JPH05302507A - Exhaust gas purifying device - Google Patents

Exhaust gas purifying device

Info

Publication number
JPH05302507A
JPH05302507A JP4106864A JP10686492A JPH05302507A JP H05302507 A JPH05302507 A JP H05302507A JP 4106864 A JP4106864 A JP 4106864A JP 10686492 A JP10686492 A JP 10686492A JP H05302507 A JPH05302507 A JP H05302507A
Authority
JP
Japan
Prior art keywords
filter
temperature
regeneration
maximum
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4106864A
Other languages
Japanese (ja)
Inventor
Toshiharu Kondo
寿治 近藤
Terutaka Kageyama
照高 影山
Keiji Ito
啓司 伊藤
Nobuhiko Murata
信彦 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP4106864A priority Critical patent/JPH05302507A/en
Publication of JPH05302507A publication Critical patent/JPH05302507A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition

Landscapes

  • Processes For Solid Components From Exhaust (AREA)

Abstract

PURPOSE:To provide an exhaust purifying device which can surely reduce damage during regeneration of a ceramic filter for trapping Diesel particulate. CONSTITUTION:Occurrence of cracking or melting in a ceramic filter 1 depends upon a temperature of the filter. The temperature of the filter depends upon a quantity of particulate trapped in the filter 1, and the maximum volume of trapped particulate of the filter greatly depends upon the shape of the filter 1. The maximum quantity the filer 1 can attain, is set to be less than a trapped quantity which is obtained when the highest temperature the filter 1 can attain during regeneration thereof becomes equal to a temperature at which the filter 1 is damaged, and accordingly, the trapped quantity of particulate exceeds an allowable range during the regeneration so as to prevent the maximum temperature of the filter during the regeneration from increasing up to a filter damaging temperature, thereby it is possible to prevent damage to the filter 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ディーゼル機関の排気
中に含まれる微粒子成分(パティキュレ−ト)を捕集
し、再生する排気ガス浄化装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purifying apparatus for collecting and regenerating particulate matter (particulates) contained in the exhaust gas of a diesel engine.

【0002】[0002]

【従来の技術】実開平2ー153216号公報は、ディ
ーゼル機関より排出されるパテイキュレートを捕集した
セラミック製ハニカムフィルタを再生するために、フィ
ルタの上流側に軽油バーナの如きフィルタ加熱手段を装
備させたものを開示する。また、他のフィルタ加熱手段
としてフィルタの外周面に電熱ヒータを配設することも
提案されている。しかし上記した従来のフィルタの再生
において、フィルタ温度が上昇し過ぎてクラックや溶損
などフィルタの破損が生じる場合があり、この問題を改
善するために上記公報はフィルタの外周面から内部に向
けて形成された空気流入孔からフィルタ内部に適当な量
の冷却空気を注入してフィルタ温度の過昇を抑制するこ
とを提案する。
2. Description of the Related Art Japanese Utility Model Laid-Open No. 2-153216 is equipped with a filter heating means such as a light oil burner on the upstream side of a filter in order to regenerate a ceramic honeycomb filter that collects particulates discharged from a diesel engine. I will disclose what I did. Further, as another filter heating means, it has been proposed to dispose an electric heater on the outer peripheral surface of the filter. However, in the regeneration of the above-mentioned conventional filter, the filter temperature may rise excessively and the filter may be damaged such as cracks or melting loss, and in order to improve this problem, the above publication discloses that the filter is directed from the outer peripheral surface to the inside. It is proposed to inject an appropriate amount of cooling air into the filter through the formed air inflow hole to suppress the filter temperature from rising excessively.

【0003】その他、パティキュレ−ト捕集量を推定
し、推定値が所定の最大値を超える前に再生を開始させ
てフィルタの最高温度を一定許容範囲に保つという提案
も知られている。
In addition, it is also known to estimate the amount of collected particulates and start regeneration before the estimated value exceeds a predetermined maximum value to keep the maximum temperature of the filter within a certain allowable range.

【0004】[0004]

【発明が解決しようとする課題】しかしながら上記した
公報のフィルタ温度過昇抑制方式によれば、再生時に熱
量損失が生じること、構造が複雑であること、パティキ
ュレ−ト捕集量が増大した場合には依然としてフィルタ
の破損が生じる欠点があり、また、フィルタ圧損などに
よりパティキュレ−ト捕集量を推定する案においてはセ
ンサの検出エラーや推定ミスにより同様にフィルタ破損
の可能性が生じる。
However, according to the filter temperature excessive rise suppression method of the above-mentioned publication, when the heat amount loss occurs during regeneration, the structure is complicated, and the amount of collected particulates increases. Has a drawback that the filter is damaged, and in the case of estimating the amount of collected particulates by the pressure loss of the filter, the filter may be damaged due to the detection error or the estimation error of the sensor.

【0005】本発明は、上記問題点に鑑みなされたもの
であり、ディ−ゼルパティキュレ−トを捕集するセラミ
ックフィルタの再生時破損の確実な低減が可能な排気ガ
ス浄化装置を提供することをその目的としている。
The present invention has been made in view of the above problems, and it is an object of the present invention to provide an exhaust gas purifying apparatus capable of reliably reducing damage during regeneration of a ceramic filter that collects diesel particulates. Has a purpose.

【0006】[0006]

【課題を解決するための手段】本発明の排気ガス浄化装
置は、一端封止の通気孔及び該通気孔に通気可能に隣接
する他端封止の通気孔がそれぞれ軸方向に多数形成さ
れ、ディ−ゼル機関の排気ガス経路中に配設されるハニ
カム状のセラミックフィルタと、前記セラミックフィル
タに近接して前記排気ガス経路中に配設されるフィルタ
加熱手段とを備える排気ガス浄化装置において、前記セ
ラミックフィルタは、再生時のフィルタ最高温度がフィ
ルタ破損温度を下回る最大パティキュレ−ト捕集能力を
有することを特徴としている。
In the exhaust gas purifying apparatus of the present invention, a large number of vent holes of one end sealing and a plurality of vent holes of the other end which are adjacent to the vent hole so as to be ventilated are formed in the axial direction. In an exhaust gas purifying apparatus comprising a honeycomb-shaped ceramic filter arranged in an exhaust gas passage of a diesel engine, and a filter heating means arranged in the exhaust gas passage in the vicinity of the ceramic filter, The ceramic filter is characterized in that it has a maximum particulate collection capacity in which the maximum temperature of the filter during regeneration is below the filter damage temperature.

【0007】[0007]

【作用】セラミックフィルタ(以下、単にフィルタとも
いう)の再生に際し、フィルタ加熱手段によりフィルタ
を加熱し、主として炭素成分からなるパティキュレ−ト
捕集量を燃焼(酸化)させて除去する。セラミックフィ
ルタにおけるクラック発生や溶損は再生時におけるフィ
ルタ温度に依存する。フィルタ温度はフィルタに捕集さ
れたパティキュレ−ト捕集量に依存する。フィルタが収
集可能な最大のパティキュレ−ト捕集量である最大パテ
ィキュレ−ト捕集量はフィルタのセル寸法、セル数、形
状に強く依存する。
When the ceramic filter (hereinafter, also simply referred to as "filter") is regenerated, the filter is heated by the filter heating means to burn (oxidize) and remove the particulate trapped amount mainly composed of the carbon component. Crack generation and melting loss in a ceramic filter depend on the filter temperature during regeneration. The filter temperature depends on the amount of particulates collected by the filter. The maximum particulate collection amount, which is the maximum particulate collection amount that can be collected by the filter, strongly depends on the cell size, the number of cells, and the shape of the filter.

【0008】そこでこの発明では、フィルタの最大パテ
ィキュレ−ト捕集量を、その再生時に到達可能なフィル
タ最高温度がフィルタ破損温度となる捕集量より少なく
なるようにしている。このようにすることにより、再生
に際しパティキュレ−ト捕集量が許容範囲を超過して、
再生時のフィルタ最高温度がフィルタ破損温度以上とな
ることが回避される。
Therefore, in the present invention, the maximum amount of particulates trapped in the filter is set to be smaller than the amount of traps at which the maximum filter temperature that can be reached during regeneration is the filter damage temperature. By doing so, the amount of collected particulates exceeds the allowable range during regeneration,
It is possible to prevent the maximum filter temperature during regeneration from exceeding the filter damage temperature.

【0009】なお、再生時におけるフィルタ最高温度
は、パティキュレ−ト捕集量とともにパティキュレ−ト
燃焼速度にも依存し、燃焼速度が早いほどパティキュレ
−ト燃焼温度及びフィルタ温度は上昇する。けれども、
実際の排気ガス浄化装置では、フィルタ加熱手段の発生
熱量、フィルタ形状、気流の温度や流速などの定格範囲
が規定されているので、任意のパティキュレ−ト捕集量
における燃焼速度(再生速度)が規定され、その結果と
して排気ガス浄化装置の定格条件における再生では、パ
ティキュレ−ト捕集量が決まればフィルタ最高温度は決
定される。
The maximum temperature of the filter at the time of regeneration depends not only on the amount of collected particulates but also on the particulate burning rate, and the higher the burning rate, the higher the particulate burning temperature and the filter temperature. However,
In an actual exhaust gas purification device, since the rated range of the amount of heat generated by the filter heating means, the shape of the filter, the temperature and the flow velocity of the air flow, etc. are specified, the combustion speed (regeneration speed) at any particulate collection amount can be As a result, in the regeneration under the rated conditions of the exhaust gas purifying device, the maximum filter temperature is determined if the particulate collection amount is determined.

【0010】[0010]

【発明の効果】以上説明したように本発明の排気ガス浄
化装置では、フィルタの最大パティキュレ−ト捕集量
を、その再生時に到達可能なフィルタ最高温度がフィル
タ破損温度となる捕集量より少なくなるようにしている
ので、再生に際しパティキュレ−ト捕集量が許容範囲を
超過して、再生時のフィルタ最高温度がフィルタ破損温
度以上となることを回避でき、その結果としてフィルタ
の破損を低減することができる。
As described above, in the exhaust gas purifying apparatus of the present invention, the maximum particulate collection amount of the filter is smaller than the collection amount at which the maximum filter temperature that can be reached during regeneration is the filter damage temperature. As a result, it is possible to prevent the amount of particulates trapped during regeneration from exceeding the allowable range and the maximum filter temperature during regeneration exceeding the filter damage temperature, resulting in a reduction in filter damage. be able to.

【0011】また、再生条件が何らかの理由で定格か
ら、フィルタの放熱性の低下、ヒータの加熱量の増加、
パティキュレ−ト燃焼速度の増加の方向へはずれた場合
でも、フィルタのパティキュレ−ト捕集量自体が規制さ
れているので、従来よりもフィルタ破損の確率が低下す
る。
In addition, for some reason the regeneration condition is lower than the rating, the heat dissipation of the filter is lowered, the heating amount of the heater is increased,
Even if the particulate burning rate deviates in the increasing direction, the particulate collection amount of the filter itself is regulated, so that the probability of filter breakage is lower than in the conventional case.

【0012】[0012]

【実施例】本発明の排気ガス浄化装置の一実施例を図1
に示す。この装置は、ディ−ゼル機関の上流側排気管8
aと下流側排気管8bとの間に介装される両端開口円筒
状のステンレス容器5と、容器5の内部に配設された略
円柱形状のセラミックフィルタ(以下、フィルタとい
う)1と、セラミックフィルタ1の外周に囲設された外
周ヒータ(本発明でいうフィルタ加熱手段)7と、セラ
ミックフィルタ1の下流側の端面に近接して配設された
端面ヒータ(本発明でいうフィルタ加熱手段)6と、こ
れらヒータ6、7への通電を制御する通電制御部9とか
らなる。
FIG. 1 shows an embodiment of the exhaust gas purifying apparatus of the present invention.
Shown in. This device is equipped with an exhaust pipe 8 on the upstream side of a diesel engine.
a and a downstream side exhaust pipe 8b, a cylindrical stainless steel container 5 having openings at both ends, a substantially cylindrical ceramic filter (hereinafter referred to as a filter) 1 disposed inside the container 5, and a ceramic An outer peripheral heater (filter heating means in the present invention) 7 surrounded by the outer periphery of the filter 1, and an end face heater (filter heating means in the present invention) arranged in proximity to the downstream end face of the ceramic filter 1. 6 and an energization controller 9 that controls energization of the heaters 6 and 7.

【0013】フィルタ1はコ−ジェライトを素材とする
公知のセラミックフィルタであり、容器5と外周ヒータ
との間にはセラミック系繊維をシ−ト状に固めた緩衝材
4が配設されている。フィルタ1には、上流側排気管8
a側から下流側排気管8b側へ多数の通気孔(以下、セ
ルという)2が貫設されており、各セル2を隔てる隔壁
の多数の微小孔により隣接セル間は通気可能となってい
る。また、約半数のセル2の上流端部はプラグ3により
封栓され、上流端部が封栓されたセル2に隣接するセル
2の下流端部はプラグ3により封栓されている。
The filter 1 is a well-known ceramic filter made of cordierite, and a cushioning material 4 made of sheet-shaped ceramic fibers is disposed between the container 5 and the outer heater. .. The filter 1 includes an upstream exhaust pipe 8
A large number of vent holes (hereinafter, referred to as cells) 2 are provided so as to extend from the a side to the downstream exhaust pipe 8b side, and a large number of minute holes of partition walls separating each cell 2 allow ventilation between adjacent cells. .. About half of the cells 2 have their upstream ends plugged with plugs 3, and the downstream ends of the cells 2 adjacent to the cells 2 with their upstream ends plugged with plugs 3.

【0014】ヒータ6、7は、カンタル又はニクロム材
等でできた電熱材を素材としており、ヒータ6、7の断
面形状は円形の他、角形としてもよく、波状に配設で
き、ヒータ7はコイル状とすることもできる。通電制御
部9は、図2に示すように、マイコン91と、このマイ
コン91により通電制御されるパワートランジスタ92
〜98とからなり、トランジスタ92、93の各コレク
タはヒータ6、7の各一端に個別に接続され、ヒータ
6、7の各他端はバッテリ(図示せず)から給電されて
いる。
The heaters 6 and 7 are made of an electric heating material made of Kanthal or a nichrome material, and the heaters 6 and 7 may have a circular cross section, a square shape, or a wavy shape. It can also be coiled. As shown in FIG. 2, the energization control unit 9 includes a microcomputer 91 and a power transistor 92 whose energization is controlled by the microcomputer 91.
To 98, the collectors of the transistors 92 and 93 are individually connected to the respective ends of the heaters 6 and 7, and the other ends of the heaters 6 and 7 are supplied with power from a battery (not shown).

【0015】また、トランジスタ94、95及び96、
97はそれぞれCMOSパワーインバ−タA,Bを構成
しており、両インバータA,Bの出力接点間には後述の
切替バルブ駆動用のモータM1、M2がそれぞれ接続さ
れている。トランジスタ98のコレクタはエアーポンプ
駆動用のモータM3の一端に接続され、モータM3の他
端はバッテリ(図示せず)から給電されている。
Also, transistors 94, 95 and 96,
Reference numerals 97 respectively constitute CMOS power inverters A and B, and switching valve driving motors M1 and M2, which will be described later, are connected between output contacts of both inverters A and B, respectively. The collector of the transistor 98 is connected to one end of a motor M3 for driving the air pump, and the other end of the motor M3 is powered by a battery (not shown).

【0016】図2の通電制御部9の回路動作を説明すれ
ば、トランジスタ92、93、98の各オンによりヒ−
タ6、7、モ−タM3が個別にオンオフされ、CMOS
パワーインバ−タAにハイレベルのゲート電圧を印加
し、CMOSパワーインバ−タBにロ−レベルのゲート
電圧を印加するとモータM1,M2は正転し、CMOS
パワーインバ−タAにローレベルのゲート電圧を印加
し、CMOSパワーインバ−タBにハイレベルのゲート
電圧を印加するとモータM1,M2は逆転する。
The circuit operation of the energization controller 9 shown in FIG. 2 will be described.
The motors 6, 7 and the motor M3 are individually turned on and off, and the CMOS
When a high-level gate voltage is applied to the power inverter A and a low-level gate voltage is applied to the CMOS power inverter B, the motors M1 and M2 rotate in the normal direction, and the CMOS
When a low level gate voltage is applied to the power inverter A and a high level gate voltage is applied to the CMOS power inverter B, the motors M1 and M2 are reversed.

【0017】次に、このフィルタ1のパティキュレ−ト
捕集動作を図3により説明する。不図示のエンジンから
出た排気ガスは上流側排気管8aを通じてフィルタ1の
図中左側より導入され、上流側開口のセル2から隔壁を
透過して下流側開口のセル2に達する。この時、排気ガ
ス中に含まれるパティキュレートは隔壁を透過できずに
上流側開口のセル2内に堆積する。一方、パティキュレ
ートを除去された排気ガスは下流側排気管8b及びマフ
ラーを通じて大気に放出される。
Next, the particulate trapping operation of the filter 1 will be described with reference to FIG. Exhaust gas emitted from an engine (not shown) is introduced from the left side in the figure of the filter 1 through the upstream side exhaust pipe 8a, passes through the partition wall from the cell 2 of the upstream side opening, and reaches the cell 2 of the downstream side opening. At this time, the particulates contained in the exhaust gas cannot pass through the partition wall and are deposited in the cell 2 having the upstream opening. On the other hand, the exhaust gas from which the particulates have been removed is discharged to the atmosphere through the downstream side exhaust pipe 8b and the muffler.

【0018】なお排気経路には、フィルタ1をバイパス
するバイパス管8c、8dが設けられており、パティキ
ュレ−ト捕集時には、バイパス管8cの下流端及びバイ
パス管8dの上流端で切替バルブを閉鎖して、排気ガス
がフィルタ1を通過するようにしている。その後、一定
時間走行してフィルタ1にパテイキュレートが堆積する
と、フィルタ前後の圧力損失が増大し、エンジンの出力
低下、燃費の悪化となるので、パテイキュレートを燃焼
させフィルタ1の再生を行う。
By the way, bypass pipes 8c and 8d for bypassing the filter 1 are provided in the exhaust path, and at the time of collecting particulates, the switching valve is closed at the downstream end of the bypass pipe 8c and the upstream end of the bypass pipe 8d. Then, the exhaust gas passes through the filter 1. After that, if the particulate matter accumulates on the filter 1 after traveling for a certain period of time, the pressure loss before and after the filter increases, the output of the engine decreases, and the fuel consumption deteriorates. Therefore, the particulate matter is burned to regenerate the filter 1.

【0019】次にこのフィルタ1の再生動作を説明す
る。まず、エンジン稼働中かどうかをエンジンコントロ
ールユニット(ECU)からの信号に基づいて判断し、
稼働中でなければ待機し稼働中ならエンジン稼働累積時
間としてエンジン積算回転数をカウントし、このエンジ
ン積算回転数が所定量のパティキュレ−トが堆積したと
見なすことができる所定値に達したかどうかを判別し、
達したたなら再生必要と判断して、両切替バルブ駆動用
のモータM1、M2(図2参照)を正転させて、両切替
バルブをフィルタ1遮断側に倒し、エアポンプ(図2参
照)駆動用のモータM3を駆動して新鮮空気をフィルタ
1に供給し、フィルタ1から出たガスを下流側の排気管
8bに排気する。なお、新鮮空気の代わりにエンジン排
気ガスを導入してもよい。
Next, the reproducing operation of the filter 1 will be described. First, determine whether the engine is operating based on the signal from the engine control unit (ECU),
If it is not in operation, it waits, and if it is in operation, it counts the cumulative engine speed as the cumulative operating time of the engine, and whether or not this cumulative engine speed reaches a predetermined value at which it can be considered that a predetermined amount of particulates have accumulated. To determine
When it reaches, it is judged that regeneration is necessary, the motors M1 and M2 for driving both switching valves are normally rotated, both switching valves are tilted to the filter 1 cutoff side, and the air pump (see FIG. 2) is driven. The motor M3 for driving is driven to supply fresh air to the filter 1, and the gas discharged from the filter 1 is exhausted to the exhaust pipe 8b on the downstream side. Note that engine exhaust gas may be introduced instead of fresh air.

【0020】この状態でヒ−タ6、7に所定のモードで
通電してフィルタを加熱し、堆積パティキュレ−トを燃
焼させてフィルタ1を再生し、再生終了後、エアポンプ
を停止し、モータM1、M2を所定時間逆転させて両切
替ダンパを元の位置(図3参照)に復帰させ、マイコン
91に内蔵のエンジン稼働時間累積カウンタを0にリセ
ットして、再生動作を完了する。なお、上記積算回転数
と併せて、フィルタ1の両端の圧力差を検出して再生時
期を決定してもよい。
In this state, the heaters 6 and 7 are energized in a predetermined mode to heat the filter, burn the deposited particulates to regenerate the filter 1, and after the regeneration is completed, the air pump is stopped and the motor M1 is regenerated. , M2 are reversed for a predetermined period of time to return both switching dampers to their original positions (see FIG. 3), and the engine operating time accumulation counter built in the microcomputer 91 is reset to 0 to complete the regeneration operation. The regeneration timing may be determined by detecting the pressure difference between the both ends of the filter 1 together with the above-mentioned integrated rotational speed.

【0021】次に、本実施例の要部であるフィルタ形状
の決定のために、以下の予備実験を行った。まず、次の
形状のフィルタ10を準備した。このフィルタ10は、
図5及び図6に示すように、直径140mm、長さ13
0mm(体積2000cc、以下、容積2リットルと称
する)の円柱形状を有し、上流側のセル(本発明でいう
通気孔)21と、下流側のセル(本発明でいう通気孔)
22が互いに隣接して軸方向に形成されている。すなわ
ち、各セル21は市松模様に配置され、各セル22は市
松模様に配置され、セル21は隣接する4個のセル22
の中間点に形成されている。隣接するセル21、22の
ピッチは2.05mmに設定され、セル21、22の軸
直方向の断面は一辺が1.6mmの正方形となってい
る。セル数は150セル/平方インチである。
Next, the following preliminary experiments were conducted to determine the filter shape, which is the main part of this embodiment. First, a filter 10 having the following shape was prepared. This filter 10
As shown in FIGS. 5 and 6, a diameter of 140 mm and a length of 13
It has a columnar shape of 0 mm (volume 2000 cc, hereinafter referred to as volume 2 liter), and has an upstream cell (vent hole) 21 and a downstream cell (vent hole).
22 are formed adjacent to each other in the axial direction. That is, the cells 21 are arranged in a checkerboard pattern, the cells 22 are arranged in a checkerboard pattern, and the cells 21 are arranged in four adjacent cells 22.
Is formed at the midpoint of. The pitch of the adjacent cells 21 and 22 is set to 2.05 mm, and the cross section of the cells 21 and 22 in the direction perpendicular to the axis is a square having one side of 1.6 mm. The number of cells is 150 cells / square inch.

【0022】上記した排気ガス浄化装置に装着し、車両
用ディ−ゼル機関(2200cc)に取りつけた場合に
おけるフィルタ10の最大パティキュレ−ト捕集量は6
4g(32g/リットル)であった。このフィルタ10
で捕集したパティキュレ−ト捕集量を種々変えた場合に
おける再生時のフィルタ最高温度を測定した。その結果
を図7に示す。
The maximum amount of particulates collected by the filter 10 when it is mounted on the above exhaust gas purifying apparatus and mounted on a vehicle diesel engine (2200 cc) is 6.
It was 4 g (32 g / liter). This filter 10
The maximum temperature of the filter at the time of regeneration was measured when various amounts of collected particulates were collected. The result is shown in FIG. 7.

【0023】なお、測温は図8に示すフィルタ各部に熱
電対を入れて測定し、その中の最高温度を取った。図8
において、、は前端面から15mmの位置、、
、は前端面から65mmの位置、、、は前端
面から110mmの位置とした。再生条件は以下の通り
である。通電パターンは図9の通りである。二次空気流
量は46リットル/min(0.05m/s)とした。
再生直前のフィルタ1の温度は摂氏30度とした。図7
からわかるように、パティキュレ−ト捕集量とフィルタ
最高温度とは直線関係を有することがわかる。
The temperature was measured by inserting a thermocouple into each part of the filter shown in FIG. 8 and taking the maximum temperature among them. Figure 8
In, is a position 15 mm from the front end face,
, Is a position 65 mm from the front end face, and is a position 110 mm from the front end face. The reproduction conditions are as follows. The energization pattern is as shown in FIG. The secondary air flow rate was 46 liters / min (0.05 m / s).
The temperature of the filter 1 immediately before regeneration was 30 degrees Celsius. Figure 7
As can be seen, there is a linear relationship between the particulate collection amount and the filter maximum temperature.

【0024】ここで、フィルタ最高温度が摂氏1000
度(本発明でいうフィルタ破損温度)を超えるとコージ
ェライトを素材とするセラミックフィルタではクラック
や溶損が発生することが知られているので、フィルタ最
高温度がこのフィルタ破損温度である摂氏1000度を
超えないようにする必要がある。また、再生時のフィル
タ最高温度が摂氏700度を下回ると、燃焼反応の進行
が遅く、一定時間(例えば0.5時間)内における再生
率が悪化するので、再生時のフィルタ最高温度が摂氏7
00度以上とすることが好ましい。例えば、摂氏700
度での上記再生条件ではパティキュレ−ト捕集量5g/
リットルにおける再生率(再生重量/再生直前のパティ
キュレ−ト捕集量)は約95%であった。
Here, the maximum temperature of the filter is 1000 degrees Celsius.
It is known that cracks and melting loss occur in a ceramic filter made of cordierite when the temperature exceeds the temperature (filter break temperature in the present invention). Therefore, the maximum filter temperature is this filter break temperature of 1000 degrees Celsius. Must not exceed. Further, when the filter maximum temperature during regeneration is lower than 700 degrees Celsius, the progress of combustion reaction is slow and the regeneration rate within a fixed time (for example, 0.5 hours) deteriorates. Therefore, the filter maximum temperature during regeneration is 7 degrees Celsius.
It is preferably set to 00 degrees or more. For example, 700 degrees Celsius
In the above regeneration conditions, the particulate collection amount is 5 g /
The regeneration rate (recycled weight / the amount of collected particulates immediately before regeneration) in liter was about 95%.

【0025】このことから、フィルタ最高温度を決定す
る最重要ファクターであるパティキュレ−ト捕集量を、
再生時のフィルタ最高温度が摂氏700〜1000度の
範囲となるようにフィルタの形状を決定すれば、パティ
キュレ−ト捕集量が大きく成りすぎてフィルタが破損す
るのを回避でき、かつ良好な再生を行えることがわか
る。
From this fact, the amount of particulates trapped, which is the most important factor for determining the maximum temperature of the filter, is
If the shape of the filter is determined so that the maximum temperature of the filter at the time of regeneration is in the range of 700 to 1000 degrees Celsius, it is possible to prevent the filter from being damaged due to an excessively large amount of trapped particulates, and good regeneration You can see that you can.

【0026】理論的にはある再生途中時点におけるフィ
ルタ10の温度Tは、再生開始時点からのその時点まで
のヒータ加熱量をQh、再生開始時点からのその時点ま
でのパティキュレ−ト発熱量をQp、再生開始時点から
のその時点までのフィルタ放熱量をQc、フィルタ10
の比熱をk,フィルタの質量をmとすれば、おおざっぱ
に言えば、ΔQ=Qh+QpーQc、T=ΔQ/(k×
m)となる。ただし、フィルタ各部では条件は異なるの
で、上記温度計算はフィルタの小部分毎に計算する必要
がある。また、フィルタの外周面からその部分までの距
離、熱伝導率なども考慮する必要があり、このような計
算は極めて面倒であるので実験で求めるのが簡単であ
る。
Theoretically, the temperature T of the filter 10 during a certain regeneration is as follows: Qh is the heater heating amount from the regeneration start time to that time, and Qp is the particulate heat generation amount from the regeneration start time to that time. , The heat radiation amount of the filter from the start of regeneration to that time is Qc, the filter 10
If the specific heat of is k and the mass of the filter is m, then roughly speaking, ΔQ = Qh + Qp−Qc, T = ΔQ / (k ×
m). However, since the conditions are different in each part of the filter, it is necessary to calculate the temperature for each small part of the filter. In addition, it is necessary to consider the distance from the outer peripheral surface of the filter to that portion, the thermal conductivity, and the like. Since such calculation is extremely troublesome, it can be easily obtained by an experiment.

【0027】例えば図7から、図5及び図6に示すフィ
ルタ形状を採用すると上記再生条件では、最大パティキ
ュレ−ト捕集量を5〜10g/リットルとなるように形
状を設計すれば、フィルタ最高温度を摂氏700〜10
00度の範囲とできることがわかる。更に、再生効率
(再生の安定性)などの点、及び、最大パティキュレ−
ト捕集量を小さくすると再生インターバルが増加する点
から、再生時のフィルタ最高温度は許容範囲(コージェ
ライト製のハニカムフィルタでは摂氏1000)内でな
るべく高い側、言い換えれば最大パティキュレ−ト捕集
量は許容範囲(10g/リットル)内でなるべく多い側
が望ましいことがわかる。
For example, if the filter shapes shown in FIGS. 5 and 6 are adopted, under the above-mentioned regeneration conditions, if the shape is designed so that the maximum particulate collection amount is 5 to 10 g / liter, the filter maximum is obtained. 700 to 10 degrees Celsius
It can be seen that the range can be set to 00 degrees. Furthermore, points such as regeneration efficiency (regeneration stability) and maximum particle size
Since the regeneration interval increases when the trapping amount is reduced, the maximum filter temperature during regeneration is as high as possible within the allowable range (1000 degrees Celsius for cordierite honeycomb filters), in other words, the maximum particulate trapping amount. It can be seen that it is desirable to have as much as possible within the allowable range (10 g / liter).

【0028】上記した観点から、実際に各種形状のフィ
ルタを作製し、試験した。その結果を以下に説明する。
図10にフィルタ1の一試作例を示す。このフィルタ1
は、図5及び図6に示すフィルタ10において、上流側
のセル21の断面積だけを縮小したものであって、セル
21の軸直方向の断面は一辺が0.8mmの正方形とな
っている。このフィルタ1の上記運転条件における最大
パティキュレ−ト捕集量は8.0g/リットルであっ
た。なお、この最大パティキュレ−ト捕集量はエンジン
の排気圧力でフィルタの補集セル内いっぱいに入り得る
パティキュレ−ト捕集量をいうものとする。
From the above viewpoints, filters having various shapes were actually manufactured and tested. The results will be described below.
FIG. 10 shows a prototype of the filter 1. This filter 1
5 is a filter 10 shown in FIGS. 5 and 6, in which only the cross-sectional area of the upstream cell 21 is reduced, and the cross-section of the cell 21 in the direction perpendicular to the axis is a square having a side of 0.8 mm. .. The maximum particulate collection amount of the filter 1 under the above operating conditions was 8.0 g / liter. The maximum amount of collected particulates is the amount of collected particulates that can be filled in the collection cell of the filter by the exhaust pressure of the engine.

【0029】次に、このフィルタ1を上記再生条件で再
生し、上記測定条件で温度測定した。フィルタ最高温度
は、摂氏900度であり、当然、フィルタ破損は生じな
かった。再生率(再生重量/再生直前のパティキュレ−
ト捕集量)は約100%であった。上記の結果から、何
らかの制御エラー(例えば、通電制御部9におけるエン
ジン累積稼働時間の推定エラー)により稼働累積時間が
長くなった場合でも、このフィルタ1には最大パティキ
ュレ−ト捕集量以上にパティキュレ−トが捕集されるこ
とがなく、その結果としてフィルタ最高温度がフィルタ
破損温度を超過してフィルタの破損を招くことが無い。
Next, this filter 1 was regenerated under the above-mentioned regeneration conditions, and the temperature was measured under the above-mentioned measurement conditions. The maximum filter temperature was 900 degrees Celsius, and naturally, no filter breakage occurred. Regeneration rate (recycled weight / particulate just before regeneration
The collected amount) was about 100%. From the above results, even if the cumulative operation time is lengthened due to some control error (for example, an error in estimating the cumulative engine operation time in the energization control unit 9), the filter 1 has more particulates than the maximum particulate collection amount. -There is no trapping of the filter, as a result of which the maximum filter temperature does not exceed the filter damage temperature and the filter is damaged.

【0030】もちろん、再生時のフィルタ最高温度は、
排気ガス浄化装置の通常の再生条件により規定される値
であり、また、フィルタ破損温度もフィルタの材質や形
状により変動することは当然である。ちなみに、セル2
1の軸直方向の正方形断面の一辺の長さを変更した場合
の最大パティキュレ−ト捕集量とフィルタ最高温度の変
化を表1に示す。再生条件は上記と同じである。
Of course, the maximum temperature of the filter during regeneration is
It is a value defined by the normal regeneration conditions of the exhaust gas purifying device, and the filter damage temperature naturally varies depending on the material and shape of the filter. By the way, cell 2
Table 1 shows the changes in the maximum particulate collection amount and the filter maximum temperature when the length of one side of the square cross section of No. 1 in the direction perpendicular to the axis is changed. The reproduction conditions are the same as above.

【0031】[0031]

【第1表】 上記第1表から、セル21の正方形断面の一辺は0.6
〜0.9mmとすれば、フィルタ最高温度を摂氏700
〜1000度とできることがわかる。
[Table 1] From Table 1 above, one side of the square cross section of the cell 21 is 0.6
~ 0.9mm, the filter maximum temperature is 700 degrees Celsius
It can be seen that it can be set up to 1000 degrees.

【0032】以上説明した各試作例のフィルタ1は従来
のものに比べて透過面積が小さいので、これらフィルタ
1を必要に応じて複数個配設し、順番に再生することが
好ましい。上記実施例では、セル21の軸直方向断面積
の変更により最大パティキュレ−ト捕集量を規制した
が、他の形状変更(補集セル数の減少)により最大パテ
ィキュレ−ト捕集量を規制できることは当然であり、ま
た、最大パティキュレ−ト捕集量を10g/リットル以
上とし、その代わりに燃焼速度を緩やかにして累積放熱
量を増加し、フィルタ最高温度の過昇を抑制できること
も当然である。
Since the filter 1 of each prototype described above has a smaller transmission area than the conventional one, it is preferable to dispose a plurality of these filters 1 as required and reproduce them in order. In the above embodiment, the maximum particulate collection amount was regulated by changing the cross-sectional area of the cell 21 in the direction perpendicular to the axis, but the maximum particulate collection amount was regulated by another shape change (reduction of the number of collection cells). Naturally, it is also possible to set the maximum particulate collection amount to 10 g / liter or more, and instead to slow the combustion speed to increase the cumulative heat release amount and suppress the excessive rise of the filter maximum temperature. is there.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の排気ガス浄化装置の一実施例を示す模
式断面図、
FIG. 1 is a schematic cross-sectional view showing an embodiment of an exhaust gas purification device of the present invention,

【図2】図1の装置の通電制御部の電気回路図、FIG. 2 is an electric circuit diagram of an energization control unit of the apparatus shown in FIG.

【図3】図1の装置の捕集動作を示す模式断面図、FIG. 3 is a schematic cross-sectional view showing a collecting operation of the device of FIG.

【図4】図1の装置の再生動作を示す模式断面図、FIG. 4 is a schematic cross-sectional view showing a reproducing operation of the apparatus of FIG.

【図5】参考とした用いたフィルタの斜視図、FIG. 5 is a perspective view of a filter used as a reference,

【図6】図5のフィルタの部分拡大断面図、6 is a partially enlarged sectional view of the filter of FIG.

【図7】図5のフィルタの再生時における捕集量とフィ
ルタ最高温度との関係を示す特性図、
7 is a characteristic diagram showing the relationship between the collection amount and the filter maximum temperature during regeneration of the filter of FIG.

【図8】図5のフィルタの測温部位を示す説明図、FIG. 8 is an explanatory view showing a temperature measurement part of the filter of FIG.

【図9】図5のフィルタの再生時における通電パターン
を示すタイミングチャート、
9 is a timing chart showing an energization pattern during regeneration of the filter of FIG.

【図10】試作例1におけるフィルタの部分拡大断面
図、
FIG. 10 is a partially enlarged cross-sectional view of a filter in Prototype Example 1,

【符号の説明】[Explanation of symbols]

1はフィルタ、2はセル(通気孔)、6は端面ヒータ
(フィルタ加熱手段)、7は外周ヒータ(フィルタ加熱
手段)、9は通電制御部、21、22はセル。
1 is a filter, 2 is a cell (ventilation hole), 6 is an end face heater (filter heating means), 7 is an outer circumference heater (filter heating means), 9 is an energization control unit, and 21 and 22 are cells.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 F01N 3/02 R (72)発明者 村田 信彦 愛知県刈谷市昭和町1丁目1番地 日本電 装株式会社内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Reference number within the agency FI Technical indication location F01N 3/02 R (72) Inventor Nobuhiko Murata 1-1, Showa-cho, Kariya city, Aichi prefecture Nidec Within the corporation

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】一端封止の通気孔及び該通気孔に通気可能
に隣接する他端封止の通気孔がそれぞれ軸方向に多数形
成され、ディ−ゼル機関の排気ガス経路中に配設される
ハニカム状のセラミックフィルタと、前記セラミックフ
ィルタに近接して前記排気ガス経路中に配設されるフィ
ルタ加熱手段とを備える排気ガス浄化装置において、 前記セラミックフィルタは、再生時のフィルタ最高温度
がフィルタ破損温度を下回る最大パティキュレ−ト捕集
能力を有することを特徴とする排気ガス浄化装置。
1. A vent hole for sealing one end and a vent hole for sealing the other end, which is adjacent to the vent hole so as to be ventilated, are formed in the axial direction, respectively, and are arranged in an exhaust gas passage of a diesel engine. In an exhaust gas purifying device comprising a honeycomb ceramic filter having a honeycomb structure and a filter heating means arranged in the exhaust gas passage in the vicinity of the ceramic filter, the ceramic filter has a filter maximum temperature at the time of regeneration. An exhaust gas purifying device having a maximum particulate trapping capacity below a breaking temperature.
JP4106864A 1992-04-24 1992-04-24 Exhaust gas purifying device Pending JPH05302507A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4106864A JPH05302507A (en) 1992-04-24 1992-04-24 Exhaust gas purifying device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4106864A JPH05302507A (en) 1992-04-24 1992-04-24 Exhaust gas purifying device

Publications (1)

Publication Number Publication Date
JPH05302507A true JPH05302507A (en) 1993-11-16

Family

ID=14444428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4106864A Pending JPH05302507A (en) 1992-04-24 1992-04-24 Exhaust gas purifying device

Country Status (1)

Country Link
JP (1) JPH05302507A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003074848A1 (en) * 2002-03-04 2003-09-12 Ibiden Co., Ltd. Honeycomb filter for exhaust gas decontamination and exhaust gas decontamination apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003074848A1 (en) * 2002-03-04 2003-09-12 Ibiden Co., Ltd. Honeycomb filter for exhaust gas decontamination and exhaust gas decontamination apparatus
CN100365252C (en) * 2002-03-04 2008-01-30 揖斐电株式会社 Honeycomb filter for exhaust gas decontamination and exhaust gas decontamination apparatus
US7427308B2 (en) 2002-03-04 2008-09-23 Ibiden Co., Ltd. Honeycomb filter for exhaust gas decontamination and exhaust gas decontamination apparatus

Similar Documents

Publication Publication Date Title
JP4161546B2 (en) Regeneration control method for continuous regeneration type diesel particulate filter device
JP4007085B2 (en) Exhaust gas purification device for internal combustion engine
JP3829699B2 (en) Exhaust gas purification system and its regeneration control method
JP2003161138A (en) Diesel particulate filter
JP4320586B2 (en) Exhaust gas purification device for internal combustion engine
JPH05302507A (en) Exhaust gas purifying device
JP2007056786A (en) Exhaust emission control device
KR20110012338A (en) Method for emission controlling of diesel particulate filter
JP4219420B2 (en) Exhaust gas filter purification method and exhaust gas filter purification device
JP3073375B2 (en) Exhaust gas purification device
JPH10266826A (en) Exhaust gas processing device for diesel engine
JPH0122447B2 (en)
JPH06323130A (en) Exhaust particulate eliminating device for diesel engine
JPH05231133A (en) Exhaust emission control device for internal combustion engine
JP4554894B2 (en) Exhaust gas purification method and exhaust gas purification system
JPH05302506A (en) Exhaust gas purifying device
JPH0719029A (en) Exhaust gas emission control device for diesel engine
JPH05106426A (en) After-exhaust disposal device of diesel engine
JP3580563B2 (en) Exhaust gas particulate purification system for internal combustion engine
JPH0515528Y2 (en)
JP3826661B2 (en) Diesel particulate filter
JPH05163932A (en) Exhaust emission control device
JPH0741859Y2 (en) Exhaust gas purification device for internal combustion engine
JPH05163930A (en) Exhaust emission control device for internal combustion engine
JPH0742534A (en) Exhaust particulate removing device for diesel engine