面にシリカやアルミナを主成分とする耐
火材を塗布して鋳込んだ非融着型1重管を示している
が、耐火材による非融着層アと鋳物2−1のギャップが
冷却能を低下させる原因となっている。一方図5(b)
は、前記1重管の冷却能低下の要因であるギャップをな
くした融着型2重管を示し、まず内管3−1と外管3−
2とを熱伝導が良好なメタル接触ウとし、さらに外管3
−2との鋳物2−1境界を融着イさせたものである。こ
の2重管方式では、外管3−2を鋳物2−1の一部と考
え、外管3−2と鋳物2−1との間に融着層イを形成
し、さらに冷却能を向上させるため、内管3−1と外管
3−2との境界の密着度を高めるべく、引抜き加工した
ものである。外管3−2は、鋳込み時の溶損、変形等を
生じないような肉厚とされている。
Here, the conventional stave cooler as shown in the cross-sectional view of FIG. 5 is mainly focused on improving its original function of cooling capacity and preventing cracks generated in the stave base material from reaching the cooling pipe. Is placed. FIG. 5A shows a non-fusion-type single tube in which a refractory material containing silica or alumina as a main component is applied and cast on the surface of the cooling pipe 3. The gap between a and the casting 2-1 is a cause of lowering the cooling capacity. On the other hand, FIG. 5 (b)
Indicates a fusion-bonded double pipe in which a gap, which is a factor of lowering the cooling performance of the single pipe, is eliminated. First, an inner pipe 3-1 and an outer pipe 3-
2 is a metal contact for good heat conduction, and the outer tube 3
It is the one in which the boundary of the casting 2-1 with -2 was fused. In this double pipe system, the outer pipe 3-2 is considered as a part of the casting 2-1 and a fusion layer a is formed between the outer pipe 3-2 and the casting 2-1 to further improve the cooling ability. Therefore, in order to increase the degree of close contact at the boundary between the inner pipe 3-1 and the outer pipe 3-2, it is drawn. The outer tube 3-2 has a wall thickness that does not cause melting loss, deformation or the like during casting.

【0014】これらの従来のステーブクーラは、本来の
機能である炉体鉄皮1を炉内熱負荷から保護するべく冷
却能を高めるという思想を根底においたものであり、こ
れが逆に、ステーブクーラ前面の炉壁煉瓦5の損耗、脱
落時にはステーブクーラ2が炉内に露出して炉内を過度
に冷却する過冷却現象を生じる。特にシャフト上部A付
近の温度低下により焼結鉱の還元粉化現象を招くため、
いわゆる炉内の不活性化が進行し、気化した亜鉛等がこ
の部位に析出して、炉壁付着物が生成し、ついには炉況
不調に陥るという悪循環が認められていたのである。
These conventional stave coolers are based on the idea of enhancing the cooling ability to protect the furnace body shell 1 which is the original function from the heat load in the furnace. On the contrary, this is the stave cooler. When the front furnace wall brick 5 is worn or dropped, the stave cooler 2 is exposed to the inside of the furnace to cause a supercooling phenomenon in which the inside of the furnace is excessively cooled. In particular, the reduction in temperature near the upper part A of the shaft causes a reduction powdering phenomenon of the sintered ore,
It was recognized that a so-called vicious cycle was observed in which the so-called deactivation in the furnace proceeded, vaporized zinc and the like were deposited at this site, deposits on the furnace wall were formed, and finally the furnace condition fell into a poor condition.

【0015】これに対して、この発明は上述した従来の
問題を解決するものである。
On the other hand, the present invention solves the above-mentioned conventional problems.

【0016】以下図6〜図8を参照して、この発明を具
体的に説明する。
The present invention will be described in detail with reference to FIGS. 6 to 8.

【0017】まず図6は、この発明における緩冷却型ス
テーブクーラ2″の断面を示す。
First, FIG. 6 shows a cross section of a slow cooling type stave cooler 2 "according to the present invention.

【0018】この発明の特徴は、従来の2重管方式のス
テーブクーラが内管と外管とを直接接触させ熱伝達効率
を高めて冷却能を高めるという思想をもつのと若干異な
り、図6に示すように、ステーブクーラの内管3−1′
と外管3−2′との間に、両管に密着した耐火断熱層4
を介在させた緩冷却型の3層2重管の冷却管を有する点
にある。かかるステーブクーラにおいては、内外管の間
に介在される耐火断熱層4の材質、厚さt等を適切に選
定れば、ステーブクーラの冷却能を制御することが可能
になる。
The feature of the present invention is slightly different from the conventional double-tube type stave cooler, which has a concept that the inner pipe and the outer pipe are brought into direct contact with each other to enhance heat transfer efficiency and enhance cooling ability. As shown in Fig. 1, the inner tube 3-1 'of the stave cooler
Between the outer pipe 3-2 'and the outer pipe 3 and the fireproof heat-insulating layer 4 adhered to both pipes.
The point is to have a cooling pipe of a three-layer double pipe of a slow cooling type in which is interposed. In such a stave cooler, the cooling ability of the stave cooler can be controlled by appropriately selecting the material, the thickness t, etc. of the fireproof heat insulating layer 4 interposed between the inner and outer pipes.

【0019】この発明のステーブクーラの冷却管近傍の
熱流は、1次元円筒伝熱として近似できる。
The heat flow in the vicinity of the cooling pipe of the stave cooler of the present invention can be approximated as a one-dimensional cylindrical heat transfer.

【0020】図7(a)にこの発明における3層2重管
を備えたステーブクーラを、また図7(b)に従来の2
重管を備えたステーブクーラを、それぞれ1/2断面図
として示す。これらの図に記載の記号を使用して、半径
4 の位置での総括熱伝達係数ha ( この発明の場合)
および半径r3 ′の位置での総括熱伝達係数hb (従来
の2重管の場合)を表すと、次のようになる。
FIG. 7 (a) shows a stave cooler equipped with a three-layer double pipe according to the present invention, and FIG. 7 (b) shows a conventional stave cooler.
The stave coolers equipped with heavy tubes are shown in ½ cross-section respectively. Using the symbols shown in these figures, the overall heat transfer coefficient h a at the position of radius r 4 (in the case of the present invention)
The overall heat transfer coefficient h b (in the case of the conventional double tube) at the position of radius r 3 ′ is as follows.

【0021】(1)この発明の総括熱伝達係数(1) Overall heat transfer coefficient of the present invention

【0022】[0022]

【数1】 [Equation 1]

【0023】(2)従来の2重管の総括熱伝達係数(2) Overall heat transfer coefficient of conventional double pipe

【0024】[0024]

【数2】 [Equation 2]

【0025】但し、 r1〜r4:半径(mm) h1〜h3 :熱伝達係数(Kcal/m2h ℃) hw :水〜冷却パイプ熱伝達係数(Kcal/m2h ℃) λ1 :内管の熱伝達率(Kcal/mh℃) λ2 :耐火断熱層の熱伝達率(Kcal/mh℃) λ3 :外管の熱伝達率(Kcal/mh℃) 従来の2重管冷却方式の総括熱伝達係数は、メタル接触
部ウの間隙をほぼ0とし、水−鋳物間の温度差を500
℃として計算すると、250 〜300Kcal/m2hr ℃となる。
However, r 1 to r 4 : radius (mm) h 1 to h 3 : heat transfer coefficient (Kcal / m 2 h ℃) hw: water to cooling pipe heat transfer coefficient (Kcal / m 2 h ℃) λ 1: heat transfer coefficient of the inner tube (Kcal / mh ℃) λ 2 : thermal conductivity of the insulating refractory layer (Kcal / mh ℃) λ 3 : heat transfer coefficient of the outer tube (Kcal / mh ℃) conventional double-tube The overall heat transfer coefficient of the cooling system is such that the gap between the metal contact parts c is almost 0 and the temperature difference between the water and the casting is 500.
When calculated as ° C, it becomes 250 to 300 Kcal / m 2 hr ° C.

【0026】図8は、この発明の3層2重管冷却方式の
1例として、アルミナを耐火断熱層に用いた場合におけ
る、該耐火断熱層の厚さと総括熱伝達係数との関係を示
す。
FIG. 8 shows the relationship between the thickness of the refractory insulation layer and the overall heat transfer coefficient when alumina is used as the refractory insulation layer as an example of the three-layer double tube cooling system of the present invention.

【0027】この図から明らかなように、耐火断熱層の
厚さと総括熱伝達係数とは反比例の関係にあり、特に耐
火断熱層の厚さ1〜2mmで総括熱伝達係数が急激に変
化する。したがって、この発明においては、耐火断熱層
の厚さtを適切に選択することにより所望の総括熱伝達
係数が得られる。耐火断熱層の材質によっても最適厚さ
は異なる。
As is clear from this figure, the thickness of the fireproof heat insulating layer and the overall heat transfer coefficient are in inverse proportion to each other, and particularly the overall heat transfer coefficient changes abruptly when the thickness of the fireproof heat insulating layer is 1 to 2 mm. Therefore, in the present invention, a desired overall heat transfer coefficient can be obtained by appropriately selecting the thickness t of the refractory heat insulating layer. The optimum thickness varies depending on the material of the fireproof heat insulating layer.

【0028】この発明の緩冷却型ステーブクーラを備え
た炉体保護壁を用いる実炉操業での適切な総括熱伝達係
数の数値を一般的に提示することは、必ずしも容易では
ないが、これまでの経験則により、20Kcal/m2hr℃以上
で、焼結鉱の粒径および粉化率が急激に変化することか
らみると、総括熱伝達係数の上限は20Kcal/m2hr ℃程
度と考えることはできよう。したがって、この数値を指
針として、炉壁熱負荷の管理を行なうことが望ましい。
Although it is not always easy to generally present an appropriate numerical value of the overall heat transfer coefficient in the actual furnace operation using the furnace body protection wall provided with the slow cooling type stave cooler of the present invention, it has not always been easy. Based on the empirical rule, the grain size and pulverization rate of sinter rapidly change at 20 Kcal / m 2 hr ℃ or more, and the upper limit of the overall heat transfer coefficient is considered to be about 20 Kcal / m 2 hr ℃. I can do it. Therefore, it is desirable to manage the heat load on the furnace wall using this value as a guide.

【0029】この発明のステーブ母材として鋳合わせる
のに使用される鋳鉄は球状黒鉛鋳鉄(JIS G 5502)若しく
はねずみ鋳鉄(JIS G 5501)が望ましく、球状黒鉛鋳鉄の
化学成分と機械的性質の例を、下記の表1に示す。
The cast iron used for casting as the stave base material of the present invention is preferably spheroidal graphite cast iron (JIS G 5502) or gray cast iron (JIS G 5501). Examples of chemical composition and mechanical properties of spheroidal graphite cast iron Are shown in Table 1 below.

【0030】[0030]

【表1】 [Table 1]

【0031】次に、この発明において好ましい緩冷却型
2重冷却管に使用される内外冷却管の化学成分と機械的
性質の例を、下記の表2に示す。
Next, Table 2 below shows examples of chemical components and mechanical properties of the inner and outer cooling pipes used in the double cooling pipe of the slow cooling type which is preferable in the present invention.

【0032】[0032]

【表2】 [Table 2]

【0033】この発明の特徴である緩冷却機能を付与す
る耐火断熱層4の厚さtは、2重冷却管の曲げ加工が必
要であるため、できるだけ薄い方が好ましいが、前述し
たように、特に限定されるものではない。また、その材
質は熱伝達率λ(kcal/m hr℃)の小さい遮熱特性およ
び化学的・熱的・機械的特性に優れたアルミナを主成分
とするセラミック耐火材が好ましい。またアルミナに強
化材としてSiC粒子を添加したもの、あるいはZrO
2 ,MoSi2 等を使用することもできる。
The thickness t of the refractory heat insulating layer 4 which imparts the slow cooling function, which is a feature of the present invention, is preferably as thin as possible because bending of the double cooling pipe is required, but as described above, It is not particularly limited. Further, the material thereof is preferably a ceramic refractory material containing alumina as a main component, which has a small heat transfer coefficient λ (kcal / m hr ° C.) and is excellent in heat shielding properties and chemical, thermal, and mechanical properties. Also, alumina particles added with SiC particles as a reinforcing material, or ZrO
2 , MoSi 2 or the like can also be used.

【0034】この発明における緩冷却型ステーブクーラ
2″を製造する際には、内管3−1′の外表面に所定厚
さtの耐火断熱層4を形成したのち、外管3−2′を挿
入し、内外管を引抜いて3層2重管とし、内管3−1′
と耐火断熱層4および外管3−2′との間に空気層が形
成されないように密着度を高める。次いで、外管3−
2′表面に鋳物2−1の融着層を形成させるため、外管
3−2′表面にショットブラスト加工等を施して黒皮を
除去したのち、錫メッキ処理を施し、次いで、前記球状
黒鉛鋳鉄等の鋳鉄と鋳合わせるのが好ましい。
In manufacturing the slow cooling type stave cooler 2 "according to the present invention, a fireproof heat insulating layer 4 having a predetermined thickness t is formed on the outer surface of the inner pipe 3-1 ', and then the outer pipe 3-2'. Insert the inner pipe and pull out the inner and outer pipes to form a three-layer double pipe, and the inner pipe 3-1 '
The degree of adhesion is improved so that an air layer is not formed between the heat insulating layer 4 and the outer tube 3-2 '. Then, the outer tube 3-
In order to form a fused layer of the casting 2-1 on the surface of 2 ', the outer tube 3-2' is subjected to shot blasting or the like to remove the black skin, and then tin-plated, and then the spherical graphite It is preferable to cast it together with cast iron such as cast iron.

【0035】この発明におけるステーブクーラ2″の内
管内には、通常冷却水を1〜2m/sec 程度の流速で通
すが、別法として、冷却水以外に蒸気、窒素ガス等の冷
媒を用いて冷却条件を制御することもできる。
Cooling water is normally passed through the inner pipe of the stave cooler 2 "in the present invention at a flow rate of about 1 to 2 m / sec. Alternatively, a coolant such as steam or nitrogen gas may be used in addition to the cooling water. The cooling conditions can also be controlled.

【0036】以上、この発明によれば、前記ステーブク
ーラ2″の炉内側に炉壁煉瓦を配置して、炉体保護壁を
構築することにより、高炉等の冶金用炉の炉体鉄皮を炉
内熱負荷から有効に保護することができる。
As described above, according to the present invention, the furnace wall bricks are arranged inside the furnace of the stave cooler 2 "to construct the furnace body protection wall, so that the furnace shell of a metallurgical furnace such as a blast furnace can be obtained. It can be effectively protected from heat load in the furnace.

【0037】[0037]

【発明の効果】以上詳述したように、この発明の緩冷却
型ステーブクーラを備えた炉体保護壁によると、 (イ)炉体鉄皮を炉内熱負荷から極めて有効に保護する
ことができるとともに、炉壁煉瓦が脱落してステーブク
ーラが炉内に露出しても、炉壁近傍の炉内が過度に冷却
されることがないため、焼結鉱の還元粉化、炉内で気化
した亜鉛等による炉壁付着物の生成等が抑制される。し
たがって、いわゆる炉内不活性化の進行を阻止しうるた
め、高炉等の冶金用炉の安定操業に寄与するところが極
めて大きく、ひいては生産性の向上、燃費節減等に資す
ることができる。
As described in detail above, according to the furnace body protection wall provided with the slow cooling type stave cooler of the present invention, (a) the furnace shell can be protected extremely effectively from the heat load in the furnace. Even if the furnace wall bricks fall off and the stave cooler is exposed to the inside of the furnace, the inside of the furnace near the furnace wall will not be excessively cooled, so sinter ore will be reduced and powdered and vaporized in the furnace. Generation of deposits on the furnace wall due to zinc and the like is suppressed. Therefore, since the so-called in-furnace inactivation can be prevented, it greatly contributes to the stable operation of a metallurgical furnace such as a blast furnace, which in turn contributes to improvement of productivity and reduction of fuel consumption.

【0038】(ロ)また、この発明におけるステーブク
ーラは、高炉等の冶金用炉のみならず、他の炉設備にお
いても、その緩冷却機能の特徴を十分発揮できるもので
ある。
(B) Further, the stave cooler according to the present invention can sufficiently exhibit the characteristic of the slow cooling function not only in a metallurgical furnace such as a blast furnace but also in other furnace equipment.

【0039】[0039]

【図面の簡単な説明】[Brief description of drawings]

【図1】高炉の炉壁断面を示す概略図である。FIG. 1 is a schematic view showing a furnace wall cross section of a blast furnace.

【図2】炉壁冷却時におけるガス流の概念図である。FIG. 2 is a conceptual diagram of a gas flow when cooling a furnace wall.

【図3】従来のシャフト上部で用いられている1重管式
ステーブクーラの断面図(a)および2重管式ステーブ
クーラの断面図(b)である。
FIG. 3 is a sectional view (a) of a single tube type stave cooler and a sectional view (b) of a double tube type stave cooler used in the conventional shaft upper part.

【図4】冷却方式による炉内温度分布の相違を示す図
(a)および焼結鉱の還元粉化率の相違を示す図(b)
である。
FIG. 4 is a diagram showing a difference in temperature distribution in the furnace depending on a cooling system (a) and a diagram showing a difference in reduction powdering rate of the sintered ore (b).
Is.

【図5】従来の1重管式ステーブクーラ(a)および2
重管式ステーブクーラ(b)の要部断面図である。
FIG. 5: Conventional single tube stave cooler (a) and 2
It is an important section sectional view of a heavy pipe type stave cooler (b).

【図6】この発明におけるステーブクーラの要部断面図
である。
FIG. 6 is a sectional view of a main part of the stave cooler according to the present invention.

【図7】この発明におけるステーブクーラ(a)および
従来のステーブクーラ(b)の熱伝達状況を説明するた
めの1/2断面図である。
FIG. 7 is a 1/2 cross-sectional view for explaining heat transfer states of the stave cooler (a) in the present invention and the conventional stave cooler (b).

【図8】この発明におけるステーブクーラの総括熱伝達
係数と耐火断熱層の厚さとの関係を示すグラフである。
FIG. 8 is a graph showing the relationship between the overall heat transfer coefficient of the stave cooler and the thickness of the fireproof heat insulating layer in the present invention.

【符号の説明】[Explanation of symbols]

1 炉体鉄皮 2 ステーブクーラ 2′ ステーブクーラ 2″ ステーブクーラ 2−1 鋳物 2−2 鋳込み煉瓦 3 冷却パイプ 3−1 内管 3−1′ 内管 3−2 外管 3−2′ 外管 4 耐火断熱層 5 炉壁煉瓦 ア 非融着層 イ 融着層 ウ メタル接着部 1 Furnace body iron skin 2 Stave cooler 2'Stave cooler 2 "Stave cooler 2-1 Casting 2-2 Cast brick 3 Cooling pipe 3-1 Inner pipe 3-1 'Inner pipe 3-2 Outer pipe 3-2' Outer pipe 4 Fireproof heat insulation layer 5 Furnace wall brick A Non-fused layer a Fused layer c Metal bonded part

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 内管の外表面に耐火断熱層を形成させ、
それに外管を挿入し、内外管を引抜いて3層2重管とし
た冷却管を鋳鉄と鋳合わせてなることを特徴とする緩冷
却型ステーブクーラを備えた炉体保護壁。
1. A refractory heat insulating layer is formed on the outer surface of the inner pipe,
A furnace body protection wall provided with a slow cooling type stave cooler, characterized in that an outer pipe is inserted thereinto, and the inner and outer pipes are pulled out to form a three-layer double pipe cooling pipe and cast iron.
JP4111614A 1992-04-30 1992-04-30 Furnace protection wall with slow cooling stove cooler Expired - Lifetime JP2778348B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4111614A JP2778348B2 (en) 1992-04-30 1992-04-30 Furnace protection wall with slow cooling stove cooler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4111614A JP2778348B2 (en) 1992-04-30 1992-04-30 Furnace protection wall with slow cooling stove cooler

Publications (2)

Publication Number Publication Date
JPH05306405A true JPH05306405A (en) 1993-11-19
JP2778348B2 JP2778348B2 (en) 1998-07-23

Family

ID=14565804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4111614A Expired - Lifetime JP2778348B2 (en) 1992-04-30 1992-04-30 Furnace protection wall with slow cooling stove cooler

Country Status (1)

Country Link
JP (1) JP2778348B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004190143A (en) * 2004-02-23 2004-07-08 Jfe Steel Kk Structure for arranging stave in shaft type metallurgical furnace
JP2011231409A (en) * 2011-07-11 2011-11-17 Jfe Steel Corp Structure for arranging stave in shaft furnace-type metallurgical furnace
US11505840B2 (en) * 2017-02-09 2022-11-22 Paul Wurth S.A. Cooling plate for metallurgical furnace

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4976151A (en) * 1972-11-25 1974-07-23
JPS5025405A (en) * 1973-07-07 1975-03-18

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4976151A (en) * 1972-11-25 1974-07-23
JPS5025405A (en) * 1973-07-07 1975-03-18

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004190143A (en) * 2004-02-23 2004-07-08 Jfe Steel Kk Structure for arranging stave in shaft type metallurgical furnace
JP2011231409A (en) * 2011-07-11 2011-11-17 Jfe Steel Corp Structure for arranging stave in shaft furnace-type metallurgical furnace
US11505840B2 (en) * 2017-02-09 2022-11-22 Paul Wurth S.A. Cooling plate for metallurgical furnace

Also Published As

Publication number Publication date
JP2778348B2 (en) 1998-07-23

Similar Documents

Publication Publication Date Title
US4620507A (en) Stave cooler
RU2718027C2 (en) Wear-resistant composite material, its use in cooling elements for metallurgical furnace and method for production thereof
US4217954A (en) Cooling plate for a furnace in a metallurgical plant
US4327899A (en) Stave cooling device having unwelded double tube
JP2778348B2 (en) Furnace protection wall with slow cooling stove cooler
JP2875413B2 (en) Molten metal container
JP3007264B2 (en) Blast furnace taphole brick structure
JP2778339B2 (en) Stave cooler with thermal stress relaxation type functionally gradient material
GB1585155A (en) Arc-furnace lining
JP2014173164A (en) Stave cooler and blast furnace including the same
JP3715184B2 (en) Stave cooler and manufacturing method of double pipe used therefor
JP2932977B2 (en) Stave cooler
KR100851188B1 (en) method for prolonging of blast furnace stave campaign life
JP2003279265A (en) Water-cooled panel for electric furnace
JP3738578B2 (en) Stave
JPS61104008A (en) Furnace body of blast furnace and other metallurgical furnace
JP2000297308A (en) Stave cooler
JPH10183233A (en) Heat insulating skid pipe
JP2000292072A (en) Furnace wall of arc furnace and water-cooled panel for furnace cover
JP2000017313A (en) Trough for molten metal
JPH06322419A (en) Stave
Whiteley Developments in critical areas of blast furnace linings
JP2737644B2 (en) Slow cooling stave cooler
JP2003171707A (en) Blast tuyere for metallurgical furnace
JPH09137210A (en) Stave cooler