JPH05306199A - Apparatus for producing silicon carbide single crystal - Google Patents

Apparatus for producing silicon carbide single crystal

Info

Publication number
JPH05306199A
JPH05306199A JP14014392A JP14014392A JPH05306199A JP H05306199 A JPH05306199 A JP H05306199A JP 14014392 A JP14014392 A JP 14014392A JP 14014392 A JP14014392 A JP 14014392A JP H05306199 A JPH05306199 A JP H05306199A
Authority
JP
Japan
Prior art keywords
silicon carbide
single crystal
raw material
sintered body
carbide single
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP14014392A
Other languages
Japanese (ja)
Inventor
Seiichi Taniguchi
斉一 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP14014392A priority Critical patent/JPH05306199A/en
Publication of JPH05306199A publication Critical patent/JPH05306199A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To produce the high-quality silicon carbide single crystal by a sublimation method without using a graphite crucible. CONSTITUTION:A sintered compact supporter 32 mounted with a blank sintered body 33 is arranged within a growth device 10 where an atmosphere gas flows as descending flow prior to the crystal growth. A raw material supply section 20 to drop raw material powder (a) is provided on the sintered compact 33 and heaters 31a to 31c are arranged around the sintered compact 33. The powdery raw material supplied by the heater 31a is sintered and the sublimating gas (c) generated from the sintered compact 33 by heating with the heater 31b grows to the silicon carbide single crystal (d) with the seed crystal mounted to the single crystal supporter 37 subjected to the temp. control by the heater 31c as a start point. The consumption of the sintered compact 33 arising from the generation of the sublimating gas (c) is made up by forming the supplied raw material powder (a) as the sintered compact (b) atop the sintered compact 33. As a result, the problems, such as intrusion of impurities occurring in the graphite crucible and fluctuation in growth conditions, are eliminated and the change in sizes at a high degree of freedom is possible. The silicon carbide single crystal having the excellent quality characteristics is thus obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、口径,長さ等を自由に
変更することが可能で高品質の炭化ケイ素単結晶を製造
する装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for producing a high-quality silicon carbide single crystal whose diameter and length can be freely changed.

【0002】[0002]

【従来の技術】半導体材料として期待されている炭化ケ
イ素単結晶は、従来から昇華法で製造されている。昇華
法においては、たとえば炭化ケイ素の原料粉末を収容し
た黒鉛ルツボの蓋に、原料粉末と対向させて種結晶を取
り付ける。2000〜2400℃に加熱すると、黒鉛ル
ツボ内の原料粉末が昇華する。昇華した炭化ケイ素は、
種結晶の結晶方位に揃った方位で種結晶上に成長し、単
結晶として育成される。
2. Description of the Related Art A silicon carbide single crystal expected as a semiconductor material has been conventionally produced by a sublimation method. In the sublimation method, for example, a seed crystal is attached to a lid of a graphite crucible containing a raw material powder of silicon carbide so as to face the raw material powder. When heated to 2000 to 2400 ° C., the raw material powder in the graphite crucible sublimes. Sublimated silicon carbide is
It grows on the seed crystal in an orientation aligned with the crystal orientation of the seed crystal and is grown as a single crystal.

【0003】また、底部又は上部に種結晶を取り付けた
黒鉛ルツボの内部に多孔質の黒鉛製中空円筒を配置し、
黒鉛ルツボの内壁面と中空円筒との間に炭化ケイ素原料
粉末を充填することもある。この場合、高温加熱によっ
て原料粉末から昇華した炭化ケイ素ガスは、中空円筒を
透過し、黒鉛ルツボの底部又は上部の種結晶の上に到達
する。そして、同様に種結晶に結晶方位を揃えた単結晶
が成長する。
Further, a porous hollow graphite cylinder is arranged inside a graphite crucible having a seed crystal attached to the bottom or the top thereof.
Silicon carbide raw material powder may be filled between the inner wall surface of the graphite crucible and the hollow cylinder. In this case, the silicon carbide gas sublimated from the raw material powder by high-temperature heating passes through the hollow cylinder and reaches the seed crystal at the bottom or top of the graphite crucible. Then, similarly, a single crystal in which the crystal orientation is aligned with the seed crystal grows.

【0004】[0004]

【発明が解決しようとする課題】昇華法に使用される黒
鉛ルツボの材料としては、炭化ケイ素単結晶の汚染を防
止するため高品質の黒鉛が使用されている。しかしなが
ら、現在入手可能な黒鉛は、高品質のものでも約5pp
m程度の不純物が含まれている。この不純物は、ルツボ
壁面から昇華し、炭化ケイ素単結晶に混入する。不純物
が混入した炭化ケイ素単結晶は、半導体デバイスとして
使用したときに機能が満足されなかったり、劣化を発生
させる原因となる。
As a material for the graphite crucible used in the sublimation method, high quality graphite is used in order to prevent contamination of the silicon carbide single crystal. However, the currently available graphite is about 5 pp even if it is of high quality.
It contains about m of impurities. This impurity sublimes from the crucible wall surface and mixes with the silicon carbide single crystal. The silicon carbide single crystal mixed with impurities may cause the function to be unsatisfactory or the deterioration to occur when used as a semiconductor device.

【0005】ルツボ材料の不純物が単結晶に混入する過
程は、次のように考えられている。高温加熱によって炭
化ケイ素原料粉末から昇華した炭化ケイ素は、必ずしも
化学量論的な組成をとらず、Si,Si2 ,C,SiC
2 ,Si2 C,SiC等が混在したガス組成をもつ。そ
して、これらガス成分が互いに反応してSiCガスとな
り、炭化ケイ素単結晶の成長に消費される。Si,Si
2 ,C,SiC2 ,Si2 C等のガス成分は、黒鉛ルツ
ボのCとも反応する。この反応の際、黒鉛ルツボの不純
物も同時に昇華ガスに混入し、成長中の炭化ケイ素単結
晶に取り込まれる。
The process of mixing impurities of the crucible material into the single crystal is considered as follows. Silicon carbide sublimated from a silicon carbide raw material powder by high temperature heating does not necessarily have a stoichiometric composition, and is composed of Si, Si 2 , C, SiC.
It has a gas composition in which 2 , 2 , Si 2 C, SiC, etc. are mixed. Then, these gas components react with each other to become SiC gas, which is consumed for the growth of the silicon carbide single crystal. Si, Si
Gas components such as 2 , C, SiC 2 and Si 2 C also react with C in the graphite crucible. During this reaction, impurities in the graphite crucible are also mixed in the sublimation gas and taken into the growing silicon carbide single crystal.

【0006】ルツボ材料のCが昇華することによって、
黒鉛ルツボ自体も消耗し、ルツボ構造,ルツボ壁の厚み
等に形状変化が生じる。この形状変化は、黒鉛ルツボの
長手方向に沿った温度勾配に影響を与える。その結果、
成長条件が黒鉛ルツボの形状変化に伴って変動し、得ら
れる炭化ケイ素単結晶の均質性を低下させる。
By sublimation of C in the crucible material,
The graphite crucible itself is also consumed, and the crucible structure, the thickness of the crucible wall, and the like change in shape. This shape change affects the temperature gradient along the longitudinal direction of the graphite crucible. as a result,
The growth conditions change with the shape change of the graphite crucible, and the homogeneity of the obtained silicon carbide single crystal is deteriorated.

【0007】また、黒鉛ルツボを昇華法に使用すること
から、ルツボの大きさ,ルツボに収容可能な炭化ケイ素
原料粉末の量等に制約が加わる。この制約から、黒鉛ル
ツボを使用した昇華法によるとき、約30mmの直径及
び約20mmの長さが限界であり、それ以上のサイズを
もつ炭化ケイ素単結晶を製造できない現状である。しか
し、半導体材料として炭化ケイ素単結晶を使用するに当
り、歩留り向上の面から大口径且つ長尺の単結晶が必要
とされる。この点、従来の昇華法によって製造されてい
る炭化ケイ素単結晶は、この要求に十分応えるに足る口
径をもっていない。そのため、炭化ケイ素単結晶は、半
導体材料として本格的に実用化されていない。
Further, since the graphite crucible is used in the sublimation method, restrictions are imposed on the size of the crucible, the amount of silicon carbide raw material powder that can be stored in the crucible, and the like. Due to this limitation, when the sublimation method using the graphite crucible is used, the diameter is about 30 mm and the length is about 20 mm, and it is impossible to manufacture a silicon carbide single crystal having a size larger than that. However, when using a silicon carbide single crystal as a semiconductor material, a large diameter and long single crystal is required from the viewpoint of improving the yield. In this respect, the silicon carbide single crystal produced by the conventional sublimation method does not have a diameter sufficient to meet this requirement. Therefore, the silicon carbide single crystal has not been put into practical use in earnest as a semiconductor material.

【0008】本発明は、このような問題を解消すべく案
出されたものであり、焼結・昇華帯と結晶成長帯とをシ
リーズに設けることにより、製造可能なサイズに制約を
受ける黒鉛ルツボを使用することなく、高品質の炭化ケ
イ素単結晶を製造することを目的とする。
The present invention has been devised to solve such a problem, and by providing a sintering / sublimation zone and a crystal growth zone in series, a graphite crucible that is restricted in the size that can be manufactured. It is intended to produce high quality silicon carbide single crystals without using.

【0009】[0009]

【課題を解決するための手段】本発明の炭化ケイ素単結
晶製造装置は、その目的を達成するため、雰囲気ガスが
下降流となって流れる成長装置と、該成長装置の内部に
配置され、予め炭化ケイ素焼結体が装着される焼結体支
持具と、前記炭化ケイ素焼結体の上に原料粉末を落下さ
せる原料供給部と、前記炭化ケイ素焼結体の上に落下し
た原料粉末を焼結させるヒータと、前記炭化ケイ素焼結
体の下面から昇華ガスを発生させるヒータと、前記炭化
ケイ素焼結体の下方に配置され、結晶成長温度を制御す
るヒータと、前記昇華ガスから成長した単結晶を支持す
る単結晶支持具とを備え、昇華ガスの発生に伴って消耗
する前記焼結体の消耗分を供給された前記原料粉末の焼
結によって補うことを特徴とする。
In order to achieve the object, a silicon carbide single crystal production apparatus of the present invention has a growth apparatus in which an atmospheric gas flows as a downward flow, and a growth apparatus arranged inside the growth apparatus. A sintered body support on which the silicon carbide sintered body is mounted, a raw material supply unit for dropping the raw material powder onto the silicon carbide sintered body, and a raw material powder dropped onto the silicon carbide sintered body. A heater for binding, a heater for generating a sublimation gas from the lower surface of the silicon carbide sintered body, a heater arranged below the silicon carbide sintered body for controlling the crystal growth temperature, and a single crystal grown from the sublimated gas. A single crystal support for supporting a crystal is provided, and the consumption of the sintered body, which is consumed as a sublimation gas is generated, is supplemented by sintering the supplied raw material powder.

【0010】[0010]

【作 用】本発明の炭化ケイ素単結晶製造装置において
は、焼結・昇華帯で炭化ケイ素焼結体を生成させ昇華さ
せる。得られた昇華ガスを、結晶成長帯で単結晶に成長
させる。そのため、従来の昇華法にみられた黒鉛ルツボ
に起因する製造上及び製品上での問題が無くなり、しか
も口径及び長さ共に自由度が大きく品質安定性に優れた
炭化ケイ素単結晶が製造される。
[Operation] In the silicon carbide single crystal production apparatus of the present invention, a silicon carbide sintered body is generated and sublimated in the sintering / sublimation zone. The obtained sublimation gas is grown into a single crystal in the crystal growth zone. Therefore, problems in production and products due to the graphite crucible found in the conventional sublimation method are eliminated, and a silicon carbide single crystal having a large degree of freedom in both diameter and length and excellent quality stability is produced. ..

【0011】以下、図面を参照しながら、本発明を具体
的に説明する。この炭化ケイ素単結晶製造装置は、図1
に示すように成長装置10の内部を原料供給部20及び
結晶成長部30で構成する。成長装置10は、各種操作
のための操作パネルを備えた架台11で支持されてい
る。
The present invention will be described in detail below with reference to the drawings. This silicon carbide single crystal manufacturing apparatus is shown in FIG.
As shown in FIG. 3, the inside of the growth apparatus 10 is composed of the raw material supply unit 20 and the crystal growth unit 30. The growth apparatus 10 is supported by a pedestal 11 equipped with operation panels for various operations.

【0012】成長装置10の上方には、原料粉末フィー
ダ21から原料粉末を成長装置10内部に送り込む原料
供給管22が開口している。また、Arガスを成長装置
10の内部に送り込むガス供給管23も、成長装置10
の上部に開口している。ガス供給管23には、流量調整
弁23aが組み込まれている。ガス供給管23から送り
込まれたArガスは、原料粉末の焼結時、焼結体の昇華
時及び結晶成長時の雰囲気ガスとなる。
Above the growth apparatus 10, a raw material supply pipe 22 for feeding the raw material powder from the raw material powder feeder 21 into the growth apparatus 10 is opened. In addition, the gas supply pipe 23 for feeding the Ar gas into the growth apparatus 10 is also connected to the growth apparatus 10.
Has an opening at the top. A flow rate adjusting valve 23a is incorporated in the gas supply pipe 23. The Ar gas sent from the gas supply pipe 23 becomes an atmospheric gas during sintering of the raw material powder, sublimation of the sintered body, and crystal growth.

【0013】製造される炭化ケイ素単結晶にn型,p型
等の特性をもたせるため、N2 ,Al (CH3)3 等のド
ーピングガスを成長装置10の内部に送り込むドーピン
グガス供給管24,25が成長装置10の上部に開口し
ている。ドーピングガス供給管24,25にも、制御さ
れた流量でドーピングガスを供給するため流量調整弁2
4a,25aがそれぞれ組み込まれている。
A doping gas supply pipe 24 for feeding a doping gas such as N 2 or Al (CH 3 ) 3 into the growth apparatus 10 in order to give the manufactured silicon carbide single crystal an n-type or p-type characteristic. 25 is open to the top of the growth apparatus 10. The flow rate adjusting valve 2 for supplying the doping gas to the doping gas supply pipes 24 and 25 at a controlled flow rate
4a and 25a are incorporated respectively.

【0014】成長装置10の下部に圧力調整用の排気管
26が接続され、排気管26に排気弁26aが組み込ま
れている。成長装置10の内部圧力は、流量調整弁23
a及び排気弁26aの開閉によって調節される。そし
て、成長装置10の内部に、上方から下方に向かったガ
スの流れが形成される。
An exhaust pipe 26 for pressure adjustment is connected to the lower part of the growth apparatus 10, and an exhaust valve 26a is incorporated in the exhaust pipe 26. The internal pressure of the growth apparatus 10 is the flow rate adjusting valve 23.
a and the exhaust valve 26a are opened and closed. Then, inside the growth apparatus 10, a gas flow from the upper side to the lower side is formed.

【0015】成長装置10の内部上方にある原料供給部
20は、ダクト27を備えている。ダクト27は、成長
装置10の上部に位置する大径部27aから下方に向け
て断面積が小さくなる縮径部27bを備えている。ダク
ト27を取り巻く成長装置10の外壁12には、断熱材
13がライニングされている。
The raw material supply section 20 above the inside of the growth apparatus 10 is provided with a duct 27. The duct 27 includes a reduced diameter portion 27b having a cross-sectional area that decreases downward from a large diameter portion 27a located at the upper portion of the growth apparatus 10. A heat insulating material 13 is lined on the outer wall 12 of the growth apparatus 10 surrounding the duct 27.

【0016】結晶成長部30は、雰囲気温度を一定に保
持する円筒状のヒータ31a,31b,31cを備えて
いる。ヒータ31a,31b,31cの内側に、焼結体
支持具32が立設されている。焼結体支持具32には、
単結晶成長に先立って、予め用意された焼結体33が配
置される。この部分が、粉末焼結帯34となる。
The crystal growth portion 30 is provided with cylindrical heaters 31a, 31b, 31c for keeping the ambient temperature constant. Inside the heaters 31a, 31b, 31c, a sintered body support 32 is erected. The sintered body support 32 includes
Prior to the single crystal growth, a sintered body 33 prepared in advance is arranged. This portion becomes the powder sintered band 34.

【0017】焼結体33を一旦配置すると、結晶成長に
伴って焼結反応も同時に進行するので、新たな焼結体を
別途チャージする必要はない。すなわち、原料粉末フィ
ーダ21からダクト27を経て送られてきた原料粉末a
が焼結体33の上に堆積し焼結され、焼結体bとなる。
また、粉末焼結帯34の下部が昇華帯35となってお
り、この部分で焼結体33の下部が更に加熱され、結晶
成長に使用される昇華ガスcが発生する。そのため、新
しく生成した焼結体bにより、焼結体33から昇華ガス
cとして消耗する分が補償される。
Once the sintered body 33 is placed, the sintering reaction simultaneously proceeds with the crystal growth, so that it is not necessary to separately charge a new sintered body. That is, the raw material powder a sent from the raw material powder feeder 21 through the duct 27.
Are deposited on the sintered body 33 and sintered to form a sintered body b.
Further, the lower portion of the powder sintering zone 34 is a sublimation zone 35, and the lower portion of the sintered body 33 is further heated in this portion, and the sublimation gas c used for crystal growth is generated. Therefore, the newly generated sintered body b compensates for the consumption of sublimation gas c from the sintered body 33.

【0018】結晶成長部30の下部が結晶成長帯36と
なっている。結晶成長帯36には、単結晶支持具37が
設けられている。単結晶支持具37は、成長装置10の
底壁を貫通する回転軸38で回転可能に支持されてい
る。回転軸38は、架台11から水平方向に突出した昇
降ロッド39に接続されている。これにより、単結晶支
持具37は、結晶成長帯36で回転可能及び上下動可能
になる。単結晶の成長に対応した単結晶支持具37の回
転及び降下は、架台11に設けた操作パネルで制御され
る。
The lower part of the crystal growth portion 30 is a crystal growth zone 36. The crystal growth zone 36 is provided with a single crystal support 37. The single crystal support 37 is rotatably supported by a rotary shaft 38 that penetrates the bottom wall of the growth apparatus 10. The rotating shaft 38 is connected to an elevating rod 39 that horizontally projects from the gantry 11. As a result, the single crystal support 37 can rotate and move up and down in the crystal growth zone 36. The rotation and descent of the single crystal support 37 corresponding to the growth of the single crystal are controlled by the operation panel provided on the gantry 11.

【0019】原料粉末フィーダ21から原料供給管22
を経て原料供給部20に供給された原料粉末aは、昇温
しながらダクト27内を降下し、焼結体33の上に落下
する。落下した原料粉末aは、ヒータ31aで加熱・焼
結され、焼結体33を補充する焼結体bとなる。更に、
ヒータ31bで加熱されている焼結体33は、その下面
から昇華ガスcを放出する。昇華ガスcは、成長装置1
0の内部を下向きに流れている雰囲気ガスの流れに乗っ
て流下し、結晶成長帯36に達する。昇華ガスcは、一
定圧力下でヒータ31cにより設定温度に維持された条
件下で、単結晶支持具37に取り付けている種結晶の上
に成長し、炭化ケイ素単結晶dとなる。炭化ケイ素単結
晶dの成長速度に応じて、結晶成長条件が一定に維持さ
れるように、単結晶支持具37の回転速度及び降下速度
を制御する。
Raw material powder feeder 21 to raw material supply pipe 22
The raw material powder a supplied to the raw material supply unit 20 through the above descends in the duct 27 while rising in temperature and falls onto the sintered body 33. The dropped raw material powder a is heated and sintered by the heater 31a to become a sintered body b which supplements the sintered body 33. Furthermore,
The sintered body 33 heated by the heater 31b emits a sublimation gas c from its lower surface. Sublimation gas c is the growth device 1
It flows down along with the flow of the atmospheric gas flowing downward inside 0, and reaches the crystal growth zone 36. The sublimation gas c grows on the seed crystal attached to the single crystal support 37 under the condition that the heater 31c maintains the set temperature under a constant pressure, and becomes the silicon carbide single crystal d. Depending on the growth rate of the silicon carbide single crystal d, the rotation speed and the descending speed of the single crystal support tool 37 are controlled so that the crystal growth conditions are kept constant.

【0020】このように、新たに供給される原料粉末a
から生成する焼結体bで焼結体33の消耗を補償しなが
ら、炭化ケイ素単結晶dを成長させるとき、従来の昇華
法における黒鉛ルツボに起因する製造面,品質面での問
題を回避できる。また、育成される炭化ケイ素単結晶d
のサイズは、専ら焼結体支持具32や単結晶支持具37
等の機器による制約を受けるのみであり、高い自由度で
ニーズに応じた口径及び長さをもつ単結晶が製造され
る。
In this way, the newly supplied raw material powder a
When the silicon carbide single crystal d is grown while compensating for the consumption of the sintered body 33 with the sintered body b generated from, it is possible to avoid problems in manufacturing and quality due to the graphite crucible in the conventional sublimation method. .. Also, the grown silicon carbide single crystal d
The size of is exclusively for the sintered body support 32 and the single crystal support 37.
However, the single crystal having a diameter and a length according to needs can be manufactured with a high degree of freedom.

【0021】[0021]

【実施例】単結晶の成長に先立って、焼結体33を焼結
体支持具32で支持し粉末焼結帯34及び昇華帯35に
配置した。Arガスをガス供給管23から成長装置10
内に送り込み、成長装置10の内部雰囲気をArガスに
置換した。そして、成長装置10の雰囲気圧を10-2
ールまで減圧した。この操作を5回繰り返すことによっ
て、成長装置10内の不純物を除去した。
Example Prior to the growth of a single crystal, a sintered body 33 was supported by a sintered body support 32 and placed in a powder sintering zone 34 and a sublimation zone 35. Ar gas is supplied from the gas supply pipe 23 to the growth apparatus 10
The atmosphere inside the growth apparatus 10 was replaced with Ar gas. Then, the atmospheric pressure of the growth apparatus 10 was reduced to 10 -2 Torr. By repeating this operation 5 times, the impurities in the growth apparatus 10 were removed.

【0022】次いで、Arガス及びN2 ガスをそれぞれ
1リットル/分及び0.01リットル/分の流量で成長
装置10内に導入し、粉末焼結帯34を温度2000℃
に、昇華帯35を温度2200〜2400℃に、結晶成
長帯36を温度2000〜2200℃に維持した。原料
粉末aとしては、平均粒径200μm及び純度99.9
%のSiCを使用し、流量10g/分で成長装置10内
に送り込んだ。
Next, Ar gas and N 2 gas are introduced into the growth apparatus 10 at a flow rate of 1 liter / min and 0.01 liter / min, respectively, and the powder sintering zone 34 is heated to 2000 ° C.
Further, the sublimation zone 35 was maintained at a temperature of 2200 to 2400 ° C, and the crystal growth zone 36 was maintained at a temperature of 2000 to 2200 ° C. The raw material powder a has an average particle size of 200 μm and a purity of 99.9.
% SiC was used and fed into the growth apparatus 10 at a flow rate of 10 g / min.

【0023】この条件下で原料粉末aを焼結しながら、
炭化ケイ素単結晶dを育成した。炭化ケイ素単結晶dの
成長に伴って、単結晶支持具37を10r.p.m.の
速度で回転させながら4mm/時の速度で降下させた。
このようにして、長さ30mmの炭化ケイ素単結晶dを
得た。炭化ケイ素単結晶dの口径は、単結晶支持具37
の面積に応じて自由に変えることができた。
While sintering the raw material powder a under these conditions,
A silicon carbide single crystal d was grown. Along with the growth of the silicon carbide single crystal d, the single crystal support tool 37 was moved to 10 r. p. m. It was lowered at a speed of 4 mm / hour while rotating at a speed of.
Thus, a silicon carbide single crystal d having a length of 30 mm was obtained. The diameter of the silicon carbide single crystal d is the same as the single crystal support tool 37.
I was able to change it freely according to the area of.

【0024】得られた炭化ケイ素単結晶dは、ドーピン
グガスとしてN2 ガスを使用していることから、n型の
特性を呈した。この炭化ケイ素単結晶dには、従来の黒
鉛ルツボを使用した昇華法にみられた不純物の混入が検
出されなかった。
The silicon carbide single crystal d thus obtained exhibited n-type characteristics because N 2 gas was used as a doping gas. In this silicon carbide single crystal d, contamination of impurities found in the conventional sublimation method using a graphite crucible was not detected.

【0025】N2 ガスに代えAl (CH3)3 ガスをドー
ピングガスとして使用する他は、同じ条件下で炭化ケイ
素単結晶を育成した。Al (CH3)3 ガスは、ドーピン
グガス供給管25から0.01リットル/分の流量で成
長装置10の内部に送り込んだ。得られた炭化ケイ素単
結晶は、p型の特性をもち、品質特性の優れたものであ
った。
A silicon carbide single crystal was grown under the same conditions except that Al (CH 3 ) 3 gas was used as a doping gas instead of N 2 gas. The Al (CH 3 ) 3 gas was fed into the growth apparatus 10 from the doping gas supply pipe 25 at a flow rate of 0.01 liter / min. The obtained silicon carbide single crystal had p-type characteristics and was excellent in quality characteristics.

【0026】[0026]

【発明の効果】以上に説明したように、本発明において
は、成長装置の内部で原料粉末の焼結及び昇華を行いな
がら炭化ケイ素単結晶を成長させている。そのため、従
来の昇華法で使用されていた黒鉛ルツボに起因する不純
物の混入や、黒鉛ルツボの形状変化に伴う単結晶成長条
件の変動が無く、安定した成長条件下で高品質の炭化ケ
イ素単結晶を育成することができる。また、得られる炭
化ケイ素単結晶のサイズを制約する要因が無いため、大
口径,長尺の炭化ケイ素単結晶であっても同様の条件下
で育成することが可能となる。そのため、得られた炭化
ケイ素単結晶を半導体材料として使用するとき、高品質
の半導体デバイスを歩留り良く作製することができる。
As described above, in the present invention, the silicon carbide single crystal is grown while sintering and sublimating the raw material powder inside the growth apparatus. Therefore, there is no contamination of impurities due to the graphite crucible used in the conventional sublimation method, and there is no change in the single crystal growth conditions due to the shape change of the graphite crucible, and a high-quality silicon carbide single crystal under stable growth conditions. Can be trained. Further, since there is no factor that restricts the size of the obtained silicon carbide single crystal, it becomes possible to grow a large diameter and long silicon carbide single crystal under the same conditions. Therefore, when the obtained silicon carbide single crystal is used as a semiconductor material, high quality semiconductor devices can be manufactured with high yield.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明に従った炭化ケイ素単結晶製造装置FIG. 1 is an apparatus for producing a silicon carbide single crystal according to the present invention.

【符号の説明】[Explanation of symbols]

10 成長装置 20 原料供給部 30
結晶成長部 31 ヒータ 32 焼結体支持具 33
焼結体 34 粉末焼結帯 35 昇華帯 36
結晶成長帯 37 単結晶支持具 38 回転軸 a 原
料粉末 b 原料粉末から形成された焼結体 c 昇
華ガス d 炭化ケイ素単結晶
10 Growth apparatus 20 Raw material supply unit 30
Crystal growth part 31 Heater 32 Sintered body support tool 33
Sintered body 34 Powder sintered zone 35 Sublimation zone 36
Crystal growth zone 37 Single crystal support tool 38 Rotating shaft a Raw material powder b Sintered body formed from raw material powder c Sublimation gas d Silicon carbide single crystal

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 雰囲気ガスが下降流となって流れる成長
装置と、該成長装置の内部に配置され、予め炭化ケイ素
焼結体が装着される焼結体支持具と、前記炭化ケイ素焼
結体の上に原料粉末を落下させる原料供給部と、前記炭
化ケイ素焼結体の上に落下した原料粉末を焼結させるヒ
ータと、前記炭化ケイ素焼結体の下面から昇華ガスを発
生させるヒータと、前記炭化ケイ素焼結体の下方に配置
され、結晶成長温度を制御するヒータと、前記昇華ガス
から成長した単結晶を支持する単結晶支持具とを備え、
昇華ガスの発生に伴って消耗する前記焼結体の消耗分を
供給された前記原料粉末の焼結によって補うことを特徴
とする炭化ケイ素単結晶製造装置。
1. A growth apparatus in which an atmospheric gas flows as a downward flow, a sintered body support placed inside the growth apparatus and to which a silicon carbide sintered body is preliminarily mounted, and the silicon carbide sintered body. A raw material supply unit for dropping the raw material powder onto the above, a heater for sintering the raw material powder dropped onto the silicon carbide sintered body, and a heater for generating a sublimation gas from the lower surface of the silicon carbide sintered body, A heater that is arranged below the silicon carbide sintered body and that controls a crystal growth temperature, and a single crystal support that supports a single crystal grown from the sublimation gas,
An apparatus for producing a silicon carbide single crystal, characterized in that the consumption of the sintered body, which is consumed as a sublimation gas is generated, is supplemented by the sintering of the supplied raw material powder.
JP14014392A 1992-04-30 1992-04-30 Apparatus for producing silicon carbide single crystal Withdrawn JPH05306199A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14014392A JPH05306199A (en) 1992-04-30 1992-04-30 Apparatus for producing silicon carbide single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14014392A JPH05306199A (en) 1992-04-30 1992-04-30 Apparatus for producing silicon carbide single crystal

Publications (1)

Publication Number Publication Date
JPH05306199A true JPH05306199A (en) 1993-11-19

Family

ID=15261875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14014392A Withdrawn JPH05306199A (en) 1992-04-30 1992-04-30 Apparatus for producing silicon carbide single crystal

Country Status (1)

Country Link
JP (1) JPH05306199A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980031986A (en) * 1996-10-31 1998-07-25 이형도 Single crystal manufacturing device by vapor crystal growth method
KR100416736B1 (en) * 1996-10-31 2004-03-19 삼성전기주식회사 Method for fabricating single crystal using vpe growth method
JP2008169111A (en) * 2008-01-28 2008-07-24 Showa Denko Kk Method for producing silicon carbide single crystal
CN102776558A (en) * 2012-07-30 2012-11-14 新疆天科合达蓝光半导体有限公司 Pulling locator for seed crystal rod
JP2017124967A (en) * 2016-01-12 2017-07-20 台州市一能科技有限公司 Apparatus for rapidly manufacturing silicon carbide crystal using sublimation method and method thereof
JP2021014385A (en) * 2019-07-12 2021-02-12 住友電気工業株式会社 Method for manufacturing 4h silicon carbide single crystal
EP3922762A4 (en) * 2020-04-14 2022-01-05 Meishan Boya Advanced Materials Co., Ltd. Crystal growth method and device
CN115261977A (en) * 2022-08-04 2022-11-01 福建北电新材料科技有限公司 Silicon carbide pretreatment method and device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980031986A (en) * 1996-10-31 1998-07-25 이형도 Single crystal manufacturing device by vapor crystal growth method
KR100416736B1 (en) * 1996-10-31 2004-03-19 삼성전기주식회사 Method for fabricating single crystal using vpe growth method
JP2008169111A (en) * 2008-01-28 2008-07-24 Showa Denko Kk Method for producing silicon carbide single crystal
CN102776558A (en) * 2012-07-30 2012-11-14 新疆天科合达蓝光半导体有限公司 Pulling locator for seed crystal rod
JP2017124967A (en) * 2016-01-12 2017-07-20 台州市一能科技有限公司 Apparatus for rapidly manufacturing silicon carbide crystal using sublimation method and method thereof
JP2021014385A (en) * 2019-07-12 2021-02-12 住友電気工業株式会社 Method for manufacturing 4h silicon carbide single crystal
EP3922762A4 (en) * 2020-04-14 2022-01-05 Meishan Boya Advanced Materials Co., Ltd. Crystal growth method and device
US11926922B2 (en) 2020-04-14 2024-03-12 Meishan Boya Advanced Materials Co., Ltd. Methods for crystal growth by replacing a sublimated target source material with a candidate source material
CN115261977A (en) * 2022-08-04 2022-11-01 福建北电新材料科技有限公司 Silicon carbide pretreatment method and device

Similar Documents

Publication Publication Date Title
US5288326A (en) Apparatus for continuous growth of SiC single crystal from SiC synthesized in a vapor phase without using graphite crucible
CN100414004C (en) Device and method for producing single crystals by vapor deposition
US4147572A (en) Method for epitaxial production of semiconductor silicon carbide utilizing a close-space sublimation deposition technique
US6048398A (en) Device for epitaxially growing objects
US5290395A (en) Method of and apparatus for preparing single crystal
JP2003277197A (en) CdTe SINGLE CRYSTAL, CdTe POLYCRYSTAL AND METHOD FOR PRODUCING THE SINGLE CRYSTAL
US3173765A (en) Method of making crystalline silicon semiconductor material
US6797060B2 (en) Method and apparatus for producing silicon carbide single crystal
JPH05306199A (en) Apparatus for producing silicon carbide single crystal
KR20090021144A (en) Single-crystal sic, process for producing the same, and apparatus for producing single-crystal sic
JPH09227275A (en) Doping agent adding device
US6458207B1 (en) Silicon carbide single-crystals
JPH06128094A (en) Production of silicon carbide single crystal
JP4505202B2 (en) Method and apparatus for producing silicon carbide single crystal
JPH05178698A (en) Apparatus and process for production of silicon carbide bulk single crystal
KR20090042202A (en) Single-crystal sic and process for producing the same
CN112481701B (en) Preparation method of high-quality silicon carbide single crystal and silicon carbide single crystal
WO2001048277A1 (en) Method and apparatus for producing single crystal of silicon carbide
KR100816764B1 (en) Synthetic apparatus of semiconductor polycrystal compound and synthetic method of the same
JP2830411B2 (en) Method and apparatus for growing compound semiconductor single crystal
WO2008018322A1 (en) Single-crystal silicon carbide and process for producing the same
RU2626637C1 (en) Method for growing high-temperature monocrystals by sinelnikov-dziov's method
JPS62241889A (en) Apparatus for making single crystal
JPH06219885A (en) Method for growing compound semiconductor crystal
KR20090037379A (en) Single-crystal sic, process for producing the same and single-crystal sic production apparatus

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990706