JPH05302192A - Method for electrolyzing organic salt - Google Patents

Method for electrolyzing organic salt

Info

Publication number
JPH05302192A
JPH05302192A JP13417092A JP13417092A JPH05302192A JP H05302192 A JPH05302192 A JP H05302192A JP 13417092 A JP13417092 A JP 13417092A JP 13417092 A JP13417092 A JP 13417092A JP H05302192 A JPH05302192 A JP H05302192A
Authority
JP
Japan
Prior art keywords
anode
gas diffusion
diffusion electrode
cathode
amino acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13417092A
Other languages
Japanese (ja)
Inventor
Choichi Furuya
長一 古屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Original Assignee
Tanaka Kikinzoku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP13417092A priority Critical patent/JPH05302192A/en
Publication of JPH05302192A publication Critical patent/JPH05302192A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Metals (AREA)

Abstract

PURPOSE:To simplify the structure of an electrolytic cell for org. salts and the electrolytic system by using a gas diffusion electrode as an anode and causing depolarization. CONSTITUTION:An org. salt such as amino acid salts is converted to the acid by ion-exchange membrane electrolysis. In this process, a gas diffusion electrode is used at least as the anode, and hydrogen is supplied to cause depolarization. Consequently, oxygen is not generated at the anode as in the conventional process, electric energy is efficiently used, and the power is reduced. Besides, since oxygen is not generated at the anode, the potential is lowered, a two- compartment electrolytic cell having one cation-exchange membrane between both electrodes can be constituted by using a gas diffusion electrode as the anode and cathode, a sulfuric acid circulating line necessary for the conventional three-compartment electrolytic cell is not needed in this case, and the electrolytic system is simplified.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、アミノ酸、りんご酸、
マロン酸、クエン酸等の有機物の塩を酸に転化する電解
方法に関する。
The present invention relates to amino acids, malic acid,
The present invention relates to an electrolysis method for converting salts of organic substances such as malonic acid and citric acid into acids.

【0002】[0002]

【従来の技術】アミノ酸の製造方法には、 1.タンパク質の塩酸加水分解や分解酵素による方法。 2.グルタミン酸の製造でみられる発酵法。 3.グリシン、アラニンなどの製造でみられる合成法。 などがある。2. Description of the Related Art A method for producing an amino acid includes: Hydrochloric acid hydrolysis or degradative enzyme method of protein. 2. Fermentation method found in the production of glutamic acid. 3. A synthetic method found in the production of glycine and alanine. and so on.

【0003】これらの生成物は、アミノ酸塩として得ら
れる場合が多い。アミノ酸塩は、そのままでは使用され
ず、イオン交換してアミノ酸として分離精製する必要が
ある。この分離精製方法は、イオン交換膜を用いたアミ
ノ酸塩の電解方法であり、この電解方法に用いられる図
3に示す従来の電解槽10は、陽極11と陰極12との間に2
枚の隔膜としての陽イオン交換膜13、13′、を持つ三室
型で、陽極11はチタンに貴金属酸化物をコーティングし
た電極、陰極12は鉄ラス材にニッケルメッキを施した電
極である。そして陽極液室14に陽極液として5%硫酸
液、陰極液室15に陰極液として10%の苛性ソーダ溶液が
循環され、中間室16にアミノ酸のナトリウム塩(H2
CHRCOONa)が供給される。この場合、陽極酸化
にて陽極液から生成したH+ イオンでアミノ酸塩のNa
+ イオンとの交換がなされ、アミノ酸として回収され
る。また交換されたNa+ イオンは陰極還元にて生成し
たOH- と結合して水酸化ナトリウムとして回収され
る。陽極11では酸素、陰極12では水素が発生する。
[0003] These products are often obtained as amino acid salts. The amino acid salt is not used as it is, but needs to be ion-exchanged to be separated and purified as an amino acid. This separation / purification method is an electrolysis method of an amino acid salt using an ion exchange membrane, and the conventional electrolytic cell 10 shown in FIG. 3 used for this electrolysis method has two electrodes between an anode 11 and a cathode 12.
A three-chamber type having cation exchange membranes 13 and 13 'as a diaphragm, an anode 11 is an electrode made by coating titanium with a noble metal oxide, and a cathode 12 is an electrode made by plating an iron lath material with nickel. Then, a 5% sulfuric acid solution as an anolyte and a 10% caustic soda solution as a catholyte are circulated in the anolyte chamber 14 and a catholyte chamber 15, respectively, and an amino acid sodium salt (H 2 N) is circulated in the intermediate chamber 16.
CHRCOONa) is supplied. In this case, H + ions generated from the anolyte by anodic oxidation are used as the amino acid salt Na.
Exchanged with + ion and recovered as amino acid. Further, the exchanged Na + ions are combined with OH generated by the cathodic reduction and recovered as sodium hydroxide. Oxygen is generated at the anode 11 and hydrogen is generated at the cathode 12.

【0004】ところで、このアミノ酸塩の電解方法の問
題点は、陽極11での酸素発生である。陽極11の作用は、
+ イオンを中間室16に供給するためになされており、
酸素発生は電気エネルギーの無駄である。また陽極11は
酸素発生を行なう為、電位が高く、陽極液との仕切りが
無いとアミノ酸が陽極酸化を受けてしまう。従って、電
解電圧の面からも有利な陽極液室14を取り去った簡単な
構造の2室型を使用できないという問題点があった。
By the way, a problem of this method of electrolyzing an amino acid salt is oxygen generation at the anode 11. The action of the anode 11 is
It is designed to supply H + ions to the intermediate chamber 16,
Oxygen generation is a waste of electrical energy. Further, since the anode 11 generates oxygen, the potential is high, and the amino acid is anodized if it is not separated from the anolyte. Therefore, there is a problem that the two-chamber type having a simple structure in which the anolyte chamber 14 is removed, which is advantageous in terms of electrolysis voltage, cannot be used.

【0005】[0005]

【発明が解決しようとする課題】そこで本発明は、電気
エネルギーの無駄を無くして電力を削減し、また電解槽
構造と電解システムを簡単化できる有機物塩の電解方法
を提供しようとするものである。
SUMMARY OF THE INVENTION Therefore, the present invention is intended to provide an electrolysis method of an organic salt which eliminates waste of electric energy to reduce electric power and simplifies the electrolytic cell structure and electrolysis system. ..

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
の本発明の有機物塩の電解方法は、有機物の塩を酸に転
化するイオン交換膜電解方法に於いて、少なくとも陽極
にガス拡散電極を用い、水素を供給して復極することを
特徴とするものである。
The method for electrolyzing an organic salt of the present invention for solving the above-mentioned problems is an ion exchange membrane electrolysis method for converting an organic salt into an acid, in which at least a gas diffusion electrode is provided at the anode. It is characterized in that it is used and supplied with hydrogen for repolarization.

【0007】[0007]

【作用】上記のように本発明の有機物の電解方法は、少
なくとも陽極にガス拡散電極を用い、水素を供給して復
極するので、従来のような陽極での酸素発生が無くな
り、電気エネルギーの無駄が無くなって電力が削減され
る。また陽極での酸素発生が無いので、電位が低く、陽
極、陰極にガス拡散電極を用いることにより、この両極
間に1枚の陽イオン交換膜を持つ二室型の電解槽を構成
することができ、従来の三室型の電解槽に必要な硫酸循
環系を不要にできて、電解システムを簡単化できる。
As described above, in the method for electrolyzing an organic substance according to the present invention, at least a gas diffusion electrode is used as an anode and hydrogen is supplied for depolarization, so that oxygen generation at the anode as in the conventional case is eliminated and electric energy is reduced. Waste is eliminated and power consumption is reduced. In addition, since oxygen is not generated at the anode, the potential is low, and by using gas diffusion electrodes for the anode and cathode, it is possible to construct a two-chamber type electrolytic cell having one cation exchange membrane between these electrodes. Therefore, the sulfuric acid circulation system required for the conventional three-chamber type electrolytic cell can be eliminated, and the electrolytic system can be simplified.

【0008】[0008]

【実施例】本発明の有機物塩の電解方法の一実施例を図
1によって説明すると、陽極1に、液体の浸透できる微
細な親水部(通路)と気体の出入可能な微細な撥水部
(通路)が入り組み接し合って混在している反応層に白
金触媒を担持させ、この反応層に気体の出入可能な微細
な撥水部(通路)が微細に分散しているガス拡散層を張
り合わせてなるガス拡散電極を用い、陰極2にニッケル
網を用い、陽極1と陰極2との間に2枚の陽イオン交換
膜3、3′としてナフィオン117 を持つ三室型の電解層
4を構成した。そして陽極液室5に陽極液として5%硫
酸溶液を循環させ、陰極液室6に陰極液として10%苛性
ソーダ溶液を循環させた。中間室7に醸造用添加剤など
として広く用いられているDL−アラニン(DL−αメ
アミノプロピオン酸)16%溶液を供給した。電解温度を
60℃とし、陽極1のガス拡散電極の気室8に水素を供給
して、200mA /cm2 で電解した。この電解により陽極酸
化で陽極液から生成したH+ イオンは中間室7に供給さ
れた前記アミノ酸塩のNa+ と交換なされて、アミノ酸
塩はアミノ酸として回収され、また交換されたNa+
陰極2での陰極還元にて生成したOH- イオンと結合し
て水酸化ナトリウムとして回収された。ガス拡散電極の
陽極1は、水素で復極した為、電解電圧は1.6V程度減
少した。陰極2から発生した水素は回収して前記気室8
に供給することで再利用できた。
EXAMPLE An example of the method for electrolyzing an organic salt of the present invention will be described with reference to FIG. 1. A fine hydrophilic part (passage) through which a liquid can permeate and a fine water repellent part through which a gas can flow in and out of an anode 1 ( Platinum catalyst is supported on the reaction layer in which passages are mixed and in contact with each other, and a fine water-repellent portion (passage) through which gas can flow in and out is finely dispersed in this reaction layer. A three-chamber type electrolytic layer 4 having Nafion 117 as two cation exchange membranes 3 and 3 ′ between the anode 1 and the cathode 2 was constructed by using a gas diffusion electrode as described above and a nickel net as the cathode 2. .. Then, a 5% sulfuric acid solution was circulated as an anolyte in the anolyte compartment 5, and a 10% caustic soda solution was circulated as a catholyte in the catholyte compartment 6. A 16% solution of DL-alanine (DL-α-meaminopropionic acid), which is widely used as an additive for brewing, was supplied to the intermediate chamber 7. Electrolysis temperature
The temperature was set to 60 ° C., hydrogen was supplied to the gas chamber 8 of the gas diffusion electrode of the anode 1, and electrolysis was carried out at 200 mA / cm 2 . The H + ions generated from the anolyte by this anodization by this electrolysis are exchanged with the Na + of the amino acid salt supplied to the intermediate chamber 7, the amino acid salt is recovered as an amino acid, and the exchanged Na + is the cathode 2. It was combined with the OH ion produced by the cathodic reduction in 1 to be recovered as sodium hydroxide. Since the anode 1 of the gas diffusion electrode was depolarized with hydrogen, the electrolysis voltage decreased by about 1.6V. Hydrogen generated from the cathode 2 is recovered and the air chamber 8
It could be reused by supplying to.

【0009】次に本発明の有機物塩の電解方法の他の実
施例を図2によって説明すると、陽極1′、陰極2′と
もに前記実施例と同じ構成のガス拡散電極を用い、陽極
1′と陰極2′との間に1枚の陽イオン交換膜3″とし
てナフィオン 117を持つ二室型の電解槽4′を構成し
た。そして陽極液室5′に陽極液としてDL−アラニン
(DL−αアミノプロピオン酸)16%溶液を供給し、陰
極液室6′に陰極液として10%苛性ソーダ溶液を循環さ
せた。電解温度を60℃とし、陽極1′のガス拡散電極の
気室8′に水素を供給し、陰極2′のガス拡散電極の気
室8″に酸素を供給して、 200mA/cm2 で電解した。
この電解によりガス拡散電極の陽極1′を透過したH+
イオンは陽極液としてのアミノ酸塩のNa+ と交換がな
されて、アミノ酸塩はアミノ酸として回収され、また交
換されたNa+ はガス拡散電極の陰極2′での酸素の陰
極還元により生成したOH- イオンと結合して水酸化ナ
トリウムとして回収された。ガス拡散電極の陽極1′
は、水素で陰極は酸素で復極した為、電解電圧は0.46V
であった。
Next, another embodiment of the method for electrolyzing an organic salt of the present invention will be described with reference to FIG. 2. Both the anode 1'and the cathode 2'use the gas diffusion electrode having the same structure as in the above embodiment, and the anode 1 ' A two-chamber type electrolytic cell 4'having Nafion 117 as one cation exchange membrane 3 "was formed between the cathode 2'and DL-alanine (DL-α) as anolyte in the anolyte chamber 5 '. Aminopropionic acid) 16% solution was supplied, and a 10% caustic soda solution was circulated as a catholyte in the catholyte compartment 6 '. Was supplied, oxygen was supplied to the gas chamber 8 ″ of the gas diffusion electrode of the cathode 2 ′, and electrolysis was performed at 200 mA / cm 2 .
By this electrolysis, H + transmitted through the anode 1'of the gas diffusion electrode
The ions are exchanged with Na + of an amino acid salt as an anolyte, the amino acid salt is recovered as an amino acid, and the exchanged Na + is OH produced by the cathodic reduction of oxygen at the cathode 2 ′ of the gas diffusion electrode. It was combined with ions and recovered as sodium hydroxide. Gas diffusion electrode anode 1 '
Is hydrogen and the cathode is oxygen, so the electrolysis voltage is 0.46V.
Met.

【0010】[0010]

【発明の効果】以上の説明で判るように本発明の有機物
塩の電解方法は、少なくとも陽極にガス拡散電極を用
い、水素を供給して復極するので、陽極での酸素発生が
無く、電気エネルギーの無駄が無くなって電力が削減さ
れた。また陽極、陰極にガス拡散電極を用いることによ
り、この両極間に1枚の陽イオン交換膜を持つ二室型の
電解槽を構成することができ、従来の三室型の電解槽に
必要な硫酸循環系を不要にできて、電解システムが簡単
化した。さらに陰極側で発生した水素を陽極側に戻して
再利用できた。
As can be seen from the above description, in the method for electrolyzing an organic salt of the present invention, at least a gas diffusion electrode is used for the anode, and hydrogen is supplied to perform depolarization. Energy wasted and electricity was reduced. Further, by using gas diffusion electrodes for the anode and cathode, a two-chamber type electrolytic cell having one cation exchange membrane between both electrodes can be constructed, and the sulfuric acid required for the conventional three-chamber type electrolytic cell can be formed. The circulation system can be eliminated and the electrolysis system has been simplified. Further, hydrogen generated on the cathode side was returned to the anode side and could be reused.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の有機物塩の電解方法の一実施例を示す
図である。
FIG. 1 is a diagram showing an example of an electrolysis method of an organic salt of the present invention.

【図2】本発明の有機物塩の電解方法の他の実施例を示
す図である。
FIG. 2 is a diagram showing another embodiment of the method for electrolyzing an organic salt of the present invention.

【図3】従来のアミノ酸塩の電解方法を示す図である。FIG. 3 is a diagram showing a conventional method for electrolyzing an amino acid salt.

【符号の説明】[Explanation of symbols]

1、1′ 陽極 2、2′ 陰極 3、3′、3″ 陽イオン交換膜 4、4′ 電解槽 5、5′ 陽極液室 6、6′ 陰極液室 7 中間室 8、8′、8″ 気室 1, 1 ′ Anode 2, 2 ′ Cathode 3, 3 ′, 3 ″ Cation Exchange Membrane 4, 4 ′ Electrolyzer 5, 5 ′ Anolyte Chamber 6, 6 ′ Catholyte Chamber 7 Intermediate Chamber 8, 8 ′, 8 ″ Air chamber

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 有機物の塩を酸に転化するイオン交換膜
電解方法に於いて、少なくとも陽極にガス拡散電極を用
い、水素を供給して復極することを特徴とする有機物塩
の電解方法。
1. An electrolysis method for an organic salt, comprising an ion exchange membrane electrolysis method for converting an organic salt into an acid, wherein a gas diffusion electrode is used at least as an anode and hydrogen is supplied for depolarization.
JP13417092A 1992-04-27 1992-04-27 Method for electrolyzing organic salt Pending JPH05302192A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13417092A JPH05302192A (en) 1992-04-27 1992-04-27 Method for electrolyzing organic salt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13417092A JPH05302192A (en) 1992-04-27 1992-04-27 Method for electrolyzing organic salt

Publications (1)

Publication Number Publication Date
JPH05302192A true JPH05302192A (en) 1993-11-16

Family

ID=15122088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13417092A Pending JPH05302192A (en) 1992-04-27 1992-04-27 Method for electrolyzing organic salt

Country Status (1)

Country Link
JP (1) JPH05302192A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102899679A (en) * 2012-10-24 2013-01-30 四川大学 Method for coproducing sulfuric acid by utilizing gypsum mineralized CO2

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102899679A (en) * 2012-10-24 2013-01-30 四川大学 Method for coproducing sulfuric acid by utilizing gypsum mineralized CO2

Similar Documents

Publication Publication Date Title
US4561945A (en) Electrolysis of alkali metal salts with hydrogen depolarized anodes
JPH10286571A (en) Electrolytic cell for acidic water and alkaline water preparation
JP2648313B2 (en) Electrolysis method
CN1261817A (en) Electrochemical methods for recovery of ascorbic acid
JP3007137B2 (en) Electrolytic ozone generation method and apparatus
US4584080A (en) Bipolar electrolysis apparatus with gas diffusion cathode
KR100282769B1 (en) Method for blocking an electrolytic cell having a membrane and an oxygen reduction cathode
JP3561130B2 (en) Electrolyzer for hydrogen peroxide production
JPH05302192A (en) Method for electrolyzing organic salt
JPH0830048B2 (en) Amino acid production method
JP3677078B2 (en) Method and apparatus for producing hydrogen peroxide water
RU1836493C (en) Method of production of chlorine dioxide
JPH0910769A (en) Production of electrolytic ion water
US5578182A (en) Electrolytic production of hypophosphorous acid
JPS61261488A (en) Electrolyzing method for alkaline metallic salt of amino acid
JPH01234585A (en) Method and device for electrolysis using gas diffusion electrode
JPH09202986A (en) Three-compartment electrolytic cell
JPS622036B2 (en)
JPH09217185A (en) Three-chamber based electrolytic cell
JP4062917B2 (en) Method for producing sodium hydroxide
US5480517A (en) Electrolytic production of hypophosphorous acid
JPH09184085A (en) Production of hydrogen peroxide
JP3420790B2 (en) Electrolyzer and electrolysis method for alkali chloride electrolysis
JPS6487792A (en) Production of quaternary ammonium hydroxide
JPH10121281A (en) Method and device for controlling concentration of aqueous alkaline hydrogen peroxide solution