JPH05302947A - Measuring method of radiation characteristic of transmitting antenna by utilizing gps - Google Patents

Measuring method of radiation characteristic of transmitting antenna by utilizing gps

Info

Publication number
JPH05302947A
JPH05302947A JP10783592A JP10783592A JPH05302947A JP H05302947 A JPH05302947 A JP H05302947A JP 10783592 A JP10783592 A JP 10783592A JP 10783592 A JP10783592 A JP 10783592A JP H05302947 A JPH05302947 A JP H05302947A
Authority
JP
Japan
Prior art keywords
measured
electromagnetic field
measuring
transmitting antenna
radiation characteristic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10783592A
Other languages
Japanese (ja)
Other versions
JP3176981B2 (en
Inventor
Bon Cho
凡 長
Tsutomu Kumazaki
勉 熊崎
Masaru Takahashi
大 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NHK Integrated Technology Inc
Original Assignee
NHK Integrated Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NHK Integrated Technology Inc filed Critical NHK Integrated Technology Inc
Priority to JP10783592A priority Critical patent/JP3176981B2/en
Publication of JPH05302947A publication Critical patent/JPH05302947A/en
Application granted granted Critical
Publication of JP3176981B2 publication Critical patent/JP3176981B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

PURPOSE:To obtain a method wherein the radiation characteristic of a transmitting antenna is measured in an operating state with good efficiency and with good accuracy. CONSTITUTION:Before the radiation characteristic of a transmitting antenna 1 is measured in an operating state, an automatically operatable flying body 2 where an apparatus which measures at least information on a three-dimensional position and the strength of an electromagnetic field has been mounted is circled directly close to, or near, the transmitting antenna under test. The information on the three-dimensional position of the flying body 2 is measured by means of a satellite radio-wave receiver which is mounted on the flying body 2 which can receive radio waves from at least three GPS satellites. The strength of the electromagnetic field by the radio waves radiated from the transmitting antenna 1 under test in the position of the flying body 2 is measured by means of the following: an electromagnetic-field strength measuring instrument which is mounted on the flying body; and a receiving antenna whose direction has been adjusted toward the transmitting antenna under test. The information on the three-dimensional position and the strength of the electromagnetic field, which have been measured consecutively, are stored temporarily in a memory. After the information on the three-dimensional position and the strength of the electromagnetic field, which are formed as the required number of pairs, have been measured, data stored in the memory is output, the data is processed and the radiation characteristic of the transmitting antenna is computed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は送信空中線放射特性の
測定方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring a transmission antenna radiation characteristic.

【0002】[0002]

【従来の技術】従来送信空中線放射特性(指向特性なら
びに利得)の測定は、工場出荷の検査、調整時にアンテ
ナを大形専用回転台車に載せ、台車を回転しながらアン
テナから電波を放射させ、電磁界強度測定器を使用して
その放射特性を測定、調整するとか、比較的測定スペー
スの広くとれる場合にはアンテナを固定させ、そのまわ
りを測定器を持って移動し、所望の特性を測定、調整し
ていた。勿論前者の場合にはアンテナ自身が回転するか
ら測定点を大幅に削減することができる。
2. Description of the Related Art Conventionally, transmission antenna radiation characteristics (directivity characteristics and gain) are measured by placing an antenna on a large-sized rotating trolley at the time of factory inspection and adjustment, and radiating radio waves from the antenna while rotating the trolley. If you measure and adjust its radiation characteristics using a field strength measuring instrument, or if you can take a relatively large measurement space, fix the antenna and move around it with the measuring instrument to measure the desired characteristic, I was adjusting. Of course, in the former case, the number of measurement points can be significantly reduced because the antenna itself rotates.

【0003】これに対し現地据付後の工場データ再現時
とか経年後の劣化データの測定とかのフィールド(地
上)電測では種々の制約がある。すなわち、送信アンテ
ナ自身の回転は不可能である、一般に周辺の建物による
電波の遮蔽、反射がある、地表反射による誤差が混入す
る、などの制約があり、そのため、放射特性の一部分あ
るいは一断面しか測定できなかったり、また、誤差、時
間、労力の面で問題のあることが多かった。
On the other hand, there are various restrictions in field (ground) electrograms, such as when reproducing factory data after on-site installation or measuring deterioration data after years. In other words, there are restrictions such as the rotation of the transmitting antenna itself is impossible, there are generally radio wave shielding and reflection by surrounding buildings, and errors due to ground reflection are mixed in.Therefore, only a part or one cross section of the radiation characteristic is present. In many cases, it could not be measured, and there were problems in terms of error, time, and labor.

【0004】[0004]

【発明が解決しようとする課題】従来の技術の項で述べ
てきたように、送信空中線を一旦現場に据付けてしまう
と、その後の放射特性の測定には誤差、時間、労力の面
で種々の問題点があった。そこで本発明の目的は前述の
問題点を解決し、据付け現場の空中線の直近もしくは近
傍で広範囲に、しかも、建物、地表の反射、遮蔽による
誤差が少なく、短時間に、低廉で、かつ、安全性の保証
された立体的な測定を可能とするGPSを利用した送信
空中線放射特性の測定方法を提供せんとするものであ
る。
As described in the section of the prior art, once the transmitting antenna is installed in the field, there are various errors, time, and labor in measuring the radiation characteristic after that. There was a problem. Therefore, the object of the present invention is to solve the above-mentioned problems, and to cover a wide area in the vicinity of or near the antenna at the installation site, and there are few errors due to the reflection and shielding of the building and the ground surface. It is intended to provide a method of measuring a transmission antenna radiation characteristic using GPS, which enables a three-dimensional measurement with guaranteed property.

【0005】[0005]

【課題を解決するための手段】この目的を達成するた
め、本発明に係る測定方法は、送信空中線の放射特性を
運用状態で測定するにあたり、被測定送信空中線の直近
もしくは近傍に、少なくとも三次元位置情報と電磁界強
度を測定する装置を搭載した自動または遠隔操縦可能な
飛行体を周回させ、当該飛行体の三次元位置情報は、少
なくとも3個のGPS衛星からの電波が受信可能な飛行
体上載置の衛星電波受信機により測定され、前記飛行体
の位置での被測定送信空中線から放射された電波による
電磁界強度は、飛行体上載置の電磁界強度測定器と被測
定送信空中線に向け方向調整される受信アンテナとによ
り測定され、測定された一連の前記三次元位置情報と前
記電磁界強度とはメモリに一時記憶され、所定数の対に
なった三次元位置情報と電磁界強度の測定後、前記メモ
リに記憶されたデータを出力し、これを処理して前記送
信空中線の放射特性を算出する(例えば立体的に図示表
現する)ことを特徴とするものである。
In order to achieve this object, the measuring method according to the present invention, in measuring the radiation characteristics of a transmitting antenna in an operating state, has at least a three-dimensional structure near or in the vicinity of the transmitting antenna to be measured. An aircraft capable of orbiting an automatically or remotely controllable aircraft equipped with a device for measuring position information and electromagnetic field strength, and the three-dimensional position information of the aircraft is a vehicle capable of receiving radio waves from at least three GPS satellites. The electromagnetic field strength measured by an on-board satellite radio receiver and radiated from the measured transmission antenna at the position of the flying object is directed to the electromagnetic field strength measuring instrument on the flying object and the measured transmitting antenna. The series of the three-dimensional position information and the electromagnetic field strength measured by the direction-adjusted receiving antenna are temporarily stored in a memory, and a predetermined number of pairs of three-dimensional position information are stored. After measuring the electromagnetic field strength, the data stored in the memory is output, and the data is processed to calculate the radiation characteristic of the transmission antenna (for example, stereoscopically illustrated). ..

【0006】[0006]

【作用】本発明測定方法によれば、格段に精度の高いG
PS(Global Positioning System, 汎地球測位システ
ム)衛星からの電波を受けて電磁界強度測定点の三次元
位置を絶対測定し、被測定送信空中線から放射される電
波の電磁界強度を、空中を回遊する遠隔操縦飛行体で受
信して自動測定するようにしているので、被測定送信空
中線の直近で広範囲に、誤差の少ない、短時間での測定
を可能とすることができる。
According to the measuring method of the present invention, the G having extremely high accuracy is obtained.
It receives radio waves from a PS (Global Positioning System) satellite, and absolutely measures the three-dimensional position of the electromagnetic field strength measurement point, and travels through the air to determine the electromagnetic field strength of the radio waves radiated from the measured antenna. Since the remote-controlled flying vehicle receives and automatically measures, it is possible to measure in a wide range in the immediate vicinity of the transmission antenna to be measured with a small error and in a short time.

【0007】[0007]

【実施例】最近、GPSという人工衛星からの電波を利
用して自己の位置を知るシステムが注目されており、こ
の原理はあらかじめ正確な軌道のわかっている3個の人
工衛星からの距離を受信電波により計算し自己の位置を
検出するシステムである。この衛星の特徴の1つは非常
に精度の高い原子時計を搭載しており、本発明の特徴の
1つはこの衛星よりの電波を電磁界強度測定点の三次元
位置算出に利用することに存する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Recently, a system for knowing one's position by utilizing radio waves from an artificial satellite called GPS has attracted attention, and the principle is to receive distances from three artificial satellites whose accurate orbits are known in advance. It is a system that calculates by radio waves and detects its own position. One of the features of this satellite is that it is equipped with an extremely accurate atomic clock, and one of the features of the present invention is to use the radio waves from this satellite for the three-dimensional position calculation of the electromagnetic field strength measurement points. Exist.

【0008】以下添付図面を参照し実施例により本発明
を詳細に説明する。図1に本発明測定方法を概略理解す
るための説明図を、図2に本発明の目的を達成するため
に移動飛行体に搭載される装置の一実施例構成図を示
す。図1で数符号1,2,3はそれぞれ放射特性を求め
ようとする被測定送信空中線、電磁界強度を測定するた
めにラジコン3でその飛行が制御される飛行体、飛行体
の飛行を制御するラジコンである。飛行体2は無人のラ
ジコン操縦の例えばヘリコプタまたはバルーンであって
よい。また飛行体が無人の係留バルーンの場合には係留
を人的に下から操作して送信空中線のまわりを回遊させ
ることができる。この飛行体に搭載される図2図示の装
置構成の一例においては、GPS衛星電波受信機24はま
ず少なくとも3個のGPS衛星からの電波を受信し、飛
行体2の三次元位置を算出するためのデータとして取込
む。GPS衛星は非常に精度の高い原子時計を設置して
いるから、地上でもこれに匹敵する高精度の時計を有
し、この地上の時計を衛星の時計で較正しなくてもよい
場合は、3個のGPS衛星からの電波のみを受信するの
みで飛行体2の三次元位置は精度高く求まるが、そうで
ない場合は地上の時計較正のためにもう1個のGPS衛
星からの電波を受信する必要がある。
The present invention will be described in detail below with reference to the accompanying drawings. FIG. 1 is an explanatory diagram for roughly understanding the measuring method of the present invention, and FIG. 2 is a configuration diagram of an embodiment of an apparatus mounted on a mobile aircraft to achieve the object of the present invention. In FIG. 1, reference numerals 1, 2 and 3 respectively represent a measured transmitting antenna for which a radiation characteristic is to be obtained, a flying body whose flight is controlled by a radio control 3 for measuring the electromagnetic field strength, and a flight of the flying body. It is a radio controlled car. The air vehicle 2 may be an unmanned radio-controlled vehicle, for example a helicopter or a balloon. In addition, when the air vehicle is an unmanned mooring balloon, the mooring can be manually operated from below to move around the transmission antenna. In an example of the device configuration shown in FIG. 2 mounted on this aircraft, the GPS satellite radio receiver 24 first receives radio waves from at least three GPS satellites and calculates the three-dimensional position of the aircraft 2. As the data of. Since the GPS satellite has a very accurate atomic clock installed, it has a highly accurate clock comparable to this on the ground, and if the terrestrial clock does not have to be calibrated by the satellite clock, then 3 The three-dimensional position of the flying body 2 can be obtained with high accuracy by receiving only the radio waves from one GPS satellite, but if not, it is necessary to receive the radio wave from another GPS satellite to calibrate the clock on the ground. There is.

【0009】また、この汎地球測位システムはいかに精
度が高いといえども、通常時に利用可能な衛星からのデ
ータを用いるかぎり、地球上で30米から百米程度の測定
誤差があるから、この固有誤差を相殺するため、被測定
送信空中線設置付近の地上にも飛行体上載置のGPS衛
星電波受信機24と同じ受信機を設け、ここで測定される
地上の特定点の位置情報をその目的に使用するのは有効
である。飛行体のその位置での送信空中線1の放射電波
の電磁界強度は、受信アンテナ21より受信された電波を
電磁界強度測定器23に取込んでその目的を達成するが、
この時受信アンテナ21が送信空中線の方に正確に方向付
けられていることが必要で、この制御には飛行体が載置
するコンパスが使用され、これで方向調整器22を駆動さ
せて受信アンテナ21の姿勢も含めた制御をする。受信ア
ンテナの姿勢も含めて方向付けの安定度が思うにまかせ
ぬ時は、逆に受信アンテナ21を受信電波の偏波面内で一
定周期で回転させ、時間的に離散した測定データから正
対した瞬間のデータを推定してもよい。ラジコン受信機
25は勿論地上からのラジコン電波を受けて飛行体2の回
遊を制御するもので、この時コンパス26のデータととも
に情報処理装置28を介して操縦装置29におくられて飛行
体2の位置および姿勢を制御する。この時飛行計画27に
予め定められた飛行コースを記録しておき、ここに記録
されたコースに基づき飛行体を自動操縦することができ
る。なお、ここで、周回する飛行コースについては、例
えば、指向特性を求めるための放射電磁界強度の測定を
行うときは、通例、3波長以上の一定した距離を保つよ
うな位置・コースが望ましいが、後の計算・補正手法に
より、最終的な指向特性が算出されるので、特に一定に
保つことは要しない。
In addition, no matter how accurate the global positioning system is, since there is a measurement error of about 30 to 100 US on the earth as long as data from satellites that can be used at normal times is used, In order to offset the error, the same receiver as the GPS satellite radio receiver 24 mounted on the aircraft is also installed on the ground near the measured antenna to be measured, and the position information of the specific point on the ground measured here is used for that purpose. It is effective to use. The electromagnetic field intensity of the radiated radio wave of the transmitting antenna 1 at that position of the flying body achieves the purpose by taking the radio wave received from the receiving antenna 21 into the electromagnetic field intensity measuring device 23.
At this time, the receiving antenna 21 needs to be accurately oriented toward the transmitting antenna, and a compass on which the flying object is mounted is used for this control, which drives the direction adjuster 22 to receive the receiving antenna. Control including 21 postures. When the stability of the orientation including the attitude of the receiving antenna cannot be expected, on the contrary, the receiving antenna 21 is rotated at a constant cycle in the polarization plane of the received radio wave, and the measured data discretely in time is directly aligned. Instantaneous data may be estimated. Radio control receiver
25 is, of course, for receiving radio-controlled radio waves from the ground to control the excursion of the flying body 2. At this time, the position and attitude of the flying body 2 are set together with the data of the compass 26 via the information processing unit 28 to the control unit 29. To control. At this time, a predetermined flight course is recorded in the flight plan 27, and the flight vehicle can be automatically piloted based on the course recorded here. Regarding the orbiting flight course, for example, when measuring the intensity of the radiated electromagnetic field for obtaining the directional characteristics, it is generally desirable that the position / course is such that a constant distance of 3 wavelengths or more is maintained. Since the final directional characteristic is calculated by the calculation / correction method described later, it is not necessary to keep it constant.

【0010】次に受信機24、測定器23により測定された
三次元位置データ、電磁界強度データは一旦飛行体に載
置された一時メモリに記録され、これらデータが所定数
になると、メモリよりこれらデータを放出し、あらかじ
め定められた計算手法および補正手法を使用して演算装
置などにより図3(a) 水平指向特性、(b) 垂直指向特性
などを求める。また、必要により、さらに画像情報処理
装置を用い、水平、垂直両特性を合わせ、立体的な図示
表現による指向特性図を求めてもよい。この時前記一時
メモリは飛行体中に載置してもよいし、地上に設置して
飛行体からデータを地上へ向けて電波送信してもよい。
また前記演算装置なども飛行体に載置してもよいが、飛
行体の重量を削減する目的でメモリとともに地上に置い
てもよい。また飛行体が無人の係留バルーンである場合
は、この時用いる係留索を利用して位置情報と電磁界強
度データを地上系にとりこみその後のメモリ、演算処理
を地上系で実行してもよい。また本発明測定方法の特徴
の1つである電磁界強度の測定点が空中にあるという利
点をいかして、前記受信アンテナ21の下部を電波吸収体
で遮蔽し、地表からの電波の反射を吸収して測定誤差を
軽減することができる。あるいは、前記計算手法・補正
手法において、地表からの反射波を無視する簡易演算に
より、容易に指向特性を求めることができる。
Next, the three-dimensional position data and the electromagnetic field intensity data measured by the receiver 24 and the measuring device 23 are recorded in a temporary memory once mounted on the flying object, and when these data reach a predetermined number, the data are stored in the memory. These data are emitted, and the horizontal directional characteristics (a) and the vertical directional characteristics (b) in FIG. 3 are obtained by an arithmetic device using a predetermined calculation method and correction method. If necessary, an image information processing apparatus may be further used to combine both horizontal and vertical characteristics to obtain a directional characteristic diagram based on a stereoscopic representation. At this time, the temporary memory may be placed in the flying body, or may be installed on the ground to transmit data from the flying body to the ground by radio waves.
Further, the arithmetic unit and the like may be mounted on the flying body, but may be placed on the ground together with the memory for the purpose of reducing the weight of the flying body. When the flying body is an unmanned mooring balloon, the mooring line used at this time may be used to take in the position information and the electromagnetic field strength data to the ground system, and the subsequent memory and arithmetic processing may be executed on the ground system. Further, taking advantage of one of the features of the measuring method of the present invention, that is, the measurement point of the electromagnetic field strength is in the air, the lower part of the receiving antenna 21 is shielded by a radio wave absorber to absorb the reflection of radio waves from the ground surface. Therefore, the measurement error can be reduced. Alternatively, in the calculation method / correction method, the directional characteristics can be easily obtained by a simple calculation that ignores the reflected wave from the ground surface.

【0011】[0011]

【発明の効果】以上詳細に説明してきたように本発明測
定方法によれば、既設の送信空中線の放射特性を運用状
態で、誤差、時間、労力の面で従来方法にない利点を備
えて実施することができる。より具体的には、送信空中
線設置現場の直近で広範囲に、しかも、建物、地表の反
射、遮蔽による誤差が少なく、短時間に、低廉で、か
つ、安全性の保証された空中線放射特性の立体的な測定
方法を提供することができる。その結果、送信空中線放
射特性の据付現場における工場データの再現試験や、経
年運用後の空中線の劣化・故障等に関して、詳細な診断
を可能とする技術保全業務における種々のデータ測定が
極めて容易となり、空中線新設工事の現地最終検査およ
び設置後の定期点検時あるいは改修工事後の特性確認検
査において、その効果は、量り知れないものがある。
As described in detail above, according to the measuring method of the present invention, the radiation characteristics of the existing transmitting antenna can be used in the operating state with the advantage that the conventional method does not have in terms of error, time and labor. can do. More specifically, it is a solid structure with aerial radiation characteristics that is wide in the immediate vicinity of the site where the transmitting antenna is installed, and that there are few errors due to reflection and shielding of buildings and the ground surface, and that it is cheap, inexpensive, and safe in a short time. Specific measuring method can be provided. As a result, it becomes extremely easy to perform various data measurements in technical maintenance work that enables detailed diagnosis of factory data reproduction tests at the installation site of transmission antenna radiation characteristics and deterioration / failure of antennas after a long-term operation. The effect is immeasurable in the final inspection of the aerial line new construction work and the periodical inspection after the installation or the characteristic confirmation inspection after the repair work.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明測定方法の概要を説明するための図。FIG. 1 is a diagram for explaining an outline of a measuring method of the present invention.

【図2】本発明の目的を達成するため飛行体に搭載され
る装置の一実施例構成図。
FIG. 2 is a configuration diagram of an embodiment of a device mounted on an air vehicle for achieving the object of the present invention.

【図3】測定算定される指向特性の例。(a) は送信空中
線の水平指向特性、(b) はその垂直指向特性。 1 被測定送信空中線 2 移動飛行体 3 ラジコン送信機 21 電磁界強度測定用受信アンテナ 22 方向調整器 23 電磁界強度測定器 24 GPS 衛星電波受信機 25 ラジコン受信機 26 コンパス 27 飛行計画 28 情報処理装置 29 操縦装置 30 測定値の記録/送信
FIG. 3 is an example of directional characteristics measured and calculated. (a) is the horizontal directional pattern of the transmitting antenna, and (b) is its vertical directional pattern. 1 Transmitted antenna to be measured 2 Mobile aircraft 3 Radio control transmitter 21 Reception antenna for electromagnetic field strength measurement 22 Direction adjuster 23 Electromagnetic field strength measurement device 24 GPS satellite radio receiver 25 Radio control receiver 26 Compass 27 Flight plan 28 Information processing equipment 29 Control device 30 Recording / transmission of measured values

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 送信空中線の放射特性を運用状態で測定
するにあたり、被測定送信空中線の直近もしくは近傍
に、少なくとも三次元位置情報と電磁界強度を測定する
装置を搭載した自動または遠隔操縦可能な飛行体を周回
させ、当該飛行体の三次元位置情報は、少なくとも3個
のGPS衛星からの電波が受信可能な飛行体上載置の衛
星電波受信機により測定され、前記飛行体の位置での被
測定送信空中線から放射された電波による電磁界強度
は、飛行体上載置の電磁界強度測定器と被測定送信空中
線に向け方向調整される受信アンテナとにより測定さ
れ、測定された一連の前記三次元位置情報と前記電磁界
強度とはメモリに一時記憶され、所定数の対になった三
次元位置情報と電磁界強度の測定後、前記メモリに記憶
されたデータを出力し、これを処理して前記送信空中線
の放射特性を算出することを特徴とするGPSを利用し
た送信空中線放射特性の測定方法。
1. When measuring the radiation characteristics of a transmitting antenna in an operating state, a device for measuring at least three-dimensional position information and electromagnetic field strength is installed in the immediate vicinity or in the vicinity of the transmitting antenna to be measured and can be operated automatically or remotely. The three-dimensional position information of the flying object is measured by a satellite radio receiver mounted on the flying object that can receive radio waves from at least three GPS satellites, and the three-dimensional position information of the flying object is measured at the position of the flying object. The electromagnetic field strength due to the radio wave radiated from the measurement transmission antenna is measured by an electromagnetic field strength measuring instrument mounted on the flying body and a receiving antenna that is oriented toward the transmission antenna to be measured, and the series of the three dimensions is measured. The position information and the electromagnetic field strength are temporarily stored in a memory, and after a predetermined number of pairs of three-dimensional position information and the electromagnetic field strength are measured, the data stored in the memory is output. A method of measuring a radiation characteristic of a transmission antenna using GPS, characterized by calculating the radiation characteristic of the transmission antenna.
【請求項2】 請求項1記載の測定方法において、前記
被測定送信空中線設置付近の地上にも前記GPS衛星電
波受信機と同じ性能の他のGPS衛星電波受信機をさら
に設置し、その設置位置の測定される特定点の位置情報
をも使用して、前記GPS衛星からの固有誤差を相殺す
るようにしたことを特徴とするGPSを利用した送信空
中線放射特性の測定方法。
2. The measuring method according to claim 1, wherein another GPS satellite radio receiver having the same performance as that of the GPS satellite radio receiver is further installed on the ground in the vicinity of the installation of the measured transmission antenna, and the installation position thereof. A method for measuring a transmission antenna radiation characteristic using GPS, characterized in that the inherent error from the GPS satellite is canceled by using the position information of the measured specific point.
【請求項3】 請求項1または2記載の測定方法におい
て、前記受信アンテナを受信電波の偏波面内で一定周期
で回転させ、時間的に離散した前記電磁界強度の測定さ
れたデータから、正対した瞬間のデータを推定するよう
にしたことを特徴とするGPSを利用した送信空中線放
射特性の測定方法。
3. The measuring method according to claim 1, wherein the receiving antenna is rotated at a constant cycle in a plane of polarization of a received radio wave, and positive data is obtained from the measured data of the electromagnetic field strength discretely in time. A method for measuring a transmission antenna radiation characteristic using GPS, which is characterized in that the data of the moment when it is compared is estimated.
【請求項4】 請求項1から3いずれかに記載の測定方
法において、前記受信アンテナを電波吸収体で一部囲
み、地表からの電波の反射に起因する測定誤差を軽減す
るようにしたことを特徴とするGPSを利用した送信空
中線放射特性の測定方法。
4. The measuring method according to claim 1, wherein the receiving antenna is partially surrounded by a radio wave absorber to reduce a measurement error caused by reflection of radio waves from the ground surface. A characteristic measuring method of a transmission antenna radiation characteristic using GPS.
JP10783592A 1992-04-27 1992-04-27 Measuring method of transmitting antenna radiation characteristics using GPS Expired - Fee Related JP3176981B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10783592A JP3176981B2 (en) 1992-04-27 1992-04-27 Measuring method of transmitting antenna radiation characteristics using GPS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10783592A JP3176981B2 (en) 1992-04-27 1992-04-27 Measuring method of transmitting antenna radiation characteristics using GPS

Publications (2)

Publication Number Publication Date
JPH05302947A true JPH05302947A (en) 1993-11-16
JP3176981B2 JP3176981B2 (en) 2001-06-18

Family

ID=14469253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10783592A Expired - Fee Related JP3176981B2 (en) 1992-04-27 1992-04-27 Measuring method of transmitting antenna radiation characteristics using GPS

Country Status (1)

Country Link
JP (1) JP3176981B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09257928A (en) * 1996-03-18 1997-10-03 Mitsubishi Electric Corp Weather radar equipment
JP2003524777A (en) * 1999-12-30 2003-08-19 アストリウム・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Traveling system for determining the characteristics of an outdoor radiated electromagnetic field in a wide range and with high accuracy, and a method for implementing the same
KR100923160B1 (en) * 2006-12-05 2009-10-23 한국전자통신연구원 Method and Device for measuring electromagnetic wave field strength using remote controlled aircraft
FR3000552A1 (en) * 2012-12-28 2014-07-04 Thales Sa METHOD AND SYSTEM FOR CALIBRATING AN ANTENNA
EP2320240A3 (en) * 2009-11-04 2017-01-25 Airbus DS GmbH Device and method for measuring a radiation field
US20180115065A1 (en) * 2016-10-26 2018-04-26 International Business Machines Corporation In-field millimeter-wave phased array radiation pattern estimation and validation
JP2018088622A (en) * 2016-11-29 2018-06-07 沖電気工業株式会社 Antenna direction adjustment system
JP2018096928A (en) * 2016-12-16 2018-06-21 株式会社Nttドコモ Radiation power measuring system
JP2018136237A (en) * 2017-02-23 2018-08-30 株式会社国際電気通信基礎技術研究所 Electromagnetic field data acquisition system, flight vehicle, terminal device, and program
JP2018155710A (en) * 2017-03-21 2018-10-04 株式会社アローセブン Radio wave measurement device, unmanned aircraft, and radio wave measurement device management system
WO2018220996A1 (en) * 2017-05-29 2018-12-06 三菱電機株式会社 Radio wave measurement system and wireless power transmission device
WO2018221022A1 (en) * 2017-05-29 2018-12-06 三菱電機株式会社 Radio wave measurement system, wireless power transmission device, and system for transmitting power to flying body
JP2019101024A (en) * 2017-12-01 2019-06-24 三菱電機株式会社 Measurement system, measurement control device, measurement device, measurement method, and program
CN110095657A (en) * 2018-01-29 2019-08-06 深圳市新益技术有限公司 Large-scale outfield Antenna testing system and test method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101993715B1 (en) * 2017-09-21 2019-06-27 이형영 Toothbrush sterilizer having ability to hold the cup upside down

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09257928A (en) * 1996-03-18 1997-10-03 Mitsubishi Electric Corp Weather radar equipment
JP2003524777A (en) * 1999-12-30 2003-08-19 アストリウム・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Traveling system for determining the characteristics of an outdoor radiated electromagnetic field in a wide range and with high accuracy, and a method for implementing the same
KR100923160B1 (en) * 2006-12-05 2009-10-23 한국전자통신연구원 Method and Device for measuring electromagnetic wave field strength using remote controlled aircraft
EP2320240A3 (en) * 2009-11-04 2017-01-25 Airbus DS GmbH Device and method for measuring a radiation field
FR3000552A1 (en) * 2012-12-28 2014-07-04 Thales Sa METHOD AND SYSTEM FOR CALIBRATING AN ANTENNA
EP2749892A3 (en) * 2012-12-28 2015-12-16 Thales Method and system for calibrating an antenna
US20180115065A1 (en) * 2016-10-26 2018-04-26 International Business Machines Corporation In-field millimeter-wave phased array radiation pattern estimation and validation
US11824272B2 (en) 2016-10-26 2023-11-21 International Business Machines Corporation In-field millimeter-wave phased array radiation pattern estimation and validation
JP2018088622A (en) * 2016-11-29 2018-06-07 沖電気工業株式会社 Antenna direction adjustment system
JP2018096928A (en) * 2016-12-16 2018-06-21 株式会社Nttドコモ Radiation power measuring system
JP2018136237A (en) * 2017-02-23 2018-08-30 株式会社国際電気通信基礎技術研究所 Electromagnetic field data acquisition system, flight vehicle, terminal device, and program
JP2018155710A (en) * 2017-03-21 2018-10-04 株式会社アローセブン Radio wave measurement device, unmanned aircraft, and radio wave measurement device management system
WO2018221022A1 (en) * 2017-05-29 2018-12-06 三菱電機株式会社 Radio wave measurement system, wireless power transmission device, and system for transmitting power to flying body
US11137433B2 (en) 2017-05-29 2021-10-05 Mitsubishi Electric Corporation Radio wave measurement system
JPWO2018221022A1 (en) * 2017-05-29 2019-06-27 三菱電機株式会社 Radio wave measurement system
JPWO2018220996A1 (en) * 2017-05-29 2019-06-27 三菱電機株式会社 Radio wave measurement system
WO2018220996A1 (en) * 2017-05-29 2018-12-06 三菱電機株式会社 Radio wave measurement system and wireless power transmission device
KR20200003839A (en) * 2017-05-29 2020-01-10 미쓰비시덴키 가부시키가이샤 Radio wave measuring system
CN110709714A (en) * 2017-05-29 2020-01-17 三菱电机株式会社 Radio wave measurement system and radio power transmission device
JP2020079786A (en) * 2017-05-29 2020-05-28 三菱電機株式会社 Electric wave measurement system
US10782333B2 (en) 2017-05-29 2020-09-22 Mitsubishi Electric Corporation Radio wave measurement system
US10962579B2 (en) 2017-05-29 2021-03-30 Mitsubishi Electric Corporation Wireless power transmission device and power transmission system to aerial moving body
CN110709714B (en) * 2017-05-29 2022-09-16 三菱电机株式会社 Radio wave measurement system
JP2019101024A (en) * 2017-12-01 2019-06-24 三菱電機株式会社 Measurement system, measurement control device, measurement device, measurement method, and program
CN110095657A (en) * 2018-01-29 2019-08-06 深圳市新益技术有限公司 Large-scale outfield Antenna testing system and test method
CN110095657B (en) * 2018-01-29 2024-01-26 深圳市新益技术有限公司 Large-scale outfield antenna test system and test method

Also Published As

Publication number Publication date
JP3176981B2 (en) 2001-06-18

Similar Documents

Publication Publication Date Title
EP3548913B1 (en) System for testing the accuracy of the automatic positioning means of a signal tracking antenna
US11415615B2 (en) Airborne system and method for the characterization and measurement of antennas or radiating systems
JPH05302947A (en) Measuring method of radiation characteristic of transmitting antenna by utilizing gps
US6825806B2 (en) Satellite methods and structures for improved antenna pointing and wide field-of-view attitude acquisition
US20160088498A1 (en) Unmanned aerial vehicle for antenna radiation characterization
US5880693A (en) Method and apparatus for the wireless exchange of information between stations
CN106505318B (en) A kind of Double directional aerial is adaptively directed at communication means
EP1606643A1 (en) System and method for global positioning system repeater
CN111948465A (en) Airborne ultrashort wave antenna directional diagram UAV auxiliary test system
CN107024625A (en) High precision measurement method
CN111537807A (en) Method for assisting in testing antenna directional diagram in large-maneuvering flight state by unmanned aerial vehicle
JPH11513484A (en) Antenna diagram measurement process and device
CN107968686A (en) 300MHz-800MHz simulated television stations transmission power radiates test method
RU2354590C2 (en) Method of controlling orientation of geostationary spacecraft equipped with beacon
GB2611503A (en) Gimbal stabilisation system
CN111624414A (en) Method for assisting in testing antenna directional diagram in large-maneuvering flight state by unmanned aerial vehicle
Zhang et al. Beam measurements of the Tianlai dish radio telescope using an unmanned aerial vehicle [antenna applications corner]
RU2704393C1 (en) Method for automated orientation of an onboard antenna of an unmanned complex for measuring antennae directivity parameters
KR20190107772A (en) System for analyzing DME signal using drone
US11313893B2 (en) Far-field radiation pattern measurements of high-frequency antennas with unmanned aerial systems
EP1924029A1 (en) Method for controlling beam-forming at a base station, and a base station
CN107505503B (en) A kind of radio wave loss measuring system and method
RU2692818C1 (en) Method of measuring spatial directional patterns of aircraft antennas in flight conditions
RU2818996C1 (en) Method and system of antenna measurements using an unmanned tethered balloon
CN107979427A (en) 300MHz-800MHz simulated television stations transmission power radiates test system

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010306

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090406

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100406

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees