JPH05302176A - Method for forming coating film - Google Patents

Method for forming coating film

Info

Publication number
JPH05302176A
JPH05302176A JP22478291A JP22478291A JPH05302176A JP H05302176 A JPH05302176 A JP H05302176A JP 22478291 A JP22478291 A JP 22478291A JP 22478291 A JP22478291 A JP 22478291A JP H05302176 A JPH05302176 A JP H05302176A
Authority
JP
Japan
Prior art keywords
film
resin
powder
treated
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22478291A
Other languages
Japanese (ja)
Other versions
JP2991544B2 (en
Inventor
Masato Sagawa
眞人 佐川
Hiroshi Watanabe
寛 渡辺
Hiroo Shirai
啓雄 白井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
M ENG YUGEN
Intermetallics Co Ltd
Original Assignee
M ENG YUGEN
Intermetallics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=16819126&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH05302176(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by M ENG YUGEN, Intermetallics Co Ltd filed Critical M ENG YUGEN
Priority to JP3224782A priority Critical patent/JP2991544B2/en
Priority to EP92113479A priority patent/EP0528292B1/en
Priority to DE69223877T priority patent/DE69223877T2/en
Priority to US07/926,433 priority patent/US5273782A/en
Publication of JPH05302176A publication Critical patent/JPH05302176A/en
Application granted granted Critical
Publication of JP2991544B2 publication Critical patent/JP2991544B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To apply a powdery coating film excellent in corrosion resistance and adhesive strength on various members by vibrating or agitating a member to be treated, an unhardened resin, a powdery material and a coating film forming medium in a vessel. CONSTITUTION:The member to be treated, the resin, the powder material and the coating film forming medium are charged into the vessel. The resin is in partially unhardened state at the initial stage of the coating film forming process and is composed of e.g. melamine resin, epoxy resin, urethane resin or the like. The powdery material is the structural material of the powdery coating film formed on the member to be treated and composed of e.g. various metals, a powdery ceramic, a plastics or the like. And the coating film forming medium is smaller than the member to be treated and larger than the powdery material. And the resin is hardened while vibrating or agitating the member, the resin, the powder and the medium charged into the vessel.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は各種部材の表面に皮膜を
形成する方法に関するものである。ここで言う各種部材
とは、各種機械、自動車及びその他の車両、船舶、飛行
機などに使用される機械部品、電気・電子部品、装飾用
品、金具、磁石、玩具部品などであって、比較的小物部
品である。また部材の材質は、金属、合金、金属間化合
物、無機化合物、プラスチック、セラミックスなどであ
る。また、各種部材はすでに表面に公知の各種皮膜が形
成されているかあるいは表面改質が施されていてもよ
い。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a film on the surface of various members. The various members mentioned here are various machines, automobiles and other vehicles, machine parts used in ships, airplanes, etc., electric / electronic parts, decorative articles, metal fittings, magnets, toy parts, etc., and are relatively small items. It is a part. The material of the member is metal, alloy, intermetallic compound, inorganic compound, plastic, ceramics, or the like. Further, various members may already have various known coatings formed on their surfaces or may be surface-modified.

【0002】また、本願発明の方法により形成する「皮
膜」とは防食、機械的強度付与、絶縁層形成及び/又は
美観付与を目的とし、さらに公知の各種皮膜を形成する
ための下地層の形成を目的とするものである。窒化チタ
ンなどで周知な耐摩耗性用途、二硫化モリブデンなどで
周知な潤滑性用途は本発明は対象としない。
The "coating" formed by the method of the present invention is for the purpose of preventing corrosion, imparting mechanical strength, forming an insulating layer and / or imparting an aesthetic appearance, and forming a base layer for forming various known coatings. The purpose is. The present invention does not cover well-known wear resistance applications such as titanium nitride, and well-known lubricity applications such as molybdenum disulfide.

【0003】[0003]

【従来の技術】さらに本発明は粉体の皮膜を形成する方
法の改良に関する。粉体の皮膜を形成する従来技術とし
ては以下の方法が公知である。
The present invention further relates to improvements in methods of forming powder coatings. The following methods are known as conventional techniques for forming a powder film.

【0004】粉体塗装 この方法は、予備加熱した部材に粉体塗料を散布、噴
霧、溶射などにより堆積し溶融させ、塗膜を得る方法で
ある。この方法は溶剤を使用しないので、溶剤による公
害がなくかつ省資源的である利点をもっている。この方
法に関する特許文献としては、特開平2−258084
号、特公昭57−13347号、特開昭53−2934
7号、特公昭58−37029号がある。また、粉体塗
装は静電スプレー塗装によっても行われる。
Powder Coating This method is a method in which a powder coating is deposited on a preheated member by spraying, spraying, thermal spraying or the like to be melted to obtain a coating film. Since this method does not use a solvent, it has the advantage of being free from pollution by the solvent and being resource-saving. Japanese Patent Laid-Open No. 258084/1990 is a patent document relating to this method.
Japanese Patent Publication No. 57-13347, Japanese Patent Laid-Open No. 53-2934.
No. 7 and Japanese Patent Publication No. 58-37029. Powder coating is also performed by electrostatic spray coating.

【0005】粉体被覆 この方法は被処理部材表面が接着性をもっているもの
と、非接着性である方法に分けられる。前者に属する特
開平2−71872号によると、予め粘着性を与えた部
材表面に粉体物質を接触させ、部材に振動を加えて部材
表面に付着した粉体をかさ密度以下に圧縮し、その後部
材に固着していない粉末を除去する方法が開示されてい
る。部材としてはカラーテレビジョンのスクリーンが、
粉体としては蛍光トナーが前記公報に具体例として示さ
れている。
Powder coating This method is classified into a method in which the surface of the member to be treated has an adhesive property and a method in which the surface of the member to be treated is non-adhesive. According to Japanese Patent Laid-Open No. 2-71872, which belongs to the former, a powder substance is brought into contact with the surface of a member to which tackiness has been given in advance, and the member is vibrated to compress the powder adhered to the member surface to a bulk density or less, and thereafter. A method of removing powder that is not stuck to a member is disclosed. As a member, a color television screen,
As the powder, fluorescent toner is shown as a specific example in the above publication.

【0006】後者に属する特開昭52−43731号
は、中空の金属製品内に金属または合金粉末及び球状も
しくは粒状の硬質物質を入れ、この金属製品を回転もし
くは振動させて、金属もしくは合金粉末を製品内面に被
覆する方法を開示する。粉体は金属製品に圧着され、同
時に振動に起因する熱エネルギにより粉末の金属と製品
の金属の間に拡散を起こさせることにより拡散接合も行
われる。この方法によると中空製品の内面の耐熱性が向
上することが謳われている。
In the latter Japanese Patent Laid-Open No. 52-43731, a metal or alloy powder and a spherical or granular hard substance are put in a hollow metal product, and the metal product is rotated or vibrated to produce the metal or alloy powder. A method of coating the inner surface of a product is disclosed. The powder is pressure-bonded to the metal product, and at the same time, diffusion bonding is also performed by causing diffusion between the metal of the powder and the metal of the product by thermal energy caused by vibration. It is claimed that this method improves the heat resistance of the inner surface of the hollow product.

【0007】金属粉末圧延法 金属粉末を圧延板の表面に付着させ、ロール圧延により
粉末を圧延板に圧着し、その後熱処理により拡散接合す
る方法である(特開昭52−33840、51−143
531号、57−54270号、47−29232号参
照)。
Metal Powder Rolling Method This is a method in which metal powder is adhered to the surface of a rolled plate, the powder is pressure-bonded to the rolled plate by roll rolling, and then diffusion bonding is performed by heat treatment (JP-A-52-33840, 51-143).
531, 57-54270, 47-29232).

【0008】[0008]

【発明が解決しようとする課題】粉体皮膜の形成方法
は、各種皮膜形成法に対して以下のような利点をもって
いる。電気めっきあるいは無電解めっき法に対して:
酸、アルカリなどを使用しないために、処理廃液の処理
が不必要になるとともに、被処理部材が活性であって
も、腐食等の問題が起こらない。 溶融めっき法に対して:被処理部材を高温にさらすこと
が避けられる。 PVD,CVD法に対して:大掛かりな装置が不要、生
産性が高い。
The method for forming a powder film has the following advantages over various film forming methods. For electroplating or electroless plating:
Since no acid, alkali or the like is used, the treatment of the treatment waste liquid is unnecessary, and even if the member to be treated is active, problems such as corrosion do not occur. For hot-dip galvanizing: exposure of the parts to be treated to high temperatures is avoided. For PVD and CVD methods: Large equipment is not required and productivity is high.

【0009】しかしながら、粉体皮膜を各種部材に適用
するには皮膜に要求される性能が満足されるほかに、皮
膜形成法の能率や信頼性が高いことが必要である。
However, in order to apply the powder coating to various members, the performance required for the coating must be satisfied and the efficiency and reliability of the coating forming method must be high.

【0010】の金属粉末圧延法は被処理部材が板であ
りかつ圧延可能な材質に限られるので、機械部品などに
直接粉体皮膜を形成することはできない。
In the metal powder rolling method (1), since the member to be processed is a plate and is limited to a material that can be rolled, it is not possible to directly form a powder film on a machine part or the like.

【0011】の粉体塗装方法は、塗料の散布、スプレ
ーなどにより粉体塗料を被処理部材に適用するが、被処
理部材が小物であるときはそれを反転させる、あるいは
鈎等に釣り下げるなどの操作が必要であるために、能率
的とは言えない。また被処理部材を加熱することによる
材質の劣化などがある材料には適用できないという問題
がある。
In the powder coating method of (1), the powder coating material is applied to the member to be treated by spraying or spraying the coating material, but when the member to be treated is a small object, it is inverted or it is hung on a hook or the like. It is not efficient because it requires the operation of. In addition, there is a problem that it cannot be applied to a material that is deteriorated by heating the member to be processed.

【0012】の粉体被覆法のうち特開平2−7187
2号公報に開示された方法は、粘着性表面に付着した粉
体はある程度の付着力を有するが、その上にある粉末は
粉末粒子相互の振動により粉末が圧縮されているにすぎ
ないので、粉体被覆は外力がかかったときに脱落しやす
く、また腐食性媒体が容易に浸透する隙間も多いため
に、防食などの目的には向かない。さらに、被処理部材
が凹凸を有する場合は、凹部への粉体の付き回りが不良
である。
Among the powder coating methods described in JP-A-2-7187
According to the method disclosed in Japanese Patent Laid-Open No. 2 publication, the powder adhered to the sticky surface has a certain degree of adhesive force, but the powder on the powder is merely compressed due to mutual vibration of the powder particles. The powder coating is not suitable for purposes such as anticorrosion because it easily falls off when an external force is applied and there are many gaps through which a corrosive medium easily penetrates. Further, when the member to be processed has irregularities, the powder does not adhere well to the recesses.

【0013】の粉体被覆法のうち特開昭52−437
31号公報に開示された方法は、機械的結合(圧着)と
拡散接合を同時に行うものである。このためには相当の
エネルギが必要であり、例えば実施例では加振力500
kgの振動ミルや回転数300rpmの高速遊星ミルが
用いられている。したがって、被処理部材は強度が高い
ことが必要であり、セラミックや強度の低いプラスチッ
クなどは被処理部材とならない。また、酸化物等の脆い
粉体は振動により破壊されるので、適用できない。
Among the powder coating methods of JP-A-52-437
The method disclosed in Japanese Patent No. 31 discloses simultaneous mechanical bonding (compression bonding) and diffusion bonding. For this purpose, a considerable amount of energy is required. For example, in the embodiment, the excitation force 500
A vibration mill of kg and a high speed planetary mill of 300 rpm are used. Therefore, the member to be processed needs to have high strength, and ceramics or plastics having low strength do not become the member to be processed. Also, brittle powders such as oxides cannot be applied because they are destroyed by vibration.

【0014】前掲特開昭52−43731号公報に開示
された方法は、内面だけの被覆にしか適用できず、また
相当の高エネルギが必要であるために、本発明で言う各
種部材に皮膜を形成する方法には採用できない。の粉
体塗装方法及びの粉体被覆法のうち特開平2−718
72号公報の方法は、各種部材への適用が可能である
が、上述のような問題があるために、本発明は、粉体被
覆形成の能率を高めると共に、付着力が優れかつ緻密な
粉体皮膜を形成することができる皮膜形成方法を提供す
ることを目的とする。
The method disclosed in Japanese Patent Application Laid-Open No. 52-43731 can be applied only to the coating on the inner surface, and requires considerably high energy. It cannot be used as a forming method. Of the powder coating method and the powder coating method of JP-A-2-718
The method of Japanese Patent Publication No. 72 can be applied to various members. However, because of the above-mentioned problems, the present invention enhances the efficiency of powder coating formation, and at the same time, provides a fine powder with excellent adhesion. It is an object of the present invention to provide a film forming method capable of forming a body film.

【0015】[0015]

【課題を解決するための手段及び作用】本発明法におけ
る粉体皮膜形成法において従来法に比べて特長的なとこ
ろは以下にある。樹脂、粉体物質及び被処理部材を皮膜
形成媒体とともに容器内で振動又は攪拌すると、被処理
部材表面にまず樹脂の層が形成される。この樹脂層の厚
みは、粉体物質、樹脂、皮膜形成媒体、被処理部材の投
入順序や混合の仕方によって変わり、例えば、樹脂と粉
体物質の投入が同時に行われる場合は、部材表面と樹脂
及び部材表面と粉体粒子の接触が同時に起こるために、
部材表面に形成される樹脂単独の層は非常に薄くなる
か、検出困難になることがある。
[Means and Actions for Solving the Problems] The powder film forming method of the present invention has the following characteristic features as compared with the conventional method. When the resin, the powder substance and the member to be treated are vibrated or stirred in the container together with the film forming medium, a layer of resin is first formed on the surface of the member to be treated. The thickness of this resin layer varies depending on the order in which the powder substance, the resin, the film forming medium, and the member to be treated are charged and the mixing method.For example, when the resin and the powder substance are simultaneously charged, And because the contact between the member surface and the powder particles occurs at the same time,
The resin-only layer formed on the surface of the member may be very thin or difficult to detect.

【0016】樹脂皮膜形成に続いて、粉体物質が樹脂層
の粘着力により樹脂層に捕捉・固定される。同様に樹脂
層が被処理部材表面で硬化する時に粉体物質を捕捉して
硬化する。振動又は攪拌を受けている皮膜形成媒体は、
同様に振動又は攪拌を受けている粉体物質に打撃力を与
え、前記粉体物質の粒子を既に樹脂層に捕捉され、押し
込まれた粒子の間に圧入されるので、樹脂の粘着力等に
加えて皮膜形成媒体の打撃力により一層強く粉体物質は
固定される。また、一部被処理部材同志の衝突も起こ
り、同様に粉体物質の圧入が促進される。よって樹脂層
には次第に多くの粉体物質が混合されるようになるとと
もに、樹脂層も厚くなるので、皮膜が成長し続ける。
Following formation of the resin film, the powder substance is captured and fixed to the resin layer by the adhesive force of the resin layer. Similarly, when the resin layer is cured on the surface of the member to be treated, the powder substance is captured and cured. The film forming medium that is being vibrated or stirred is
Similarly, impact force is applied to the powder substance that is being vibrated or agitated, and the particles of the powder substance are already trapped in the resin layer and pressed between the pressed particles, so that the adhesive force of the resin, etc. In addition, the powder substance is more strongly fixed by the striking force of the film forming medium. In addition, a collision of members to be processed partially occurs, and the press-fitting of the powder substance is similarly promoted. As a result, a larger amount of powder substance is gradually mixed into the resin layer, and the resin layer also becomes thicker, so that the film continues to grow.

【0017】以上説明したように、樹脂と粉体物質の間
に結合が作りだされる他に、粉体物質の粒子同志も皮膜
形成媒体の打撃力を介して被処理部材表面で衝突するの
で、これらの間にも主として塑性変形とならびに副次的
に摩擦熱による原子間拡散とによる結合力が作りだされ
る。特に、粉体物質が、Al,Cu,Zn,Sn,A
u,Ag,Pbおよびこれらの合金等のように延性に富
む金属又は合金、あるいはプラスチックである場合は、
衝突したこれら粉末粒子が塑性変形して、圧接のように
接合される。またこのような接合は粉体物質と被処理部
材の間でも起こる。この結果皮膜内の物質の構成は強固
になる。粉体物質が非延性物質であると、粉体粒子間の
結合と、これによる皮膜層形成は起こり難くなる。
As described above, in addition to the formation of the bond between the resin and the powder substance, the particles of the powder substance also collide with each other on the surface of the member to be treated via the striking force of the film forming medium. , And between these, a binding force is mainly created by plastic deformation and secondarily by interatomic diffusion due to frictional heat. In particular, the powder substance is Al, Cu, Zn, Sn, A
If it is a metal or alloy with high ductility such as u, Ag, Pb and alloys thereof, or plastic,
These powder particles that have collided are plastically deformed and joined like pressure welding. Such joining also occurs between the powder substance and the member to be treated. As a result, the composition of the substance in the film becomes strong. When the powder substance is a non-ductile substance, the bond between the powder particles and the formation of the coating layer due to the bond hardly occur.

【0018】皮膜表面に衝突する皮膜形成媒体は粉体物
質の粒子の間から樹脂を絞りだし、形成中の皮膜表面に
にじみ出る。樹脂は皮膜形成媒体にも一部付着する。こ
の樹脂は皮膜形成媒体が他の被処理部材表面に際衝突す
る際に、再び被処理部材表面にも付着する。かかる樹脂
層表面に粉体粒子が付着する。このような樹脂の絞り出
しと前述の皮膜成長が同時に進行する。しかし膜の成長
と共に皮膜表面における粉体物質の割合が多くなる。す
ると皮膜形成媒体は皮膜表面における粉体物質に打撃を
与えるで、粉体物質は凝集しそしてますます樹脂の割合
は少なくなるとともに皮膜の成長速度が低下する。これ
は粉体物質が皮膜から脱落することと表層における付着
力が低くなることによる。
The film-forming medium that collides with the film surface squeezes the resin from between the particles of the powder substance and oozes out onto the film surface during formation. The resin also partially adheres to the film forming medium. This resin again adheres to the surface of the member to be treated when the film-forming medium collides with the surface of the member to be treated again. The powder particles adhere to the surface of the resin layer. Such resin squeezing out and the aforementioned film growth proceed at the same time. However, as the film grows, the proportion of powder substance on the surface of the film increases. The film-forming medium then strikes the powder material on the surface of the film, causing the powder material to agglomerate and the proportion of resin to decrease and the growth rate of the film to decrease. This is due to the fact that the powder substance comes off from the film and the adhesive force on the surface layer becomes low.

【0019】以上説明した本発明方法は前掲特開平2−
71872号公報と比較すると、皮膜形成に関与しない
が媒介する皮膜形成媒体の打撃力を利用することを特徴
とし、これにより接着力が優れた皮膜を得ることができ
る方法である。また、本発明方法は前掲特開昭52−4
3731号公報と比較すると、接着面を他の皮膜形成混
合物と一緒に混合する樹脂で形成し、皮膜形成に関与し
ないが媒介する皮膜形成媒体の打撃力を利用することを
特徴とし、これにより少ないエネルギで実用上十分な接
着力が優れかつ緻密な皮膜を得ることができる方法であ
る。
The method of the present invention described above is disclosed in the above-mentioned JP-A-2-
Compared with Japanese Patent No. 71872, the method is characterized by utilizing the striking force of a film-forming medium which is not involved in film formation but is mediated, whereby a film having excellent adhesive force can be obtained. Further, the method of the present invention is described in JP-A-52-4
Compared with Japanese Patent No. 3731, it is characterized in that the adhesive surface is formed of a resin mixed with other film-forming mixture, and the impact force of the film-forming medium which is not involved in the film formation but is mediated is utilized. This is a method that can obtain a dense film that is excellent in practically sufficient adhesive force with energy.

【0020】以上のような皮膜形成過程を実現するため
に必要な条件(a)〜(d)を説明する。 (a)樹脂は皮膜形成過程の少なくとも初期において局
所的または全体的に未硬化の状態にある必要がある。も
し樹脂全体が皮膜形成過程の全体において硬化した状態
であると、例えば、完全に硬化した固体樹脂を単独で常
温で使用すると樹脂の部材表面への接着力がほとんどな
いため皮膜成長の先駆けとなる被処理部材表面における
樹脂層の形成が起こらず、また粉体粒子間へのにじみ出
しも起こらないため樹脂、粉体物質、被処理部材及び皮
膜形成媒体(以下、総称する場合は「皮膜形成混合物」
と称する)が単に混合されるに留まる。「未硬化」とは
皮膜中の樹脂に対し、溶媒の蒸発および/又はキュアリ
ング等が終了し、最終的に使用される段階にある樹脂よ
りも軟質の状態にあることをいう。
The conditions (a) to (d) necessary to realize the above film forming process will be described. (A) The resin needs to be locally or totally uncured at least in the initial stage of the film formation process. If the entire resin is in a cured state during the entire film formation process, for example, if a completely cured solid resin is used alone at room temperature, there will be little adhesion of the resin to the surface of the member, which will lead to film growth. Since the resin layer is not formed on the surface of the member to be treated and the bleeding between the powder particles does not occur, the resin, the powder substance, the member to be treated and the film-forming medium (hereinafter, collectively referred to as "film-forming mixture""
(Referred to below) simply mixed. The term "uncured" means that the resin in the film is in a softer state than the resin in the stage of final use after evaporation and / or curing of the solvent is completed.

【0021】(b)被処理部材を含めて皮膜形成混合物
が振動又は攪拌させられる必要がある。もし被処理部材
を固定してその他の皮膜形成混合物を混合しながら被処
理部材と接触させるならば、被処理部材全面に均一な皮
膜を形成させることが困難になる。また、混合により皮
膜形成媒体を被処理部材表面から離脱させて、皮膜形成
に関与はするが媒介に留まるようにすることができる。
(B) The film-forming mixture including the member to be treated needs to be vibrated or stirred. If the member to be treated is fixed and brought into contact with the member to be treated while mixing the other film forming mixture, it becomes difficult to form a uniform film on the entire surface of the member to be treated. Further, the film-forming medium can be separated from the surface of the member to be treated by the mixing so that the film-forming medium is involved in the film formation but remains as a medium.

【0022】(c)皮膜形成媒体は打撃力を発生して皮
膜の形成の媒介をするが、それ自身は実質的に皮膜の成
分にならない。被処理部材より大きい皮膜形成媒体は前
者の表面上で均一な打撃力を発生することができず、ま
た粉末よりも小さいと皮膜形成媒体が皮膜中に捕捉され
てしまうので、請求項1に限定したような寸法の要件が
必要である。ただし、体積比で70%以下の範囲であれ
ば、被処理部材よりも大きな媒体が含まれていてもよ
い。また、打撃力をある程度集中させる方が粉体の圧入
がよく進行するため、例えば球状の媒体を使用する場合
はその直径が0.5mm以上、より望ましくは1mm以
上望ましく、他の形状の場合もこれに準ずる。また被処
理部材よりも小さいときは、媒体の一つ一つを同体積の
球で置き換えたとき、その直径が被処理部材のさしわた
しのうち最大のものよりも小さいことを言う。また粉末
に対しては、平均寸法で要件を充たしていれば、所望の
打撃力をつくり出すことができる。すなわち、皮膜形成
媒体となる粒子の一部が粉体物質より細かくとも、平均
寸法で前者が後者より大きければ所望の打撃力を作りだ
すことができる。ただし、これら粉体物質より細かい媒
体は皮膜中にとりこまれる恐れがあり、できるだけ含ま
れないことが望ましい。
(C) The film-forming medium generates a striking force to mediate the formation of the film, but does not itself substantially become a component of the film. A film-forming medium larger than the member to be treated cannot generate a uniform striking force on the surface of the former, and if it is smaller than the powder, the film-forming medium is trapped in the film. Dimensional requirements are required. However, a medium larger than the member to be processed may be contained as long as the volume ratio is 70% or less. Further, since it is preferable to concentrate the impact force to a certain extent so that the powder is pressed in better, for example, when a spherical medium is used, its diameter is 0.5 mm or more, more preferably 1 mm or more, and in the case of other shapes as well. According to this. Also, when it is smaller than the member to be processed, it means that when each of the media is replaced by a sphere of the same volume, the diameter is smaller than the largest of the sizes I of the member to be processed. Also, for powders, if the average size meets the requirements, a desired impact force can be created. That is, even if some of the particles forming the film-forming medium are finer than the powder substance, if the former is larger than the latter in average size, a desired striking force can be produced. However, media smaller than these powder substances may be trapped in the coating film, and it is desirable that the media should not be included as much as possible.

【0023】皮膜形成媒体の材質は次の要件を満たして
いる必要がある。 塑性変形により皮膜形成前後に皮膜形成媒体を観察し
て肉眼で認められるような大きな形状変化がなく、か
つ、皮膜形成過程において弾性変形が極端に大きくなら
ないこと。したがって軟質ゴムなどはこの要件を満たさ
ない。 割れ、欠け、急激な摩耗などがないこと(長期的使用
による若干の摩耗はあってもよい)。
The material of the film forming medium must meet the following requirements. The plastic deformation does not cause a large change in shape that can be visually observed by observing the film forming medium before and after film formation, and the elastic deformation does not become extremely large during the film formation process. Therefore, soft rubber does not meet this requirement. No cracks, chips, or sudden wear (may be slightly worn over long-term use).

【0024】これらの要件を満たさない材質の皮膜形成
媒体が被処理材との衝突により塑性変形を起こしたりあ
るいは軟質ゴムのように極端に大きな弾性変形を起こし
たりすると、後者に与える打撃が不足して所望の皮膜形
成が起こらなくなる。また、割れ、欠け、急激な摩耗が
起こると、媒体の耐用寿命が短くなり、不経済である。
If the film-forming medium of a material that does not meet these requirements causes plastic deformation due to collision with the material to be treated or extremely large elastic deformation such as soft rubber, the impact given to the latter is insufficient. As a result, desired film formation does not occur. Further, if cracking, chipping or sudden wear occurs, the useful life of the medium is shortened, which is uneconomical.

【0025】(d)粉体物質は皮膜中に取り込まれるた
めには、皮膜形成媒体よりは小さくなければならない。
粉体物質の性質は特に限定されないが、樹脂粉末の場合
は皮膜形成過程において、(a)で述べた樹脂よりも硬
質な樹脂であることが必要である。以下、各請求項を順
にその構成及び作用に関して説明する。
(D) The powder material must be smaller than the film-forming medium in order to be incorporated into the film.
The property of the powder substance is not particularly limited, but in the case of resin powder, it is necessary that the resin is harder than the resin described in (a) in the film forming process. Hereinafter, each claim will be described in order with respect to its configuration and operation.

【0026】上述の要件(a)〜(d)からなる本発明
は、被処理部材表面に皮膜を密着して形成する方法にお
いて、被処理部材、皮膜形成過程の少なくとも初期にお
いて少なくとも部分的に未硬化の状態にある樹脂、粉体
物質(皮膜形成過程において前記樹脂よりも硬質の樹脂
粉末のこともある)、および前記被処理部材よりも寸法
が実質的に小さくかつ前記粉体物質よりは寸法が実質的
に大きい皮膜形成媒体に容器内にて振動または攪拌を加
えることにより、粉体物質を含む皮膜を形成することを
特徴とする皮膜形成方法である(請求項1)。
The present invention, which comprises the above-mentioned requirements (a) to (d), is a method for forming a coating film on the surface of a member to be treated by adhesion, at least partially at least in the initial stage of the member to be treated and the film forming process. A resin in a cured state, a powder substance (which may be a resin powder harder than the resin in the film forming process), and a dimension substantially smaller than the member to be treated and a dimension larger than the powder substance. The method for forming a film is characterized in that a film containing a powder substance is formed by vibrating or agitating a film forming medium having a substantially large size in a container (claim 1).

【0027】本発明において、樹脂としては、メラミン
樹脂、エポキシ樹脂、フェノール樹脂、フラン樹脂、ウ
レタン樹脂、不飽和ポリエステル樹脂、ポリイミド樹
脂、尿素樹脂などの1液もしくは2液混合型の熱硬化性
樹脂、不飽和ポリエステル、不飽和ポリイソシアネー
ト、水酸基をもつアクリル・モノマーなど紫外線、電子
線その他放射線照射により硬化する樹脂、アクリル樹
脂、ポリエステル、ポリエチレン、ポリエチレンテレフ
タレート、ポリプロピレン、ポリ塩化ビニル、ポリビニ
ルアルコール、ナイロン、ポリスチレン、ポリ酢酸ビニ
ル等の熱可塑性樹脂およびそれらの液状プレポリマもし
くはモノマー、一般に粉末成形に用いられる有機結合
剤、例えばパラフィン、樟脳などを用いることができ
る。また樹脂としてゼラチン、ニカワ、ウルシ等天然物
を使うことができる。
In the present invention, as the resin, a one- or two-component mixed thermosetting resin such as melamine resin, epoxy resin, phenol resin, furan resin, urethane resin, unsaturated polyester resin, polyimide resin, urea resin, etc. , Unsaturated polyesters, unsaturated polyisocyanates, acrylic monomers with hydroxyl groups, resins that are cured by irradiation with ultraviolet rays, electron beams and other radiation, acrylic resins, polyesters, polyethylene, polyethylene terephthalate, polypropylene, polyvinyl chloride, polyvinyl alcohol, nylon, Thermoplastic resins such as polystyrene and polyvinyl acetate, liquid prepolymers or monomers thereof, and organic binders generally used for powder molding, such as paraffin and camphor, can be used. As the resin, natural products such as gelatin, glue and sumac can be used.

【0028】また、樹脂は被処理部材の表面に均一に行
きわたる必要があるので、上記樹脂は液状または半液状
の未硬化のものが最も好ましい。また、流動性を高め、
部材表面に均一に行きわたらせるために固体または液状
の樹脂を有機溶媒もしくは水等で溶解、希釈もしくは分
散して使うことができる。この場合、溶媒又は水は混合
中に蒸発するので次第に粘着性が高まり、粉体の付着が
起こる。しかし有機溶媒などの量が多過ぎると、粉体物
質の被処理部材表面への付着が不充分となる。また、熱
可塑性樹脂は加熱して流動性および粘着性を増大させて
用いることができる。粉体樹脂を溶媒などに分散しない
で単独で使用する場合は、樹脂の流動性が小さくなるの
で、粉体粒子間に均一に分散させるために粉体樹脂は粉
体物質と同等もしくはより微細であることが望ましい。
これら溶媒、水などは皮膜形成中及び形成後皮膜から蒸
発させられる。
Further, since the resin needs to uniformly spread on the surface of the member to be treated, it is most preferable that the resin is liquid or semi-liquid uncured resin. It also improves liquidity,
A solid or liquid resin can be dissolved, diluted, or dispersed in an organic solvent, water, or the like in order to uniformly spread it on the surface of the member. In this case, since the solvent or water evaporates during the mixing, the tackiness gradually increases, and the powder adheres. However, if the amount of the organic solvent is too large, the adhesion of the powder substance to the surface of the member to be treated becomes insufficient. Further, the thermoplastic resin can be used by heating it to increase its fluidity and tackiness. If the powder resin is used alone without being dispersed in a solvent, etc., the fluidity of the resin will be small, so the powder resin should be equivalent to or finer than the powder substance in order to disperse it uniformly among the powder particles. Is desirable.
These solvents and water are evaporated from the film during and after the film formation.

【0029】さらに、被処理部材が樹脂ボンド磁石およ
びプラスチック部材のように樹脂を含有するときは、そ
の樹脂の溶剤を皮膜形成混合物に添加して、樹脂を被処
理部材から溶け出させて皮膜形成混合物に供給すること
もできる。一旦溶け出した樹脂は溶剤の蒸発などにより
樹脂の粘度が高められると、被処理部材に付着して樹脂
皮膜を形成する。
Further, when the member to be treated contains a resin such as a resin-bonded magnet and a plastic member, the solvent of the resin is added to the film forming mixture to dissolve the resin from the member to be treated to form a film. It can also be fed to the mixture. Once the resin once melted has its viscosity increased by evaporation of the solvent or the like, it adheres to the member to be treated and forms a resin film.

【0030】次に粉体物質は被処理部材上に形成される
粉体皮膜の構成物質である。粉体物質としては各種金
属、合金粉末およびセラミックス粉末、さらには樹脂、
プラスチック、塗料粉末などであり、防食、美観付与、
絶縁性付与、強度向上などの機能を有するものであれば
各種粉体を使用することができる。
Next, the powder substance is a constituent substance of the powder film formed on the member to be treated. As the powder substance, various metals, alloy powders and ceramic powders, and further resins,
Plastic, paint powder, etc., anticorrosion, aesthetics,
Various powders can be used as long as they have a function of imparting insulating properties and improving strength.

【0031】一例をあげれば金属粉末としては、Al,
Cu,Mg,Ti,Fe,Cr,Co,Ni,Zn,P
b,Sn,Rh,Ir,Pd,Pt,Ag,Au,M
o,Wなどの粉末およびそれらを主成分とする合金粉末
がある。これらの金属はすべて樹脂より強度が優れてお
り、また水や塩水などによる変質が少ないために耐食性
が優れている。ステンレス,Cr,Ni,Mo,Wなど
は表面に強固な不働態膜を作るので、耐食性に優れてい
る。よってこれらの金属は皮膜の強度及び耐食性を高め
る。各金属が特長とするところを挙げると、Rh,I
r,Pd,Ag,Auなどは良好な美観と耐食性を有す
るので、これらの性質を皮膜に付与する。また、Cuな
どは良好な耐食性と電気伝導性を有するので、耐食皮膜
の形成、めっき下地皮膜の形成などに良好に使用され
る。Niもめっき下地皮膜の形成などに良好に使用され
る。Zn,Snはほとんどすべての金属を犠牲陽極効果
により防食する。
As an example, as the metal powder, Al,
Cu, Mg, Ti, Fe, Cr, Co, Ni, Zn, P
b, Sn, Rh, Ir, Pd, Pt, Ag, Au, M
There are powders such as o and W and alloy powders containing them as a main component. All of these metals are superior in strength to resins and are also excellent in corrosion resistance because they are less likely to deteriorate due to water or salt water. Since stainless steel, Cr, Ni, Mo, W, etc. form a strong passive film on the surface, they have excellent corrosion resistance. Therefore, these metals enhance the strength and corrosion resistance of the coating. The features of each metal are Rh, I
Since r, Pd, Ag, Au, etc. have good aesthetics and corrosion resistance, these properties are imparted to the film. Further, since Cu and the like have good corrosion resistance and electric conductivity, they are favorably used for forming a corrosion resistant film, a plating base film, and the like. Ni is also used favorably for forming a plating base film. Zn and Sn protect almost all metals by the sacrificial anode effect.

【0032】セラミックス粉末は金属よりも化学的に安
定であり、上記した樹脂−金属複合皮膜よりも耐食性が
優れている。これらセラミックとしては例えば酸化物、
MgO,Al23 ,SiO2 ,TiO2 ,CrO2
MnO2 ,Fe23 ,FeO,Fe34 ,CoO,
NiO,CuO,ZnO,ZrO2 ,MoOおよびそれ
らをベースとする複合酸化物、TiN,BN等各種安定
な窒化物等、SiC,WC,TiC等各種安定な炭化物
等を用いることができる。
The ceramic powder is chemically more stable than metal and has better corrosion resistance than the above-mentioned resin-metal composite coating. Examples of these ceramics include oxides,
MgO, Al 2 O 3 , SiO 2 , TiO 2 , CrO 2 ,
MnO 2 , Fe 2 O 3 , FeO, Fe 3 O 4 , CoO,
NiO, CuO, ZnO, ZrO 2 , MoO and complex oxides based on them, various stable nitrides such as TiN and BN, and various stable carbides such as SiC, WC and TiC can be used.

【0033】上記した金属、セラミックスなどは樹脂に
配合剤、顔料などとして含まれていてもよい。また複数
種の粉末を混合して用いてもよい。
The above-mentioned metals, ceramics and the like may be contained in the resin as a compounding agent, a pigment and the like. Further, plural kinds of powders may be mixed and used.

【0034】粉体物質として樹脂粉末を使用する場合
は、各種熱硬化性樹脂、熱加塑性樹脂及びこれらに各種
顔料を分散させた粉末樹脂を使用することができる。し
たがって、粉末樹脂の皮膜は完全硬化させた状態におい
て、皮覆性と密着性が良好で結果として耐食性に優れて
いるので、本発明においては例えば液状の樹脂と粉末樹
脂を他の皮膜形成混合物と共に混練することがある。
When a resin powder is used as the powder substance, various thermosetting resins, thermoplastic resins, and powder resins in which various pigments are dispersed can be used. Therefore, in the completely cured state, the coating film of the powdered resin has good covering property and adhesion, and as a result has excellent corrosion resistance, and therefore, in the present invention, for example, a liquid resin and a powdered resin together with other coating forming mixture are used. May be kneaded.

【0035】粉体物質の粒度は、被処理部材の大きさ、
皮膜の厚さ及び粉体物質の材質により変わる。セラミッ
クス粉体など硬質で変形しにくい粉体の場合は粒度が小
さいことが望ましく、延性に富む金属粉などの場合はこ
れより大きくてよいが一般には0.05〜500μmの
範囲内である。望ましくは0.1〜300μm、より望
ましくは0.1〜100μmの範囲内である。一般に、
粉体は粒度が小さいほど樹脂により捕捉されやすい。ま
た粒度が小さい粒子は、樹脂皮膜上に分散している粉体
物質の粒子の間に打撃により押し込まれ易く、塑性変形
による粉体同志あるいは被処理材料との圧着や結合が起
こり易い。したがって粉体物質の粒度が小さいほど、打
撃力が小さくて済み、また皮膜の表面粗さも小さくな
る。
The particle size of the powder substance depends on the size of the member to be treated,
It depends on the thickness of the coating and the material of the powder material. In the case of powder that is hard and difficult to be deformed such as ceramics powder, it is desirable that the particle size is small, and in the case of metal powder that is rich in ductility, it may be larger, but it is generally in the range of 0.05 to 500 μm. It is preferably 0.1 to 300 μm, and more preferably 0.1 to 100 μm. In general,
The smaller the particle size of the powder, the easier it is to be captured by the resin. Further, particles having a small particle size are apt to be pushed between the particles of the powder substance dispersed on the resin film by hitting, and are likely to be pressed and bonded to each other or to the material to be treated due to plastic deformation. Therefore, the smaller the particle size of the powder substance, the smaller the impact force, and the smaller the surface roughness of the coating.

【0036】皮膜形成媒体は鉄、炭素鋼、その他合金
鋼、銅および銅合金、アルミおよびアルミニウム合金、
その他各種金属、合金製、あるいはAl23 ,SiO
2 ,TiO2 ,ZrO2 ,SiC等のセラミックス製、
ガラスさらに硬質プラスチック等を用いることができ
る。また皮膜成形に充分な打撃力が加えられるのであれ
ば、硬質のゴムも使用することができる。これら媒体の
サイズ、材質は部材の形状およびサイズ、使用する粉体
の材質に応じて適宜選択する必要がある。また複数のサ
イズ及び材質の媒体を混合して使用することもできる。
また場合によっては表面処理、表面被覆を施して使うこ
ともできる。また複数の上記材料によって構成された複
合媒体を用いてもよい。また、打撃力の緩和および平均
化を行い、皮膜の均質性、膜厚のばらつきを抑えるた
め、木粉や軟質ゴム、軟質プラスチック等軟質の媒体を
前記媒体に対し体積比の50%以下の範囲で適宜混合す
ることがある。これらは単独では打撃力をほとんど生じ
ないので、必ず前記皮膜形成媒体と併用される。
The film forming medium is iron, carbon steel, other alloy steels, copper and copper alloys, aluminum and aluminum alloys,
Other various metals, alloys, Al 2 O 3 , SiO
Made of ceramics such as 2 , TiO 2 , ZrO 2 , SiC,
Glass or hard plastic can be used. Hard rubber can also be used as long as a sufficient striking force is applied to the film formation. The size and material of these media must be appropriately selected depending on the shape and size of the member and the material of the powder used. It is also possible to mix and use media of a plurality of sizes and materials.
In some cases, surface treatment or surface coating may be applied before use. Also, a composite medium composed of a plurality of the above materials may be used. In addition, softening medium such as wood powder, soft rubber, and soft plastic is used in the range of 50% or less of the volume ratio with respect to the medium in order to alleviate and average the impact force and suppress the film homogeneity and the variation in film thickness. May be mixed appropriately. These alone produce almost no striking force, so they are always used in combination with the film-forming medium.

【0037】皮膜形成媒体の形状は、球状、楕円形、立
方体、三角柱、円柱、円錐、三角錐、四角錐、菱面体、
不定形体、その他各種形状を使用することができる。
The shape of the film-forming medium is spherical, elliptical, cubic, triangular prism, cylindrical, conical, triangular pyramid, quadrangular pyramid, rhombohedral,
An amorphous shape and various other shapes can be used.

【0038】皮膜形成混合物の各成分(要素)の割合は
各成分の所望の作用を発揮するように、いずれかの要素
に偏らず全体がバランスするように定める。粉体および
樹脂の量は、部材に付与する皮膜の厚みと、部材の表面
積の合計によって定まる。ただし、樹脂と粉体の比率
は、樹脂の硬化後の体積に換算して樹脂分を0.5%以
上に設定することが望ましい。これ以下であると、粉体
の部材への付着が不充分となる。また、媒体と部材の混
合比率は、部材の形状によって異なるが、少なくとも見
掛け容積比で媒体を20%以上配合しないと、部材表面
への均一かつ充分な打撃が行われず良好な皮膜を得るこ
とが難しい。
The proportion of each component (element) of the film-forming mixture is determined so that the desired action of each component is exerted and the whole is balanced without being biased to any element. The amount of powder and resin is determined by the total thickness of the coating applied to the member and the surface area of the member. However, it is preferable that the ratio of the resin to the powder is set to 0.5% or more in terms of the volume after the resin is cured. If it is less than this, the adhesion of the powder to the member becomes insufficient. Further, the mixing ratio of the medium and the member varies depending on the shape of the member, but if the medium is not mixed at least in an apparent volume ratio of 20% or more, a uniform and sufficient impact to the surface of the member is not achieved and a good film can be obtained. difficult.

【0039】容器内での振動又は攪拌は以下述べるよう
な種々の方法で実施することができる。容器2内に設け
られ回転軸4に固着されたアーム3(図1参照)、回転
軸4に固着された羽根5(図2参照)、または図示され
てはいないがインペラ、ブレードなどの撹拌機により為
される。なお、図中10は皮膜形成混合物である。ま
た、図3に示すようにドラム又はポット状容器自体をロ
ーラー6上で回転してもよい。さらに図4に示すよう
に、回転軸に固着されたドラム状容器2を回転してもよ
い。容器は上部が解放されていても、また密閉されてい
てもどちらでもよい。加えて図5に示すように容器2を
揺すってもよい。揺動中に撹拌を行ってもよい。また図
6に示す回転軸4に対称的に固着されたアーム7の先端
に取りつけられた容器2内に粉末混合物10を入れて遠
心力で粉末混合物を混合してもよい。容器2を自転させ
ることが好ましい。容器の動作が同じであれば、回転の
機構はこれに限らず、例えばディスク状のホルダーを使
ってもよい。
Vibration or stirring in the container can be carried out by various methods as described below. An arm 3 (see FIG. 1) provided in the container 2 and fixed to the rotary shaft 4, a blade 5 (see FIG. 2) fixed to the rotary shaft 4, or a stirrer (not shown) such as an impeller or a blade. Done by. In the figure, 10 is a film-forming mixture. Further, as shown in FIG. 3, the drum or the pot-shaped container itself may be rotated on the roller 6. Further, as shown in FIG. 4, the drum-shaped container 2 fixed to the rotating shaft may be rotated. The container may be open at the top or sealed. In addition, the container 2 may be shaken as shown in FIG. Stirring may be performed during rocking. Alternatively, the powder mixture 10 may be put into the container 2 attached to the tip of the arm 7 symmetrically fixed to the rotating shaft 4 shown in FIG. 6 and the powder mixture may be mixed by centrifugal force. It is preferable to rotate the container 2 by itself. If the operation of the container is the same, the rotation mechanism is not limited to this, and for example, a disc-shaped holder may be used.

【0040】あるいは容器2内又は容器外に設けられた
加振器8により皮膜形成混合物に振動を加えてもよい
(図7参照)。以下振動を加える方法に例を取って皮膜
形成混合物に加える力(加振力)の大きさを説明する。
加振力を容器及び皮膜形成混合物の重力(以下「振動重
力」という)で平均した値(以下、「被加振力」−無次
元数−という)が皮膜形成媒体が被処理部材に加える衝
撃力の指標になる。具体例として、2.8リットルの容
器の重量−1kgf,スチールボール(皮膜形成媒体)
の重量−10kgf、被処理部材の重量−1kgfであ
る場合は、振動重力は12kgfとなる。このとき40
Hz周期の好ましい加振力は20〜50kgfである。
したがって被加振力は1.67(=20/12)〜4.
17(50/12)となる。
Alternatively, the film-forming mixture may be vibrated by a shaker 8 provided inside or outside the container 2 (see FIG. 7). The magnitude of the force (excitation force) applied to the film-forming mixture will be described below by taking an example of a method of applying vibration.
The impact that the film-forming medium exerts on the object to be treated is the value (hereinafter referred to as “excited force” -dimensional number) averaged by the gravity of the container and the film-forming mixture (hereinafter referred to as “oscillating gravity”) It is an index of strength. As a specific example, the weight of a 2.8-liter container-1 kgf, steel ball (film forming medium)
-10 kgf and the weight of the member to be processed-1 kgf, the oscillating gravity is 12 kgf. 40 at this time
A preferable exciting force in the Hz cycle is 20 to 50 kgf.
Therefore, the excited force is 1.67 (= 20/12) to 4.
It becomes 17 (50/12).

【0041】より大きい容器を使用する場合、具体例と
して20リットルの容器の重量−4.5kgf,スチー
ルボール(皮膜形成媒体)の重量−70kgf、被処理
部材の重量−5.5kgfである場合は、振動重力は8
0kgfとなる。このとき25Hz周期の好ましい加振
力は150kgfである。したがって被加振力は150
/80=1.88である。
In the case of using a larger container, as a specific example, the weight of a container of 20 liters-4.5 kgf, the weight of steel balls (film forming medium) -70 kgf, and the weight of a member to be treated-5.5 kgf. , Vibrating gravity is 8
It becomes 0 kgf. At this time, the preferable excitation force in the 25 Hz cycle is 150 kgf. Therefore, the excited force is 150
/80=1.88.

【0042】被処理部材が鉄鋼材料等の強靭な材質でで
きている場合は被加振力の上限は約10でもよいが、希
土類磁石、ボンド磁石、セラミックス、ガラスなどの脆
い材質では被加振力の上限を5以下にすることが好まし
い。また、被加振力の下限は1以上、特に1.5以上で
あることが好ましい。被加振力がこの下限より小さいと
皮膜成長速度が遅くなり、一方上限より大きいと被処理
部材が脆い材質の場合その破壊が起こりやすくなり、ま
た皮膜形成媒体の変形も起こりやすくなる。振動の周波
数は特に限定されないが、2Hz〜200Hzの範囲で
あることが好ましい。この時の振幅が0.5〜10mm
で上記被加振力の範囲に入る。
If the member to be treated is made of a strong material such as steel, the upper limit of the force to be excited may be about 10. However, if it is a brittle material such as a rare earth magnet, a bond magnet, ceramics, or a glass, it will be excited. It is preferable that the upper limit of the force is 5 or less. The lower limit of the force to be excited is preferably 1 or more, and particularly preferably 1.5 or more. If the force to be excited is smaller than this lower limit, the film growth rate becomes slower, while if it is larger than the upper limit, the member to be treated is liable to be broken and the film forming medium is apt to be deformed. The frequency of vibration is not particularly limited, but is preferably in the range of 2 Hz to 200 Hz. The amplitude at this time is 0.5 to 10 mm
Then, the range of the force to be excited is entered.

【0043】続いて、撹拌方式の場合は、回転により発
生する遠心力が皮膜形成混合物と容器の合計重量に対し
て上記被加振力の範囲に入っていることが望ましい。し
かし回転数が大き過ぎかつ/または容器中における皮膜
形成混合物の体積割合が大きすぎると、皮膜形成混合物
が容器壁に押し付けられて混合が十分に起こらない。し
たがって回転数は60rpm以下かつ/又は前記の体積
割合は80%以下の条件を満たすことが好ましい。
Subsequently, in the case of the stirring method, it is desirable that the centrifugal force generated by the rotation is within the range of the force to be excited with respect to the total weight of the film-forming mixture and the container. However, if the rotation speed is too high and / or the volume ratio of the film-forming mixture in the container is too large, the film-forming mixture is pressed against the container wall and the mixing does not occur sufficiently. Therefore, it is preferable that the rotation speed is 60 rpm or less and / or the volume ratio is 80% or less.

【0044】さらに加振方式としては図8に示す装置を
使用することができる。好ましくは1〜20°の傾斜を
つけたU字状とい20の下面に加振機8を取り付け、皮
膜形成混合物10に振動を加えながらとい20上を滑り
落とす。断面形状はU字形には限定されず、円形、V字
形、角形など各種形状のものを用いることができる。ま
た、とい20の上部は必ずしも解放されていなくともよ
い。とい20の下端の下方には振動ふるい22を設置す
る。振動ふるい22は被処理部材23より小さく、スチ
ールボールなどの皮膜形成媒体24より大きいメッシュ
をフレームなどに固定し、全体を傾斜させるとともに加
振機に連結したものである。したがって振動ふるい22
上に落下した皮膜形成混合物は皮膜形成媒体24ととも
にメッシュを通り抜けて下方に落下し、一方被処理部材
23は振動ふるい22上で搬送される。皮膜形成媒体2
4は振動ふるい22の下方に設けた媒体回収コンベヤー
30により回収され、皮膜形成使用に再使用される。ま
た、被処理部材23は振動ふるい22の下側端に設けた
製品回収コンベヤー31により回収される。以上のよう
な装置を使用すると、皮膜形成の連続全自動化が可能に
なる。さらに、とい20を図7に示すようにつづら折れ
またはらせん状にして、とい20の占有面積を少なくす
ることができる。このつづら折れとい20の出口20a
を皮膜形成混合物20bの装入部20bの真下にもって
くると、皮膜形成媒体をリターンするときのリターン−
パスを短くすることができる。また、図示はしていない
がといを容器内に収容して容器ごと振動させることも出
来る。
Further, as the vibration system, the device shown in FIG. 8 can be used. A vibrating machine 8 is attached to the lower surface of the U-shaped gutter 20 which is preferably inclined at 1 to 20 °, and the film-forming mixture 10 is slid down on the gutter 20 while vibrating. The cross-sectional shape is not limited to the U-shape, and various shapes such as a circle, a V-shape, and a rectangular shape can be used. Further, the upper portion of the toe 20 does not necessarily have to be released. A vibrating screen 22 is installed below the lower end of the screen 20. The vibrating screen 22 has a mesh smaller than the member 23 to be processed and larger than the film forming medium 24 such as a steel ball fixed to a frame or the like, tilted as a whole, and connected to a vibrator. Therefore, the vibrating sieve 22
The film-forming mixture that has fallen on passes through the mesh together with the film-forming medium 24 and drops downward, while the member to be treated 23 is conveyed on the vibrating sieve 22. Film forming medium 2
4 is collected by a medium collecting conveyor 30 provided below the vibrating screen 22 and is reused for forming a film. Further, the member to be treated 23 is recovered by the product recovery conveyor 31 provided at the lower end of the vibrating screen 22. The use of the apparatus as described above enables continuous full automation of film formation. Further, the toe 20 can be folded or spiraled as shown in FIG. 7 to reduce the area occupied by the toe 20. Exit 20a of this spell break 20
Is brought directly below the charging portion 20b of the film-forming mixture 20b, the return when returning the film-forming medium-
The path can be shortened. Although not shown, the grate can be housed in a container and vibrated together with the container.

【0045】皮膜形成混合物の各成分の容器への装入順
序としては、容器内で皮膜形成媒体を振動または攪拌に
よって混合し、これらの媒体を混合中の容器に被処理部
材、粉体物質及び樹脂を逐次あるいは同時に挿入するこ
とが好ましい(請求項2の方法)。この方法によると均
一混合程度が高められる。ここで皮膜形成媒体はあらか
じめ容器内へ投じ、振動又は攪拌を加えておくことによ
り皮膜形成に必要な樹脂の付着をもたらし、また打撃力
を発生できるが、その他の被処理部材、粉体物質及び樹
脂の装入順序、回数、単独装入か同時装入かなどは全く
任意である。同時装入の方法として顔料を含む樹脂を装
入すると、粉体物質と樹脂が容器に同時装入となる。
The order of charging each component of the film-forming mixture into the container is as follows: a film-forming medium is mixed in the container by vibration or agitation, and the medium to be mixed is placed in the container during mixing, the material to be treated, the powder substance and It is preferable to insert the resin sequentially or simultaneously (method of claim 2). According to this method, the degree of uniform mixing is enhanced. Here, the film-forming medium can be put into a container in advance, and by vibrating or agitating it, the resin necessary for film formation can be attached and the striking force can be generated. The resin charging sequence, the number of times, single charging or simultaneous charging, etc. are completely arbitrary. When the resin containing the pigment is charged as a simultaneous charging method, the powder substance and the resin are simultaneously charged into the container.

【0046】ただし、特殊な装入順序が好ましい場合が
ある。液状樹脂又は溶媒さらには溶媒に溶かした樹脂
と樹脂粉体(粉体物質)を使用する場合:あらかじめ、
これらと樹脂粉体だけを混合してしまうと、樹脂粉体が
液状樹脂に溶解しやすい場合には粉末の凝集が起こりや
すく、均一な皮膜が得られない。したがって粉末状樹脂
は遅い工程で容器に装入するか、あるいは容器に先に装
入するときは後から装入する液状樹脂は被処理部材と同
時に挿入する。皮膜形成混合物の成分のいずれかを加
熱する場合:被処理部材を加熱し容器に装入した後に樹
脂を装入する;樹脂を装入した後加熱した被処理部材を
装入する;加熱された被処理部材及び加熱された皮膜形
成媒体を容器に装入した後に樹脂を装入する。
However, a special charging sequence may be preferred. When using liquid resin or solvent or resin dissolved in solvent and resin powder (powder substance):
If only these and the resin powder are mixed, if the resin powder is easily dissolved in the liquid resin, the powder is likely to aggregate, and a uniform film cannot be obtained. Therefore, the powdered resin is charged into the container in a slow process, or when the container is first charged, the liquid resin charged later is inserted at the same time as the member to be treated. When heating any of the components of the film-forming mixture: the member to be treated is heated and charged into the container, then the resin is charged; the resin is charged and then the heated member to be treated is charged; heated After the member to be treated and the heated film forming medium are charged into the container, the resin is charged.

【0047】樹脂を振動又は攪拌中に硬化させることに
よって、樹脂皮膜に捕捉された粉体物質の固定力を高め
ることができる(請求項3の方法)。樹脂の硬化の方法
としては、二液混合型常温硬化タイプを使用して硬化剤
により硬化させる、加熱硬化型樹脂を加熱により硬化さ
せる、溶媒を蒸発させる、さらには紫外線、γ線、電子
線やその他の放射線照射により硬化させるなどの方法が
可能である。
By hardening the resin while vibrating or stirring, the fixing force of the powder substance trapped in the resin film can be increased (the method of claim 3). As a method of curing the resin, a two-liquid mixing type room temperature curing type is used to cure with a curing agent, a heat curing type resin is cured by heating, a solvent is evaporated, and further, ultraviolet rays, γ rays, electron beams and Other methods such as curing by irradiation with radiation are possible.

【0048】さらに、粉体物質以外の皮膜形成混合物を
あらかじめ容器内にて混合し、粉体物質を後から容器内
に装入することができる(請求項4の方法)。この方法
による利点は以下の〜とおりである。
Furthermore, the film-forming mixture other than the powder substance can be mixed in the container in advance, and the powder substance can be charged into the container later (the method of claim 4). The advantages of this method are as follows.

【0049】特に溶媒で希釈したような流動性が大き
い樹脂を被処理部材表面に十分に均等に行き渡らせるこ
とにより十分に均等な樹脂皮膜を作り、粉体物質で均一
に被覆することができる。
Particularly, a resin having high fluidity such as diluted with a solvent is evenly spread over the surface of the member to be treated to form a sufficiently uniform resin film, which can be uniformly coated with the powder substance.

【0050】下地となる被処理部材との界面近傍の皮
膜は樹脂がrichになり、皮膜の表面は粉体物質がr
ichになり、皮膜内ではこれらの成分の割合が連続的
に変化する遷移層が存在する。そのため皮膜の密着力が
高い。
The resin near the interface with the member to be treated, which is the base, is rich, and the surface of the film is r
There is a transition layer which becomes ich and in which the ratio of these components changes continuously in the film. Therefore, the adhesion of the film is high.

【0051】皮膜の表面付近では粉体物質が圧入さ
れ、粉体物質の割合が70〜90体積%場合によっては
ほとんど100%と極めて高く、樹脂塗膜の顔料配合率
を遥かに超える。したがって、粉体物質が塗料の顔料と
して使用されるTiO2 ,MgO,Fe23 などであ
る場合は被覆表面は水、その他の腐食成分を遮断する性
能が非常に良好になる。通常樹脂塗装では重防食のため
に塗膜を多層塗りして顔料の量を多くしているが、これ
は手間がかかり、層間剥離を起こしやすく、また膜厚が
大きくなる問題がある。本発明法では1回の処理で顔料
が多い皮膜を得ることができ、また膜厚が薄いという利
点がある。
The powder substance is pressed into the vicinity of the surface of the film, and the proportion of the powder substance is very high, almost 100% in some cases of 70 to 90% by volume, far exceeding the pigment mixing ratio of the resin coating film. Therefore, TiO 2, MgO, coated surface if there like Fe 2 O 3 in which the powder material is used as a pigment for paint water, ability to block the other corrosive components is very good. Usually, in resin coating, a multi-layer coating is applied to increase the amount of pigment for heavy corrosion protection, but this is troublesome, delamination is likely to occur, and the film thickness becomes large. The method of the present invention has an advantage that a film containing a large amount of pigment can be obtained by a single treatment and the film thickness is thin.

【0052】本発明においては、樹脂皮膜をあらかじめ
被処理部材に形成しておき、その後被処理部材、皮膜形
成媒体及び粉体物質の振動又は攪拌させることができ
る。したがってかかる本発明の別法は、被処理部材表面
に皮膜を形成する方法において、皮膜形成過程の少なく
とも初期において少なくとも部分的に未硬化状態にある
第一の樹脂皮膜を施した被処理部材、粉体物質(皮膜形
成過程において前記樹脂よりも硬質の樹脂粉末のことが
ある)、及び前記被処理部材よりは寸法が実質的に大き
くかつ前記粉体物質よりは寸法が実質的に小さい皮膜形
成媒体に容器内にて振動又は攪拌を加えることを特徴と
する皮膜形成方法である(請求項5)。
In the present invention, the resin film can be formed on the member to be treated in advance, and then the member to be treated, the film forming medium and the powder substance can be vibrated or stirred. Therefore, such an alternative method of the present invention is a method of forming a film on the surface of a member to be processed, wherein the member to be treated has a first resin film which is at least partially uncured at least in the initial stage of the film formation process, and a powder. Body substance (may be a resin powder that is harder than the resin in the process of forming a film), and a film forming medium having a size substantially larger than that of the member to be treated and substantially smaller than the powder substance. A method for forming a film is characterized in that the container is vibrated or agitated in the container (Claim 5).

【0053】この樹脂皮膜は請求項1において外部から
被処理部材に付着させた樹脂皮膜と同様に作用して粉体
物質を捕捉する。被処理部材が樹脂ボンド磁石あるいは
プラスチック部材のようである場合は、これを溶媒に浸
漬して引上げると磁石の表面付近の樹脂が溶けだして樹
脂皮膜を簡単に作ることができる。
This resin film acts in the same manner as the resin film externally attached to the member to be treated in claim 1, and captures the powder substance. When the member to be treated is like a resin-bonded magnet or a plastic member, when this is immersed in a solvent and pulled up, the resin near the surface of the magnet begins to melt and a resin film can be easily formed.

【0054】さらに、本発明の別法を実施する際に樹脂
皮膜に粉体物質をまぶし(すなわち、樹脂皮膜がもって
いる付着力を利用して粉体物質を接着させる)、その後
上記別法を実施することができる。
Further, when carrying out the alternative method of the present invention, the resin film is sprinkled with the powder substance (that is, the powder substance is adhered by using the adhesive force of the resin film), and then the above alternative method is applied. Can be implemented.

【0055】本発明の別法を実施する際に、前記樹脂
(第一の樹脂)と同種又は異種の樹脂(第二の樹脂)を
皮膜形成混合物に添加することができる(請求項6の方
法)。第二の樹脂は既に形成されている樹脂皮膜上に流
動して、層を作り、成長し、粉体物質−樹脂間の結合を
もたらす。かかる第二の樹脂としては請求項2に関して
前述した樹脂を使用することができる。
In carrying out the alternative method of the invention, a resin of the same or a different type as the resin (first resin) (second resin) can be added to the film-forming mixture (method of claim 6). ). The second resin flows over the already formed resin film, forming a layer and growing, resulting in a bond between the powder material and the resin. As the second resin, the resin described above with reference to claim 2 can be used.

【0056】本発明における混合後に、皮膜を形成した
被処理部材の皮膜の樹脂を硬化することにより、皮膜を
強化させまた密着性を向上することができる(請求項7
の方法)。硬化は皮膜を混合容器内であるいは容器外で
樹脂の重合温度に加熱する、常温に放置して溶剤を蒸発
させるなどにより行う。この硬化処理は皮膜強度、密着
性などが不充分である場合、形成された皮膜を下地とし
て更にその上に本発明の皮膜を形成し、多層皮膜を得る
場合にも有効である。さらに樹脂の種類によっては紫外
線あるいはガンマ線、電子線等により硬化することもで
きる。
After the mixing in the present invention, the resin of the film of the member to be treated on which the film has been formed is cured to strengthen the film and improve the adhesion.
the method of). Curing is carried out by heating the coating film inside or outside the mixing container to the polymerization temperature of the resin, or leaving it at room temperature to evaporate the solvent. This curing treatment is also effective when the strength and adhesion of the coating are insufficient, and when the coating of the present invention is further formed on the formed coating as a base to obtain a multilayer coating. Further, depending on the type of resin, it can be cured by ultraviolet rays, gamma rays, electron rays, or the like.

【0057】皮膜形成直後にはその上に未固定の粉体が
多く残留していることがあり、これらの粉体は埃や塵を
嫌う電気、電子部品あるいは精密機械部品等に本発明に
より処理された部材を使用する場合には除去する必要が
ある。したがって、超音波洗浄、空気の吹き付けなどの
方法により遊離粉体を除去することが好ましい(請求項
8の方法)。遊離粉体の除去は樹脂の硬化前又は後のい
ずれでも実施することができる。
Immediately after the film is formed, a large amount of unfixed powder may remain on the film, and these powders are treated by the present invention on dust, electric, electronic parts, precision machine parts, etc. It is necessary to remove the above-mentioned members when they are used. Therefore, it is preferable to remove the free powder by a method such as ultrasonic cleaning or air blowing (the method of claim 8). The free powder can be removed either before or after the resin is cured.

【0058】遊離粉体の除去においては皮膜表面を軟質
の媒体で摩擦することも可能である(請求項9の方
法)。このためには軟質の媒体と皮膜を形成した部材を
容器内にて混合する、例えば容器に振動を加える、軟質
媒体と部材を撹拌することができる。この方法では軟質
の媒体と残留粉末の間の剪断力によって残留粉末が除去
され、加えて皮膜の表面が磨かれる。この方法は超音波
洗浄よりも残留粉末の除去効果が大きく、また美しい外
観が得られる。したがって装飾用品、外装用品に本発明
の部材を使用する場合に好適である。
In removing the free powder, it is possible to rub the coating surface with a soft medium (the method of claim 9). For this purpose, the soft medium and the member on which the film is formed can be mixed in the container, for example, vibration can be applied to the container, and the soft medium and the member can be stirred. In this method, the residual powder is removed by the shear force between the soft medium and the residual powder, and in addition, the surface of the coating is polished. This method has a greater effect of removing residual powder than ultrasonic cleaning, and a beautiful appearance can be obtained. Therefore, it is suitable when the member of the present invention is used for decorative articles and exterior articles.

【0059】上記した軟質の媒体としては、それ自身が
衝撃吸収力をある程度有しているので、被処理部材に強
い打撃力を与えて形成された皮膜を疵つけたり、深く削
り取ったりしないものが好ましい。例えば、木屑、木材
粉、クルミ殻、軟質プラスチック、ゴムなどが望まし
い。さらに木屑などに油分などをしみ込ませて表面研摩
の効果あるいは防錆性を高めることもできる。
As the above-mentioned soft medium, since the medium itself has a shock absorbing power to some extent, it is preferable that the film formed by applying a strong impact force to the member to be treated does not scratch or deeply scrape it. .. For example, wood chips, wood powder, walnut shells, soft plastics, rubber and the like are desirable. Furthermore, it is possible to enhance the effect of surface polishing or the rust preventive property by soaking wood chips with oil or the like.

【0060】また、本発明に係る皮膜形成後の被処理部
材に熱処理を施すことができる(請求項10の方法)。
この目的は一つは樹脂の硬化である。樹脂の硬化温度は
樹脂の種類により異なるが一般に30〜200℃であ
り、また硬化時間は1〜500分程度である。かかる温
度及び時間の熱処理を行うことにより樹脂を硬化させる
ことができる。
Further, the member to be treated after the film formation according to the present invention can be heat-treated (the method of claim 10).
One of the purposes of this is to cure the resin. The curing temperature of the resin varies depending on the type of resin, but is generally 30 to 200 ° C., and the curing time is about 1 to 500 minutes. The resin can be cured by performing heat treatment at such temperature and time.

【0061】熱処理の他の目的は、粉体物質の粒子同士
あるいは粉体物質と被処理部材の間の結合力を熱拡散に
より増大することである。さらには皮膜のピンホールを
減少させできるだけ連続した膜とすることである。ま
た、多層膜の各層間の拡散による膜質の均質化、および
耐食性や機械的性質の向上を意図することもある。
Another purpose of the heat treatment is to increase the binding force between the particles of the powder substance or between the powder substance and the member to be treated by thermal diffusion. Furthermore, it is necessary to reduce the pinholes in the film to make the film as continuous as possible. Further, it may be intended to homogenize the film quality by diffusion between the respective layers of the multilayer film and to improve the corrosion resistance and mechanical properties.

【0062】熱処理の温度は粉体物質の融点(Mp:
K)以下で(1/3)Mp以上が好ましい。熱処理温度
が粉体物質の融点を超えると粉体物質が溶けて、湯だれ
や部材同士の溶着を起こす。熱処理温度が融点の1/3
より低いと目的とする効果が得られ難い。この熱処理温
度は当然に被処理部材の融点よりは低くなければならな
いから、熱処理温度より融点が高い物質からなる被処理
部材に本方法は適用される。また、熱処理温度は樹脂の
分解温度よりも通常は高くなるから、熱処理後は皮膜は
ほとんど粉体物質から構成される。本方法を適用する場
合は樹脂は比較的低温で容易に分解蒸発し、皮膜に炭素
などを残留させないもの、例えばパラフィン、ポリプロ
ピレン、各種ワックスなどが好ましい。また樹脂は熱処
理前で皮膜中の含有割合ができるだけ少ないことが望ま
しい。その割合は例えば50%以下である。
The temperature of the heat treatment is the melting point (Mp:
It is preferably K) or less and (1/3) Mp or more. When the heat treatment temperature exceeds the melting point of the powder substance, the powder substance melts, causing dripping and welding of members. Heat treatment temperature is 1/3 of melting point
If it is lower, it is difficult to obtain the desired effect. Since this heat treatment temperature must be lower than the melting point of the member to be treated, the method is applied to the member to be treated made of a substance having a melting point higher than the heat treatment temperature. Also, the heat treatment temperature is usually higher than the decomposition temperature of the resin, so that after the heat treatment, the coating is mostly composed of a powder substance. When this method is applied, it is preferable to use a resin that decomposes and evaporates easily at a relatively low temperature and does not leave carbon or the like in the film, such as paraffin, polypropylene, or various waxes. Further, it is desirable that the content of the resin in the film is as small as possible before the heat treatment. The ratio is, for example, 50% or less.

【0063】上記した熱処理は、粉体物質がZn,Sn
またはこれらの合金のように比較的低融点である時に有
効である。すなわちこれらのZnなどはほとんどすべて
の金属を犠牲防食効果により防食できるが、そのために
は皮膜構造が連続膜に近いことが必要である。本発明方
法により得られる粉体物質が分散した皮膜では雨水、塩
水に絶えずさらされるような過酷な腐食環境において犠
牲防食効果が十分には発揮されないが、熱処理によっ
て、十分に良好な耐食性を付与する犠牲防食効果が得ら
れる。従来Zn,Snの皮膜は電気めっきあるいは溶融
めっきにより形成されてきたが、前者は湿式プロセスで
あるために廃水や副産物処理の問題があり、後者はめっ
き厚さが100μm以上と厚く、薄い皮膜が得られずま
た小物部品には適さないという問題があった。これに対
して本発明法は簡便なドライプロセスにより小物部品に
薄い皮膜を形成することができるから、電気めっきある
いは溶融めっきでは問題を伴う耐食性皮膜形成の分野に
好適である。
In the above heat treatment, the powder substance is Zn, Sn.
Alternatively, it is effective when these alloys have a relatively low melting point. That is, these Zn and the like can prevent almost all metals from being sacrificed by a sacrificial anticorrosion effect, but for that purpose, the film structure must be close to a continuous film. In the film in which the powder substance obtained by the method of the present invention is dispersed, the sacrificial anticorrosive effect is not sufficiently exerted in a severe corrosive environment such as continuous exposure to rainwater and salt water, but the heat treatment imparts sufficiently good corrosion resistance. A sacrificial anticorrosion effect can be obtained. Conventionally, Zn and Sn films have been formed by electroplating or hot dip plating, but the former has a problem of waste water and by-product treatment because it is a wet process, and the latter has a thick plating film of 100 μm or more and a thin film. There was a problem that it was not obtained and was not suitable for small parts. On the other hand, the method of the present invention can form a thin film on small parts by a simple dry process, and is therefore suitable for the field of forming a corrosion-resistant film, which is problematic in electroplating or hot dipping.

【0064】さらに、粉体物質がAl,Snなどの耐食
性が高い物質である場合は熱処理を大気中で実施するこ
とができるが、真空中あるいは不活性ガス中で熱処理を
行うことが好ましい。
Further, when the powder substance is a substance having high corrosion resistance such as Al or Sn, the heat treatment can be carried out in the air, but it is preferable to carry out the heat treatment in vacuum or in an inert gas.

【0065】続いて請求項11の方法は、上記した皮膜
の表面に樹脂の保護皮膜を施す方法である。この方法は
熱処理を施さない皮膜に適用される場合は皮膜の強度及
び耐食性を向上させる効果がある。皮膜の表面は樹脂分
が少なく、また残留粉体を除去したとしても、なお粉末
の固定力が弱い。本発明部材は摺動部材としての使用を
意図していないので、絶えず外部から皮膜に力が掛かる
ことはないが、取扱中や部材を機械に取りつけ中に外部
から衝撃力や強い力が掛かると、粉体物質が脱落したり
あるいは皮膜が局部的に破壊されることがある。このよ
うな不都合を防止するために樹脂の皮膜を施すことは有
効である。樹脂の皮膜は表面を滑らかにし美観も向上さ
せ、さらにピンホールを埋め水分の浸透を妨げる。
Subsequently, a method of claim 11 is a method of applying a resin protective film on the surface of the above-mentioned film. This method has the effect of improving the strength and corrosion resistance of the coating when applied to a coating that has not been heat treated. The surface of the film has a low resin content, and even if the residual powder is removed, the powder fixing force is still weak. Since the member of the present invention is not intended to be used as a sliding member, no force is constantly applied to the coating from the outside, but if a shock force or a strong force is applied from the outside during handling or mounting the member on a machine. , The powder substance may fall off or the film may be locally destroyed. It is effective to apply a resin film to prevent such inconvenience. The resin film smoothes the surface and improves aesthetics, fills pinholes, and prevents moisture from penetrating.

【0066】熱処理を施した皮膜に樹脂被覆を適用する
と、熱処理温度が高くとれず、ピンホール等の完全除去
が困難な場合、あるいは熱処理中に気泡や亀裂が生ずる
ような場合、これを封孔、封止する。
When the resin coating is applied to the heat-treated film, the heat treatment temperature cannot be kept high, and it is difficult to completely remove pinholes or the like, or when bubbles or cracks are generated during the heat treatment, this is sealed. , Seal.

【0067】樹脂被覆形成の方法はスプレーあるいは被
処理部材を樹脂中に浸漬させても良いが、請求項12記
載の方法のように樹脂皮膜形成媒体を使用すると薄くか
つ均一に皮膜を形成することができる。樹脂皮膜形成媒
体は本発明の第一の皮膜形成媒体の原理を樹脂被覆形成
に応用したものである。
The method of forming the resin coating may be spraying or immersing the member to be treated in the resin, but when a resin film forming medium is used as in the method of claim 12, a thin and uniform film can be formed. You can The resin film forming medium is obtained by applying the principle of the first film forming medium of the present invention to resin coating formation.

【0068】さらに樹脂被覆を顔料を含有した通常の塗
料の塗装により行うこともできる(請求項13記載の方
法)。この場合は上述した樹脂被覆の効果に加えて、良
好な美観を得ることができる。
Further, the resin coating may be carried out by applying a usual paint containing a pigment (the method according to claim 13). In this case, in addition to the effect of the resin coating described above, a good aesthetic appearance can be obtained.

【0069】また保護皮膜としては樹脂皮膜の他に金属
又は合金のめっきあるいは金属と非金属の分散めっき
(電気めっきあるいは電解めっき)を施すことができる
(請求項14の方法)。従来下地がセラミックス、プラ
スチックなどの非導電性物質であるかあるいは樹脂ボン
ド磁石のように導電性が悪く不均一な物質であると、直
接電気めっきを行うことは困難であり、また可能である
としても複雑な前処理が必要であった。したがって、下
地に無電解めっきを行ってから電気めっきを行うコスト
と手間がかかる方法が一般に行われていた。これに対し
て本発明は下地に金属richな層を強固にしかも容易
に付与することができるので、非導電性物質の電気めっ
きが極めて簡単になる。
As the protective film, metal or alloy plating or metal and non-metal dispersion plating (electroplating or electrolytic plating) can be applied in addition to the resin film (claim 14). It is difficult and possible to directly perform electroplating when the underlying layer is a non-conductive substance such as ceramics or plastics or a non-uniform substance with poor conductivity such as a resin-bonded magnet. Also required complicated pretreatment. Therefore, a costly and labor-consuming method of performing electroless plating on the base and then electroplating is generally performed. On the other hand, according to the present invention, the metal rich layer can be firmly and easily applied to the base, so that the electroplating of the non-conductive substance becomes extremely simple.

【0070】また従来めっきが可能な物質であっても、
めっき合金や金属−非金属複合めっきの組成を広い範囲
で調節することは困難であった。これに対して本発明は
非電気化学的方法により皮膜を形成するので組成調節の
範囲が極めて広い。
Further, even if it is a substance that can be plated conventionally,
It has been difficult to control the composition of the plating alloy or the metal-nonmetal composite plating in a wide range. On the other hand, the present invention forms a film by a non-electrochemical method, so that the range of composition control is extremely wide.

【0071】また、従来めっき電解液と被処理部材の化
学反応によりめっきが困難であるか不可能な場合があっ
た。本発明は係る場合にも容易にめっきを可能にするも
のである。その一例として粉末冶金材料へのめっきがあ
る。これはポアを有するのでめっき電解液と接触させる
と内部にまでめっき液が浸透し、内部の腐食や非所望の
内部に電着が起こる。これを避けるためにはPVDなど
で金属皮膜を形成した上にめっきを行えばよいが、PV
Dは大掛かりな装置を必要とする。これに対して本発明
法によると極めて簡単な方法によりめっきの下地を作る
ことができる。AgやMgなど活性な軽金属あるいはそ
れらの合金等はめっき液への部材の溶け出しが起こり、
ジンケート処理など特殊な前処理を行わなければめっき
が不可能であったが、本発明法によれば簡単な方法によ
りこうした部材へのめっきも可能にする。
In addition, plating has been difficult or impossible in some cases due to the chemical reaction between the plating electrolyte and the member to be treated. The present invention makes it possible to easily perform plating even in such a case. One example is plating on powder metallurgy materials. Since it has pores, the plating solution penetrates into the interior when it is brought into contact with the plating electrolyte solution, causing internal corrosion and undesired electrodeposition. In order to avoid this, plating may be performed after forming a metal film by PVD or the like.
D requires extensive equipment. On the other hand, according to the method of the present invention, a plating base can be formed by a very simple method. Active light metals such as Ag and Mg or alloys of these may cause the members to dissolve into the plating solution.
Although plating could not be performed without special pretreatment such as zincate treatment, the method of the present invention enables plating on such members by a simple method.

【0072】めっき皮膜の下地となる本発明の粉体物質
皮膜は粉体物質の粒子の間隙などに多少のピンホールが
形成されるので、めっき皮膜にもピンホールが形成され
ることがある。この場合めっき皮膜を若干厚くするか、
あるいはめっき皮膜の下地に無電解めっき皮膜を極薄く
形成することにより、めっき皮膜でのピンホールを防止
することができる。
Since the powder substance film of the present invention, which is the base of the plating film, has some pinholes formed in the gaps between particles of the powder substance and the like, pinholes may also be formed in the plating film. In this case, make the plating film a little thicker,
Alternatively, pinholes in the plating film can be prevented by forming the electroless plating film as an extremely thin base layer of the plating film.

【0073】請求項16、17は本発明方法による皮膜
の適用が極めて有利な被処理部材に関する。その利点を
説明する前に希土類磁石及びその保護皮膜につき従来技
術を説明する。
The sixteenth and seventeenth aspects relate to a member to be treated which is extremely advantageous to apply the coating film by the method of the present invention. Prior to describing the advantages, the prior art will be described for rare earth magnets and their protective coatings.

【0074】希土類永久磁石はその優れた磁気特性ゆえ
に、需要は増加の一途をたどっている。現在生産されて
いるほとんどの希土類永久磁石はSmとCoを主成分と
するSm−Co系と、Nd−Fe−B系であり、また製
造法としては焼結によるものと樹脂により結合した樹脂
ボンド磁石がほとんどである。樹脂ボンド磁石は、磁石
粉末と樹脂を混合した後圧縮成形を行い、その後樹脂を
硬化する方法、射出成形法、磁石粉末をプレスした後に
樹脂を含浸させる方法などにより製造されている。希土
類磁石は活性な希土類元素を多量に含んでいるために、
高温多湿な環境で使用されると腐食による性能劣化や性
能のばらつきを生じ、また腐食生成物質が汚染源とな
る。特にNd−Fe−B磁石は鉄を主成分とするため
に、耐食性が低く、防食皮膜の付与が不可欠であり、現
在、Niめっきが焼結磁石に、エポキシ樹脂などの吹付
けや電着塗装が焼結及び樹脂ボンド磁石に対して行われ
ている。しかしながら小物部品が多いNd−Fe−B焼
結磁石に施すNiめっきは、めっき法に関して既に説明
したようにめっき操作が厄介、廃液処理などの問題があ
る他に、下地の酸化物の除去が不十分であるとめっきの
密着性が劣るという問題もある。樹脂の塗装も既に説明
したように塗装操作に手間がかかる等の問題がある。
The demand for rare earth permanent magnets is ever increasing due to their excellent magnetic properties. Most of the rare earth permanent magnets currently produced are of Sm-Co system containing Sm and Co as main components, and Nd-Fe-B system, and the manufacturing method is a resin bond that is made by sintering with a resin. Most are magnets. The resin-bonded magnet is manufactured by a method of mixing the magnetic powder and the resin, followed by compression molding, and then hardening the resin, an injection molding method, a method of pressing the magnetic powder and then impregnating the resin. Since rare earth magnets contain a large amount of active rare earth elements,
If it is used in a hot and humid environment, performance deterioration and variations in performance will occur due to corrosion, and the corrosion product will be a pollution source. In particular, since Nd-Fe-B magnets have iron as a main component, they have low corrosion resistance and it is essential to provide an anticorrosion coating. Currently, Ni plating is applied to sintered magnets by spraying epoxy resin or the like or electrodeposition coating. Is performed on the sintered and resin-bonded magnets. However, the Ni plating applied to the Nd-Fe-B sintered magnet, which has many small parts, has the problems that the plating operation is troublesome, the waste liquid is treated, etc. If it is sufficient, there is also a problem that the adhesion of plating is poor. The resin coating also has a problem that it takes time and effort for the coating operation as described above.

【0075】またボンド磁石は価格が安いために樹脂の
多層塗装は現実的でないために、単層塗装が主流になっ
ている。このために樹脂ボンド磁石の耐食性は焼結磁石
よりは低いレベルに留まっている。この欠点解消の対策
として、無電解めっき下地の上に電気めっきを施すこと
が提案されている(特開平3−116703号)が、上
述したような問題がある。電着塗装を使用すればスプレ
ー塗装より耐食性は若干向上するが、これは大掛かりな
塗装および廃液処理設備も必要であり、基本的には治具
に釣り下げて行うためコスト高となる。さらに樹脂ボン
ド磁石は焼結製品よりも一層多孔質であるので無電解め
っきを相当に厚くしなければ、良好な下地とならない。
またNd−Fe−B系を被処理部材とする無電解めっき
液は浴組成の管理が非常に難しいと言われている。
Further, since the price of the bonded magnet is low, the multi-layer coating of the resin is not practical, so the single-layer coating is predominant. For this reason, the corrosion resistance of resin-bonded magnets remains at a level lower than that of sintered magnets. As a measure for eliminating this drawback, it has been proposed to perform electroplating on an electroless plating base (Japanese Patent Laid-Open No. 3-116703), but there are the above-mentioned problems. Corrosion resistance is slightly improved by using electrodeposition coating compared with spray coating, but this requires large-scale coating and waste liquid treatment equipment, and basically costs more because it is hooked down to a jig. Further, since the resin-bonded magnet is more porous than the sintered product, it is not a good base unless the electroless plating is considerably thickened.
In addition, it is said that it is very difficult to control the bath composition of an electroless plating solution using an Nd-Fe-B system as a member to be treated.

【0076】本発明により希土類磁石表面に形成される
粉体−樹脂分散皮膜は以下のような利点をもっている。 焼結磁石の場合:従来のめっき皮膜に対しては、下地
処理が特に必要とされない;皮膜形成条件が緩やかであ
る(すなわち、特にNd−Fe−B磁石を念頭に置いて
条件を設定する必要がない)。従来の樹脂皮膜に対して
は、安定な酸化物、例えばTiO2 ,MgO,Fe2
3 などの粉体を皮膜中に分散させ、特に皮膜表面でその
含有量を多くすることにより、耐食性を良好にすること
ができる。
The powder-resin dispersion film formed on the surface of the rare earth magnet according to the present invention has the following advantages. In the case of a sintered magnet: no undertreatment is required for the conventional plating film; the film forming conditions are gradual (that is, it is necessary to set the conditions especially with the Nd-Fe-B magnet in mind). There is no). Stable oxides such as TiO 2 , MgO, Fe 2 O are used for conventional resin coatings.
It is possible to improve the corrosion resistance by dispersing powder such as 3 in the coating and increasing the content especially on the coating surface.

【0077】図12にTiO2 粉体とエポキシ樹脂を使
用した実施例1中の3の方法により得られた皮膜の断面
構造を電子顕微鏡写真(SEM像、倍率10000倍)
で調査した結果を示す。図中、皮膜全体で粒子状に見え
るものがTiO2 である。皮膜の上部、下部、これらの
中間に連続相状に見えるのがエポキシ樹脂である。また
皮膜の左下側に見える輪郭が不鮮明な粒子は樹脂とTi
2 が混合していることを示している。TiO2 粒子の
間に介在している樹脂は( )では明瞭に認めら
れるが、写真では明瞭ではない。図12から分かるよう
に、本発明方法により作られた皮膜は粉体が極めて密に
集まっている。
FIG. 12 is an electron micrograph (SEM image, magnification: 10,000 times) showing the cross-sectional structure of the film obtained by the method of Example 1 using TiO 2 powder and epoxy resin.
The results of the survey are shown below. In the figure, TiO 2 is what looks like particles throughout the coating. It is the epoxy resin that appears as a continuous phase between the upper and lower parts of the film and in between. In addition, the particles whose contour is unclear on the lower left side of the film are resin and Ti.
It shows that O 2 is mixed. The resin present between the TiO 2 particles is clearly seen in () but not in the photograph. As can be seen from FIG. 12, the powder formed by the method of the present invention is extremely dense.

【0078】樹脂ボンド磁石の場合:従来の樹脂塗装
に対しては、多層膜並の耐食性が得られるので、従来の
単層樹脂皮膜よりも耐食性が大幅に向上する;特に、請
求項6、7のように最初に樹脂皮膜を形成すると、樹脂
ボンド磁石の孔に粉体物質や樹脂が圧入されるために、
封孔効果が大きく、このために耐食性が向上する。従来
の無電解めっき−電解めっきに対しては、導電性粉体物
質を使用する本発明皮膜は工業的応用可能性が非常に高
い。
In the case of resin-bonded magnet: Corrosion resistance comparable to that of a multi-layered film can be obtained against conventional resin coating, so that the corrosion resistance is greatly improved as compared with a conventional single-layer resin film; When the resin film is first formed as shown in, the powder substance and the resin are pressed into the holes of the resin bonded magnet.
The sealing effect is large, which improves the corrosion resistance. In contrast to conventional electroless plating-electrolytic plating, the coating of the present invention using a conductive powder substance has a very high industrial application potential.

【0079】本発明により希土類磁石表面に形成された
粉体−樹脂分散皮膜上にめっき皮膜を形成すると以下の
ような利点がある。 焼結磁石の場合(従来のめっき皮膜と比較して)母材
表面上に本発明法によるめっき下地層が樹脂により強固
に密着しているため、めっき下地層をその上に形成され
るめっき層に対し適切に選ぶことにより、密着性の優れ
ためっき皮膜が得られる。まためっき皮膜は通常若干の
ピンホールを有するが、これらピンホールは従来のめっ
き皮膜であると、直接母材表面に達しているためピンホ
ールから侵入した腐食成分はめっき層と母材表面の界面
に浸透し、膜はがれ等を起こしやすかった。特に母材表
面に酸化層が残留している場合は極めて膜はがれを起こ
しやすい。ところが本発明法では、めっき皮膜の下に防
食性のよい樹脂、粉体混合皮膜が存在するため、ピンホ
ールからの腐食成分はほとんどすべてこの下地層によっ
て止められ、母材表面に拡散しないため、膜はがれはな
くなる。
The following advantages can be obtained by forming a plating film on the powder-resin dispersion film formed on the surface of the rare earth magnet according to the present invention. In the case of a sintered magnet (compared to the conventional plating film), the plating underlayer according to the method of the present invention is firmly adhered to the surface of the base material by the resin, and thus the plating underlayer is formed on the plating underlayer. By properly selecting, a plating film with excellent adhesion can be obtained. Also, the plating film usually has some pinholes, but if these pinholes are conventional plating films, they reach the surface of the base metal directly, so that the corrosive components penetrating from the pinholes are the interface between the plating layer and the surface of the base material. It was easy to penetrate into the membrane and peel off the membrane. In particular, when an oxide layer remains on the surface of the base material, film peeling is extremely likely to occur. However, in the method of the present invention, since a resin having good anticorrosive properties under the plating film, the powder mixed film is present, almost all the corrosive components from the pinholes are stopped by this underlayer and do not diffuse to the surface of the base material, The film does not peel off.

【0080】樹脂ボンド磁石の場合(従来の無電解め
っきと比較して):無電解めっきは、一般に浴が高価で
廃液処理等に多額の費用がかかるため、コスト高とな
る。また、下地との密着力は樹脂皮膜よりは数段劣る。
また一般に無電解めっきは厚膜化が難しく5μm以下の
薄膜にとどめられており、特にボンド磁石は多孔質体な
ので、母材表面のピンホールを拾って極めてポーラスな
皮膜となる。このような膜はその上に形成される電解め
っき膜のピンホールから浸透してくる腐食成分の遮断能
力がほとんどなく、膜はがれ等のばらつきを生じやす
い。また無電解めっきのめっき液がボンド磁石のピンホ
ールに残留しやすく、これも膜はがれの大きな原因とな
る。これらの問題点のため、無電解めっきを付与したN
d系ボンド磁石は未だ量産に至っていない。
In the case of resin-bonded magnet (compared with conventional electroless plating): Electroless plating is costly because the bath is generally expensive and a large amount of waste liquid treatment is required. Also, the adhesion to the base is several orders of magnitude worse than the resin film.
In general, electroless plating is difficult to thicken and is limited to a thin film of 5 μm or less. In particular, since the bond magnet is a porous body, pinholes on the surface of the base material are picked up to form an extremely porous film. Such a film has almost no ability to block the corrosive components penetrating from the pinholes of the electroplated film formed on the film, and the film peeling easily occurs. Further, the electroless plating solution is likely to remain in the pinholes of the bonded magnet, which is also a major cause of film peeling. Due to these problems, N with electroless plating applied
The d-type bonded magnet has not yet been mass-produced.

【0081】本発明法によれば、磁石表面のピンホール
が樹脂によって封止され、さらにこの樹脂層によりめっ
きの下地となる金属層が強固に密着されるため、その上
に形成されるめっき皮膜も良好な密着性を持つ。この下
地層はと同様、磁石表面への腐食成分の拡散を防止す
るため、結果として従来法よりはるかに優れた耐食性が
得られる。
According to the method of the present invention, the pinholes on the surface of the magnet are sealed with the resin, and the resin layer firmly adheres the metal layer which is the base of the plating. Also has good adhesion. Similar to this underlayer, since the corrosion component is prevented from diffusing to the magnet surface, as a result, the corrosion resistance far superior to that of the conventional method can be obtained.

【0082】以上説明した方法では樹脂により皮膜を形
成する方法を説明したが、無機系の粘着物質、例えば水
ガラスに代表されるケイ酸塩などは粉体物質、皮膜形成
媒体及び被処理部材を一様に分散させかつ混合させるこ
とができ、また温度、溶媒又は水希釈などにより粘度を
混合中に低下させることによってガラス皮膜を被処理部
材表面に形成することができる。またガラス皮膜は粉体
物質を捕捉することができる。したがって樹脂に代えて
あるいは樹脂と共に無機粘着物質を使用することができ
る。
In the method described above, the method of forming a film with a resin has been described. However, an inorganic adhesive material such as silicate represented by water glass is used as a powder material, a film forming medium and a member to be treated. It can be uniformly dispersed and mixed, and a glass film can be formed on the surface of the member to be treated by reducing the viscosity during mixing by temperature, solvent or water dilution. The glass coating can also capture powder substances. Therefore, an inorganic adhesive substance can be used instead of or together with the resin.

【0083】以下、実施例により本発明を詳しく説明す
る。
The present invention will be described in detail below with reference to examples.

【実施例】【Example】

実施例1 Fe81Nd136 の組成をもつ粒度100μm以下の急
冷ボンド磁石用粉末を使用した。この粉末にエポキシ樹
脂を3wt%加えて混合し、5ton/cm2の加圧力
で圧縮成形して、22mmφ×20mmφ×10mmの
成形体を220個得た。これを150℃で1時間キュア
ーし、樹脂結合磁石とした。次に容積2.8リットル、
深さ150mmの円形のポットに、直径φ3.0mmの
鋼球を10kg(見掛け密度5kg/リットル)投入
し、振動数2500c.p.m.(cycle per minut
e)、振幅5mmの振動を加えながら、平均粒度1μm
のAl粉末を20g投入し5分間Al粉に振動を加え
た。
Example 1 A powder for a quenched bond magnet having a composition of Fe 81 Nd 13 B 6 and a particle size of 100 μm or less was used. 3 wt% of an epoxy resin was added to and mixed with this powder, and compression molding was performed under a pressure of 5 ton / cm 2 to obtain 220 compacts of 22 mmφ × 20 mmφ × 10 mm. This was cured at 150 ° C. for 1 hour to obtain a resin-bonded magnet. Next, the volume is 2.8 liters,
Into a circular pot having a depth of 150 mm, 10 kg (apparent density of 5 kg / liter) of steel balls having a diameter of 3.0 mm were placed, and the frequency was 2500 c. p. m. (Cycle per minut
e), average grain size 1 μm while applying vibration with amplitude 5 mm
20 g of Al powder of No. 2 was added and vibration was applied to the Al powder for 5 minutes.

【0084】次にあらかじめエポキシ樹脂10%(樹脂
97%、硬化剤3%)を溶かしたメチルエチルケトン
(MEK)に浸漬して表面を樹脂で覆った磁石を20個
投入し、15分間振動させた後取り出した。120℃で
2hr加熱し最後に平均粒径2mmのクルミ殻片2.0
kgと共に同じサイズのポットに入れて5分間振動さ
せ、表面に残留した余剰の粉末を除去した。以上の方法
で平均膜厚10μm(最大値5μm、最小値2μm)の
皮膜を形成した磁石を85℃×90%RHの条件で耐食
性を評価した。その結果を表1に「1」として示す。
Next, 20 magnets whose surfaces were covered with resin were immersed by immersing them in methyl ethyl ketone (MEK) in which 10% of epoxy resin (97% of resin, 3% of curing agent) was dissolved in advance, and after vibrating for 15 minutes. I took it out. After heating for 2 hours at 120 ° C, finally walnut shell pieces with an average particle size of 2 mm 2.0
It was put together with kg in a pot of the same size and vibrated for 5 minutes to remove excess powder remaining on the surface. Corrosion resistance of the magnet having a film having an average film thickness of 10 μm (maximum value 5 μm, minimum value 2 μm) formed by the above method was evaluated under the condition of 85 ° C. × 90% RH. The result is shown in Table 1 as "1".

【0085】以下同様の方法により但し下記の条件を変
更して粉末を被覆した磁石(2〜11)をそれぞれ20
個ずつ作成した。 2−Al粉末に代えて、平均粒径が1μmのCu粉末を
使用した。 3−Al粉末に代えて、平均粒径が0.3μmのTiO
2 粉末を使用した。 4−Al粉末に代えて、平均粒径が1μmのAl23
粉末を使用した。 5−Al粉末に代えて、平均粒径が2μmのMgO粉末
を使用した。 6−Al粉末に代えて、平均粒径が2μmのFe23
粉末を使用した。 7−Al粉末に代えて、平均粒径が2μmのFe23
粉末を使用した。 8−Al粉末に代えて、平均粒径が1μmのCu粉末を
使用して膜厚が5μmの皮膜を形成した後、電解めっき
により10μmの膜厚のNiめっき層を形成した。 9−樹脂結合磁石に、TiO2 添加量が20%のエポキ
シ樹脂をスプレー塗装し、120℃で6時間キュアし
て、平均10μmの膜厚の塗膜(単膜)を形成した(比
較例)。 10−樹脂結合磁石に、リン酸亜鉛化成処理液をスプレ
ー吹き付けし、乾燥後、TiO2 添加量が20%のエポ
キシ樹脂をスプレー塗装し、120℃で6時間キュアし
て、10μmの膜厚の塗膜(単膜)を形成した(比較
例)。 11−樹脂結合磁石に皮膜を施さず、そのまま試験した
(比較例)。 以上のようにして各種皮膜を形成した樹脂結合磁石を各
20個湿潤試験して、耐食性を評価した。試験条件:8
5℃×90%RH放置(チェック項目:外観) 結果を次表に示す。
In the same manner as described below, except that the following conditions were changed and the powder-coated magnets (2 to 11) were respectively used:
Created individually. Instead of 2-Al powder, Cu powder having an average particle diameter of 1 μm was used. TiO having an average particle size of 0.3 μm instead of 3-Al powder
Two powders were used. Instead of 4-Al powder, Al 2 O 3 having an average particle size of 1 μm
Powder was used. Instead of 5-Al powder, MgO powder having an average particle size of 2 μm was used. Fe 2 O 3 having an average particle size of 2 μm instead of 6-Al powder
Powder was used. Instead of 7-Al powder, Fe 2 O 3 having an average particle size of 2 μm
Powder was used. A Cu powder having an average particle diameter of 1 μm was used instead of the 8-Al powder to form a film having a film thickness of 5 μm, and then a Ni plating layer having a film thickness of 10 μm was formed by electrolytic plating. A 9-resin bonded magnet was spray-coated with an epoxy resin containing 20% of TiO 2 and cured at 120 ° C. for 6 hours to form a coating film (single film) having an average film thickness of 10 μm (comparative example). .. A 10-resin bonded magnet was sprayed with a zinc phosphate chemical conversion treatment liquid, dried, and then spray-coated with an epoxy resin containing 20% of TiO 2 added, and cured at 120 ° C. for 6 hours to obtain a film having a thickness of 10 μm. A coating film (single film) was formed (comparative example). The 11-resin bonded magnet was tested as it was without coating (Comparative Example). 20 resin-bonded magnets each having various films formed as described above were subjected to a wet test to evaluate the corrosion resistance. Test condition: 8
The following table shows the results of standing at 5 ° C. and 90% RH (check item: appearance).

【0086】[0086]

【表1】 判定基準 A 全数全く発錆なし B 巨視的には発錆なし。全体の10%未満に顕微鏡オ
ーダーの点錆 C 全体の10%未満に目視でわかる点錆 D 全体の10%以上30%未満にやや大きな発錆 E 全体の30%以上に著しい発錆、膜ふくれ、はがれ
[Table 1] Judgment Criteria A All No rusting at all B Macroscopically no rusting. Less than 10% of all rust spots on the order of a microscope C Less than 10% of all rust spots visibly visible D: 10% or more and less than 30% of the entire rust E Large rust, film swelling of 30% or more , Peel off

【0087】実施例2 SmCo4.8 の組成を持つ平均粒度20μmのボンド磁
石粉末を使用した。この粉末にエポキシ樹脂を3wt%
加えて混合し、5t/cm2 の加圧力で圧縮成形して、
22mmφ×20mmφ×10mmの成形体を80個得
た。これを150℃で1時間キュアーし樹脂結合磁石と
した。次に容積2.8リットル深さ150mmの円形ポ
ットに、直径φ3.0mmの鋼球を10kg投入し、振
動数2500c.p.m.、振幅5mmの振動を加えな
がら、平均粒度1μmのAl粉末を20g投入し、5分
間Al粉末と鋼球に振動を加えた。次にあらかじめエポ
キシ樹脂(10%MEK溶液)に浸漬して表面を樹脂で
覆った磁石を20個投入し、15分間振動させた後取り
出した。磁石を120℃で2hr加熱してエポキシ樹脂
をキュアした後最後に平均粒径2mmのクルミ殻2kg
と共に、皮膜形成用と同じサイズのポットに入れて5分
間振動させ、表面に残留した余剰の粉末を除去した。
Example 2 Bonded magnet powder having a composition of SmCo 4.8 and an average particle size of 20 μm was used. 3 wt% of epoxy resin to this powder
In addition, they are mixed and compression-molded with a pressing force of 5 t / cm 2 ,
Eighty compacts of 22 mmφ × 20 mmφ × 10 mm were obtained. This was cured at 150 ° C. for 1 hour to obtain a resin-bonded magnet. Next, 10 kg of a steel ball having a diameter of 3.0 mm was placed in a circular pot having a volume of 2.8 liters and a depth of 150 mm, and the frequency was 2500 c. p. m. While applying vibration with an amplitude of 5 mm, 20 g of Al powder having an average particle size of 1 μm was charged, and vibration was applied to the Al powder and the steel balls for 5 minutes. Next, 20 magnets whose surfaces were covered with a resin by immersing the magnets in advance in an epoxy resin (10% MEK solution) were charged, vibrated for 15 minutes, and then taken out. After the magnet was heated at 120 ° C for 2 hours to cure the epoxy resin, finally, 2 kg of walnut shell with an average particle size of 2 mm
At the same time, it was put in a pot of the same size as that for film formation and vibrated for 5 minutes to remove the excess powder remaining on the surface.

【0088】以下同様の方法により各種粉末を被覆した
磁石をそれぞれ20個ずつ作成し、85℃×90%RH
の条件で耐食性を評価した(チェック項目−外観)。そ
の結果を表2に示す。表中、左欄の数字はそれぞれ以下
の処理を意味する。 1−上記の処理により平均膜厚が10μmの皮膜を形成 2−Al粉末に代えて、平均粒径が0.3μmのTiO
2 粉末を使用した。 3−樹脂結合磁石に、TiO2 添加量が20%のエポキ
シ樹脂をスプレー塗装し、120℃で6時間キュアし
て、10μmの膜厚の塗膜(単膜)を形成した(比較
例)。 4−樹脂結合磁石に皮膜を施さず、そのまま試験した
(比較例)。
Twenty magnets each coated with various powders were prepared in the same manner as described below, and the magnets were heated to 85 ° C. × 90% RH.
The corrosion resistance was evaluated under the conditions of (check item-appearance). The results are shown in Table 2. In the table, the numbers in the left column mean the following processes. 1-A film having an average film thickness of 10 μm is formed by the above-mentioned treatment 2-In place of Al powder, TiO having an average particle size of 0.3 μm
Two powders were used. A 3-resin-bonded magnet was spray-coated with an epoxy resin containing 20% of TiO 2 and cured at 120 ° C. for 6 hours to form a coating film (single film) having a thickness of 10 μm (comparative example). The 4-resin-bonded magnet was tested as it was without coating (Comparative Example).

【0089】[0089]

【表2】 判定基準 A 全数全く発錆なし B 巨視的には発錆なし。全体の10%未満に顕微鏡オ
ーダーの点錆 C 全体の10%未満に目視でわかる点錆 D 全体の10%以上30%未満にやや大きな発錆 E 全体の30%以上に著しい発錆、膜ふくれ、はがれ
[Table 2] Judgment Criteria A All No rusting at all B Macroscopically no rusting. Less than 10% of all rust spots on the order of a microscope C Less than 10% of all rust spots visibly visible D: 10% or more and less than 30% of the entire rust E Large rust, film swelling of 30% or more , Peel off

【0090】実施例3 Sm(Co0.72Fe0.2 Cu0.06Zr0.038.3 の組成
を持つ粒度100μm以下のボンド磁石用粉末を使用し
た。この粉末にエポキシ樹脂を3wt%を加えて混合
し、5t/cm2 の加圧力で圧縮成形して、22mmφ
×20mmφ×10mmの成形体を100個得た。これ
を150℃で1時間キュアーし樹脂結合磁石とした。次
に容積2.8リットル深さ150mmの円形ポットに、
直径φ3.0mmの鋼球を10kg投入し、振動数25
00c.p.m.、振幅5mmの振動を加えながら、平
均粒度1μmのCu粉末を20g投入し5分間Cu粉末
と鋼球に振動を加えた。次にあらかじめエポキシ樹脂
(10%MEK溶液)に浸漬して表面を樹脂で覆った磁
石を20個投入し、15分間振動させた後取り出した。
次に、磁石を120℃で2hr加熱してエポキシ樹脂を
キュアした後、最後に平均粒径2mmのクルミ殻2kg
と共に皮膜形成用と同じサイズのポットに入れて5分間
振動させ、表面に残留した余剰の粉末を除去した。以下
同様の方法により各種粉末を被覆した磁石をそれぞれ2
0個ずつ作成し、85℃×90%RHの条件で耐食性を
評価した(チェック項目−外観)。その結果を表2に示
す。
Example 3 A powder for a bonded magnet having a composition of Sm (Co 0.72 Fe 0.2 Cu 0.06 Zr 0.03 ) 8.3 and a particle size of 100 μm or less was used. To this powder, 3 wt% of epoxy resin was added and mixed, and the mixture was compression-molded with a pressing force of 5 t / cm 2 , and 22 mmφ
100 compacts of × 20 mmφ × 10 mm were obtained. This was cured at 150 ° C. for 1 hour to obtain a resin-bonded magnet. Next, in a circular pot with a volume of 2.8 liters and a depth of 150 mm,
10 kg of steel balls with a diameter of 3.0 mm are thrown in and the frequency is 25
00c. p. m. While adding vibration with an amplitude of 5 mm, 20 g of Cu powder having an average particle size of 1 μm was added and vibration was applied to the Cu powder and the steel balls for 5 minutes. Next, 20 magnets whose surfaces were covered with a resin by immersing the magnets in advance in an epoxy resin (10% MEK solution) were charged, vibrated for 15 minutes, and then taken out.
Next, after heating the magnet at 120 ° C. for 2 hours to cure the epoxy resin, finally, 2 kg of walnut shell having an average particle diameter of 2 mm
At the same time, it was put in a pot of the same size as that for film formation and vibrated for 5 minutes to remove the excess powder remaining on the surface. 2 magnets coated with various powders by the same method
0 pieces were prepared and the corrosion resistance was evaluated under the condition of 85 ° C. × 90% RH (check item-appearance). The results are shown in Table 2.

【0091】表中、左欄の数字はそれぞれ以下の処理を
意味する。 1−上記の処理により平均膜厚が10μmの皮膜を形成 2−Cu粉末に代えて、平均粒径が1μmのMgO粉末
を使用した。 3−Cu粉末に代えて、平均粒径が1μmのFe23
粉末を使用した。 4−樹脂結合磁石に、TiO2 添加量が20%のエポキ
シ樹脂をスプレー塗装し、120℃で6時間キュアし
て、10μmの膜厚の塗膜(単膜)を形成した(比較
例)。 5−樹脂結合磁石に皮膜を施さず、そのまま試験した
(比較例)。
In the table, the numbers in the left column mean the following processes, respectively. 1-A film having an average film thickness of 10 μm is formed by the above-mentioned treatment. 2-In place of Cu powder, MgO powder having an average particle size of 1 μm was used. Instead of 3-Cu powder, Fe 2 O 3 having an average particle size of 1 μm
Powder was used. A 4-resin-bonded magnet was spray-coated with an epoxy resin containing 20% of TiO 2 and cured at 120 ° C. for 6 hours to form a coating film (single film) having a thickness of 10 μm (comparative example). The 5-resin bonded magnet was tested as it was without coating (Comparative Example).

【0092】[0092]

【表3】 判定基準 A 全数全く発錆なし B 巨視的には発錆なし。全体の10%未満に顕微鏡オ
ーダーの点錆 C 全体の10%未満に目視でわかる点錆 D 全体の10%以上30%未満にやや大きな発錆 E 全体の30%以上に著しい発錆、膜ふくれ、はがれ
[Table 3] Judgment Criteria A All No rusting at all B Macroscopically no rusting. Less than 10% of all rust spots on the order of a microscope C Less than 10% of all rust spots visibly visible D: 10% or more and less than 30% of the entire rust E Large rust, film swelling of 30% or more , Peel off

【0093】実施例4 Sm2 Fe173 の組成を持つ平均粒度2.5μmのボ
ンド磁石用粉末を使用した。この粉末にエポキシ樹脂を
3wt%を加えて混合し、5t/cm2 の加圧力で圧縮
成形して、22mmφ×20mmφ×10mmの成形体
を80個得た。これを150℃で1時間キュアーし樹脂
結合磁石とした。次に容積2.8リットル深さ150m
mの円形ポットに、直径φ3.0mmの鋼球を10kg
投入し、振動数2500c.p.m.、振幅5mmの振
動を加えながら、平均粒度1μmのAl粉末を20g投
入し5分間Al粉末と鋼球に振動を加えた。次にあらか
じめエポキシ樹脂(10%MEK溶液)に浸漬して表面
を樹脂で覆った磁石を20個投入し、15分間振動させ
た後取り出した。磁石を120℃で2hr加熱してエポ
キシ樹脂をキュアした後、最後に平均粒径2mmのクル
ミ殻0.2kgと共に皮膜形成用と同じサイズのポット
に入れて5分間振動させ、表面に残留した余剰の粉末を
除去した。
Example 4 Powder for a bonded magnet having a composition of Sm 2 Fe 17 N 3 and an average particle size of 2.5 μm was used. To this powder, 3 wt% of an epoxy resin was added and mixed, and compression molding was performed under a pressing force of 5 t / cm 2 to obtain 80 molded bodies of 22 mmφ × 20 mmφ × 10 mm. This was cured at 150 ° C. for 1 hour to obtain a resin-bonded magnet. Next, the volume is 2.8 liters and the depth is 150 m.
10 kg of steel ball with a diameter of 3.0 mm in a circular pot of m
And the frequency is 2500 c. p. m. While adding vibration with an amplitude of 5 mm, 20 g of Al powder having an average particle size of 1 μm was added and vibration was applied to the Al powder and the steel balls for 5 minutes. Next, 20 magnets whose surfaces were covered with a resin by immersing the magnets in advance in an epoxy resin (10% MEK solution) were charged, vibrated for 15 minutes, and then taken out. The magnet was heated at 120 ° C for 2 hours to cure the epoxy resin, and finally, it was put in a pot of the same size as the film formation together with 0.2 kg of walnut shells having an average particle size of 2 mm and vibrated for 5 minutes, and the surplus remaining on the surface Was removed.

【0094】以下同様の方法により各種粉末を被覆した
磁石をそれぞれ20個ずつ作成し、85℃×90%RH
の条件で耐食性を評価した(チェック項目−外観)。そ
の結果を表4に示す。
Twenty magnets each coated with various powders were prepared in the same manner as described below, and the magnet was heated at 85 ° C. × 90% RH.
The corrosion resistance was evaluated under the conditions of (check item-appearance). The results are shown in Table 4.

【0095】表中、左欄の数字はそれぞれ以下の処理を
意味する。 1−上記の処理により平均膜厚が10μmの皮膜を形成 2−Al粉末に代えて、平均粒径が0.3μmのTiO
2 粉末を使用した。 3−樹脂結合磁石に、TiO2 添加量が20%のエポキ
シ樹脂をスプレー塗装し、120℃で6時間キュアし
て、10μmの膜厚の塗膜(単膜)を形成した(比較
例)。 4−樹脂結合磁石に皮膜を施さず、そのまま試験した
(比較例)。
In the table, the numbers in the left column mean the following processes. 1-A film having an average film thickness of 10 μm is formed by the above-mentioned treatment 2-In place of Al powder, TiO having an average particle size of 0.3 μm
Two powders were used. A 3-resin-bonded magnet was spray-coated with an epoxy resin containing 20% of TiO 2 and cured at 120 ° C. for 6 hours to form a coating film (single film) having a thickness of 10 μm (comparative example). The 4-resin-bonded magnet was tested as it was without coating (Comparative Example).

【0096】[0096]

【表4】 A 全数全く発錆なし B 巨視的には発錆なし。全体の10%未満に顕微鏡オ
ーダーの点錆 C 全体の10%未満に目視でわかる点錆 D 全体の10%以上30%未満にやや大きな発錆 E 全体の30%以上に著しい発錆、膜ふくれ、はがれ
[Table 4] A Totally no rusting B Macroscopically no rusting. Less than 10% of all rust spots on the order of a microscope C Less than 10% of all rust spots visibly visible D: 10% or more and less than 30% of the entire rust E Large rust, film swelling of 30% or more , Peel off

【0097】実施例5 Nd13.8Dy0.4 Fe78.27.6 の組成をもつインゴッ
トをスタンプミルで平均粒径が20μmになるように粗
粉砕し、次にジェットミルで平均粒径が3.0μmにな
るように粉砕した。この微粉砕粉に12kOeの磁場を
かけながら金型中で磁場と直角の方向に1.5t/cm
2 の力で加圧し圧粉体を得た。この圧粉体を真空中で1
100℃で2時間焼結した後650℃で1時間時効処理
して120個の焼結体を得た。この焼結体をグラインダ
ーで全面研磨した後、遠心バレル研磨によりコーナーを
落とし、続いて洗滌乾燥した。製品の寸法は20mmφ
×5mmの円盤状であった。次に容積2.8リットル深
さ150mmの円形ポットに、直径φ3.0mmの鋼球
を10kg投入し、振動数2500c.p.m.、振幅
5mmの振動を加えながら、平均粒度1μmのAl粉末
を20g投入し5分間Al粉末と鋼球に振動を加えた。
次にあらかじめエポキシ樹脂(10%MEK溶液)に浸
漬して表面を樹脂で覆った磁石を20個投入し、15分
間振動させた後取り出した。樹脂を120℃で2hr加
熱してエポキシ樹脂をキュアした後、最後に平均粒径2
mmのクルミ殻2kgと共に同じサイズのポットに入れ
て5分間振動させ、表面に残留した余剰の粉末を除去し
た。
Example 5 An ingot having a composition of Nd 13.8 Dy 0.4 Fe 78.2 B 7.6 was roughly crushed by a stamp mill so that the average particle size was 20 μm, and then by a jet mill, the average particle size was 3.0 μm. So crushed. While applying a magnetic field of 12 kOe to this finely pulverized powder, 1.5 t / cm in the direction perpendicular to the magnetic field in the mold.
It was pressed with a force of 2 to obtain a green compact. 1 in vacuum
After sintering at 100 ° C. for 2 hours, aging treatment was performed at 650 ° C. for 1 hour to obtain 120 sintered bodies. After the entire surface of this sintered body was polished with a grinder, the corners were removed by centrifugal barrel polishing, followed by washing and drying. Product size is 20mmφ
It had a disk shape of × 5 mm. Next, 10 kg of a steel ball having a diameter of 3.0 mm was placed in a circular pot having a volume of 2.8 liters and a depth of 150 mm, and the frequency was 2500 c. p. m. While adding vibration with an amplitude of 5 mm, 20 g of Al powder having an average particle size of 1 μm was added and vibration was applied to the Al powder and the steel balls for 5 minutes.
Next, 20 magnets whose surfaces were covered with a resin by immersing the magnets in advance in an epoxy resin (10% MEK solution) were charged, vibrated for 15 minutes, and then taken out. The resin is heated at 120 ° C. for 2 hours to cure the epoxy resin, and finally the average particle size is 2
It was put together with 2 kg of walnut shell of mm in a pot of the same size and vibrated for 5 minutes to remove excess powder remaining on the surface.

【0098】以下同様の方法により各種粉末を被覆した
磁石をそれぞれ20個ずつ作成し、85℃×90%RH
の条件で耐食性を評価した。その結果を表5に示す。
20 magnets each coated with various powders were prepared in the same manner as described below, and the magnets were heated to 85 ° C. × 90% RH.
The corrosion resistance was evaluated under the conditions. The results are shown in Table 5.

【0099】表中、左欄の数字はそれぞれ以下の処理を
意味する。 1−上記の処理により平均膜厚が10μmの皮膜を形成 2−Al粉末に代えて、平均粒径が0.3μmのTiO
2 粉末を使用した。 3−Al粉末に代えて、平均粒径が0.3μmのTiO
2 粉末を使用して皮膜を形成した(残留粉の除去せず)
後、エポキシ樹脂(5%MEK溶液)に浸漬し、再び、
平均粒径が0.3μmのTiO2 粉末を使用して皮膜を
形成した(残留粉の除去せず)。その後、120℃で2
時間キュアし、続いてクルミ殻による残留粉の除去を行
い、平均膜厚が20μm(最大値27μm、最小値18
μm)の皮膜を形成した。 4−Al粉末に代えて、平均粒径が1μmのTiO2
末を使用して皮膜を形成した(残留粉の除去せず)後、
エポキシ樹脂(5%MEK溶液)に浸漬し、再び、平均
粒径が0.3μmのTiO2 粉末を使用して皮膜を形成
した(残留粉の除去せず)。その後さらにエポキシ樹脂
(5%MEK溶液)に浸漬し、続いて120℃で2時間
キュアし、続いてクルミ殻による残留粉の除去を行い、
平均膜厚が22μm(最大値29μm、最小値20μ
m)の皮膜を形成した。 5−Al粉末に代えて、平均粒径が1μmのFe23
粉末を使用した。 6−樹脂結合磁石に、TiO2 添加量が20%のエポキ
シ樹脂をスプレー塗装し、120℃で6時間キュアし
て、10μmの膜厚の塗膜(単膜)を形成した(比較
例)。 7−樹脂結合磁石に皮膜を施さず、そのまま試験した
(比較例)。
In the table, the numbers in the left column mean the following processes, respectively. 1-A film having an average film thickness of 10 μm is formed by the above-mentioned treatment 2-In place of Al powder, TiO having an average particle size of 0.3 μm
Two powders were used. TiO having an average particle size of 0.3 μm instead of 3-Al powder
Formed a film using 2 powders (without removing residual powder)
Then, soak in epoxy resin (5% MEK solution),
A film was formed using TiO 2 powder with an average particle size of 0.3 μm (without removing residual powder). After that, at 120 ℃ 2
After curing for a time, the residual powder is removed by walnut shells, and the average film thickness is 20 μm (maximum value 27 μm, minimum value 18
μm) film was formed. After forming a film using TiO 2 powder having an average particle size of 1 μm instead of 4-Al powder (without removing residual powder),
It was dipped in an epoxy resin (5% MEK solution), and a film was formed again by using TiO 2 powder having an average particle size of 0.3 μm (without removing the residual powder). After that, it is further dipped in an epoxy resin (5% MEK solution) and subsequently cured at 120 ° C. for 2 hours, followed by removing residual powder with walnut shells.
Average film thickness 22μm (maximum value 29μm, minimum value 20μm
The film of m) was formed. Instead of 5-Al powder, Fe 2 O 3 having an average particle size of 1 μm
Powder was used. A 6-resin bonded magnet was spray-coated with an epoxy resin containing 20% of TiO 2 and cured at 120 ° C. for 6 hours to form a coating film (single film) having a thickness of 10 μm (comparative example). The 7-resin bonded magnet was tested as it was without coating (Comparative Example).

【0100】[0100]

【表5】 判定基準 A 全数全く発錆なし B 巨視的には発錆なし。全体の10%未満に顕微鏡オ
ーダーの点錆 C 全体の10%未満に目視でわかる点錆 D 全体の10%以上30%未満にやや大きな発錆 E 全体の30%以上に著しい発錆、膜ふくれ、はがれ
[Table 5] Judgment Criteria A All No rusting at all B Macroscopically no rusting. Less than 10% of all rust spots on the order of a microscope C Less than 10% of all rust spots visibly visible D: 10% or more and less than 30% of the entire rust E Large rust, film swelling of 30% or more , Peel off

【0101】実施例6 SmCo4.6 の組成をもつインゴットをスタンプミルで
平均粒径が25μmになるように粗粉砕し、次にジェッ
トミルで平均粒径が4.0μmになるように粉砕した。
この微粉砕粉に12kOeの磁場をかけながら金型中で
磁場と直角の方向に1.5t/cm2 の力で加圧し圧粉
体を得た。この圧粉体を真空中で1210℃で2時間焼
結し、その後徐冷して80個の焼結体を得た。この焼結
体をグラインダーで全面研磨した後、遠心バレル研磨に
よりコーナーを落とし、洗滌乾燥した。製品の寸法は2
0mmφ×5mmの円盤状であった。次に容積2.8リ
ットル深さ150mmの円形ポットに、直径φ3.0m
mの鋼球を10kg投入し、振動数2500c.p.
m.、振幅5mmの振動を加えながら、平均粒度0.3
μmのTiO2 粉末を20g投入し5分間TiO2 と鋼
球に振動を加えた。次にあらかじめエポキシ樹脂(10
%MEK溶液)に浸漬して表面を樹脂で覆った磁石を2
0個投入し、15分間振動させた後取り出した。120
℃で2hr加熱後最後に平均粒径2mmのクルミ殻2k
gと共に同じサイズのポットに入れて5分間振動させ、
表面に残留した余剰の粉末を除去した。
Example 6 An ingot having a composition of SmCo 4.6 was roughly crushed by a stamp mill so that the average particle size was 25 μm, and then crushed by a jet mill so that the average particle size was 4.0 μm.
While applying a magnetic field of 12 kOe to this finely pulverized powder, the powder was pressed in a mold in a direction perpendicular to the magnetic field with a force of 1.5 t / cm 2 to obtain a green compact. This green compact was sintered in vacuum at 1210 ° C. for 2 hours and then gradually cooled to obtain 80 sintered compacts. After the entire surface of this sintered body was polished with a grinder, the corners were removed by centrifugal barrel polishing, washed and dried. Product dimensions are 2
It had a disk shape of 0 mmφ × 5 mm. Next, in a circular pot with a volume of 2.8 liters and a depth of 150 mm, a diameter of 3.0 m
10 kg of steel balls are thrown in and the frequency is 2500 c. p.
m. , An average particle size of 0.3 while applying vibration with an amplitude of 5 mm
20 g of TiO 2 powder having a diameter of μm was added and vibration was applied to the TiO 2 and the steel balls for 5 minutes. Next, advance epoxy resin (10
% MEK solution) and place the magnet on the surface covered with resin.
0 pieces were put in, vibrated for 15 minutes, and then taken out. 120
After heating for 2 hours at ℃, 2k of walnut shell with an average particle size of 2mm
Put in a pot of the same size with g and vibrate for 5 minutes,
Excess powder remaining on the surface was removed.

【0102】以下同様の方法により各種粉末を被覆した
磁石をそれぞれ20個ずつ作成し、85℃×90%RH
の条件で耐食性を評価した。その結果を表6に示す。
20 magnets each coated with various powders were prepared in the same manner as described below, and the magnets were heated at 85 ° C. × 90% RH.
The corrosion resistance was evaluated under the conditions. The results are shown in Table 6.

【0103】表中、左欄の数字はそれぞれ以下の処理を
意味する。 1−上記の処理により平均膜厚が10μmの皮膜を形成 2−上記の処理を2回行い、平均膜厚が20μmの皮膜
を形成 3−焼結磁石に、TiO2 添加量が20%のエポキシ樹
脂をスプレー塗装し、120℃で6時間キュアして、平
均20μmの膜厚の塗膜(単膜)を形成した(比較
例)。 4−焼結磁石に皮膜を施さず、そのまま試験した(比較
例)。
In the table, the numbers in the left column mean the following processes, respectively. 1-A film having an average film thickness of 10 μm is formed by the above treatment 2-A film having an average film thickness of 20 μm is formed by performing the above-mentioned treatment twice 3-The epoxy containing 20% of TiO 2 added to the sintered magnet The resin was spray coated and cured at 120 ° C. for 6 hours to form a coating film (single film) having an average film thickness of 20 μm (comparative example). 4-The sintered magnet was tested without being coated (Comparative Example).

【0104】[0104]

【表6】 判定基準 A 全数全く発錆なし B 巨視的には発錆なし。全体の10%未満に顕微鏡オ
ーダーの点錆 C 全体の10%未満に目視でわかる点錆 D 全体の10%以上30%未満にやや大きな発錆 E 全体の30%以上に著しい発錆、膜ふくれ、はがれ
[Table 6] Judgment Criteria A All No rusting at all B Macroscopically no rusting. Less than 10% of all rust spots on the order of a microscope C Less than 10% of all rust spots visibly visible D: 10% or more and less than 30% of the entire rust E Large rust, film swelling of 30% or more , Peel off

【0105】実施例7 Sm(Co0.69Fe0.2 Cu0.06Zr0.037.3 の組成
をもつインゴットをスタンプミルで平均粒径が25μm
になるように粗粉砕し、次にジェットミルで平均粒径が
4.0μmになるように粉砕した。この微粉砕粉に12
kOeの磁場をかけながら金型中で磁場と直角の方向に
1.5t/cm2 の力で加圧し圧粉体を得た。この圧粉
体を真空中で1215℃で2時間焼結し、1170℃で
1時間溶体化を行い850℃で2hr時効後徐冷して8
0個の焼結体を得た。この焼結体をグラインダーで全面
研磨した後、遠心バレル研磨によりコーナーを落とし、
洗滌乾燥した。製品の寸法は20mmφ×5mmの円盤
状であった。次に容積2.8リットル深さ150mmの
円形ポットに、直径φ3.0mmの鋼球を10kg投入
し、振動数1500c.p.m.、振幅5mmの振動を
加えながら、平均粒度0.3μmのTiO2 粉末を投入
し5分間TiO2 粉末と鋼球に振動を加えた。次にあら
かじめエポキシ樹脂(10%MEK溶液)に浸漬して表
面を樹脂で覆った磁石を20個投入し、15分間振動さ
せた後取り出した。磁石を120℃で2hr加熱してエ
ポキシ樹脂を硬化した後、最後に平均粒径2mmのクル
ミ殻2kgと共に同じサイズのポットに入れて5分間振
動させ、表面に残留した余剰の粉末を除去した。
Example 7 An ingot having a composition of Sm (Co 0.69 Fe 0.2 Cu 0.06 Zr 0.03 ) 7.3 was stamped to an average particle size of 25 μm.
Was roughly pulverized so that the average particle diameter was 4.0 μm by a jet mill. 12 in this finely ground powder
While applying a magnetic field of kOe, the powder was pressed in a mold in a direction perpendicular to the magnetic field with a force of 1.5 t / cm 2 . This green compact was sintered in vacuum at 1215 ° C. for 2 hours, solution-treated at 1170 ° C. for 1 hour, aged at 850 ° C. for 2 hours, and then gradually cooled to 8
0 sintered bodies were obtained. After polishing the whole surface of this sintered body with a grinder, remove the corner by centrifugal barrel polishing,
Washed and dried. The size of the product was a disk shape of 20 mmφ × 5 mm. Next, 10 kg of a steel ball having a diameter of 3.0 mm was placed in a circular pot having a volume of 2.8 liters and a depth of 150 mm, and the frequency was 1500 c. p. m. While adding vibration with an amplitude of 5 mm, TiO 2 powder having an average particle size of 0.3 μm was introduced and vibration was applied to the TiO 2 powder and the steel balls for 5 minutes. Next, 20 magnets whose surfaces were covered with a resin by immersing the magnets in advance in an epoxy resin (10% MEK solution) were charged, vibrated for 15 minutes, and then taken out. After the magnet was heated at 120 ° C. for 2 hours to harden the epoxy resin, it was finally put in a pot of the same size with 2 kg of walnut shells having an average particle diameter of 2 mm and vibrated for 5 minutes to remove excess powder remaining on the surface.

【0106】以下同様の方法により各種粉末を被覆した
磁石をそれぞれ20個ずつ作成し、85℃×90%RH
の条件で耐食性を評価した。その結果を表7に示す。
20 magnets each coated with various powders were prepared in the same manner as described below, and the magnets were heated to 85 ° C. × 90% RH.
The corrosion resistance was evaluated under the conditions. The results are shown in Table 7.

【0107】表中、左欄の数字はそれぞれ以下の処理を
意味する。 1−上記の処理により平均膜厚が10μmの皮膜を形成 2−TiO2 粉末に代えて、平均粒径が1μmのFe2
3 粉末を使用した。 3−TiO2 粉末に代えて、平均粒径が1μmのAl粉
末を使用した。 4−焼結磁石に、TiO2 添加量が20%のエポキシ樹
脂をスプレー塗装し、120℃で6時間キュアして、平
均20μmの膜厚の塗膜(単膜)を形成した(比較
例)。 5−焼結磁石に皮膜を施さず、そのまま試験した(比較
例)。
In the table, the numbers in the left column mean the following processes. 1-A film having an average film thickness of 10 μm is formed by the above treatment. 2-Fe 2 having an average particle size of 1 μm is used instead of the TiO 2 powder.
O 3 powder was used. Instead of 3-TiO 2 powder, Al powder having an average particle size of 1 μm was used. 4-The sintered magnet was spray-coated with an epoxy resin containing 20% of TiO 2 and cured at 120 ° C. for 6 hours to form a coating film (single film) having an average thickness of 20 μm (Comparative Example). .. 5-The sintered magnet was tested as it was without coating (Comparative Example).

【0108】[0108]

【表7】 判定基準 A 全数全く発錆なし B 巨視的には発錆なし。全体の10%未満に顕微鏡オ
ーダーの点錆 C 全体の10%未満に目視でわかる点錆 D 全体の10%以上30%未満にやや大きな発錆 E 全体の30%以上に著しい発錆、膜ふくれ、はがれ
[Table 7] Judgment Criteria A All No rusting at all B Macroscopically no rusting. Less than 10% of all rust spots on the order of a microscope C Less than 10% of all rust spots visibly visible D: 10% or more and less than 30% of the entire rust E Large rust, film swelling of 30% or more , Peel off

【0109】実施例8 下記の粉末をダイプレス法により成形して25mmφ×
20mmφ×10mmのリング状圧粉体を作成した。 (A)Al−2.75wt%Li ガスアトマイズ粉
末 平均粒度 20μm 加圧力 2ton /cm2 (B)Mg ガスアトマイズ粉
末 平均粒度 20μm 加圧力 2ton /cm2
Example 8 The following powder was molded by a die press method into 25 mmφ ×
A 20 mmφ × 10 mm ring-shaped green compact was prepared. (A) Al-2.75 wt% Li gas atomized powder average particle size 20 μm applied pressure 2 ton / cm 2 (B) Mg gas atomized powder average particle size 20 μm applied pressure 2 ton / cm 2

【0110】これらの圧粉体をAr雰囲気中で600℃
で6時間焼結した。焼結体の密度はいずれも真密度の9
0%であった。得られた焼結体に次のような被覆処理を
各20ケずつ施した。 容積2.8リットル,深さ150mmの円形ポットに
直径φ3.0mmの鋼球10kg(見掛け密度5kg/
リットル)を入れ、平均粒度1μmのTiO2粉末を2
0gを投入して5分間振動させて、均一にTiO2 粉末
を分散させた。振動の条件は振動数2500c.p.
m.、振幅5mmであった。
These green compacts were heated at 600 ° C. in an Ar atmosphere.
And sintered for 6 hours. The density of the sintered body is 9 which is the true density.
It was 0%. The obtained sintered body was subjected to the following coating treatment for each 20 pieces. A circular pot with a volume of 2.8 liters and a depth of 150 mm has 10 kg of steel balls with a diameter of 3.0 mm (apparent density 5 kg /
Liter) and add 2 parts of TiO 2 powder having an average particle size of 1 μm.
0 g was added and vibrated for 5 minutes to uniformly disperse the TiO 2 powder. The condition of vibration is a frequency of 2500 c. p.
m. The amplitude was 5 mm.

【0111】次にあらかじめ、樹脂分(エポキシ樹脂9
7wt%、硬化剤3wt%)10%を溶かしたメチルエ
チルケトン(MEK)に焼結体に浸漬することにより、
樹脂膜で覆った部材を投入してさらに15分間振動を続
けた。これを120℃で2hr加熱した後、破砕したク
ルミ殻(平均粒度2mm)2kg(見掛け密度1kg/
リットル)と共に前記ポットと同サイズのポットに投入
し、同様の条件にて5分間振動させることにより、部材
表面に残留した余剰の粉末を除去した。膜厚は平均10
μmであった。
Next, the resin component (epoxy resin 9
By immersing the sintered body in methyl ethyl ketone (MEK) in which 7 wt% and 10 wt% of the curing agent are dissolved,
The member covered with the resin film was put in and vibration was continued for another 15 minutes. After heating this at 120 ° C. for 2 hours, crushed walnut shells (average particle size 2 mm) 2 kg (apparent density 1 kg /
(1 liter) and put into a pot of the same size as the above pot and vibrated for 5 minutes under the same conditions to remove excess powder remaining on the surface of the member. The average film thickness is 10
was μm.

【0112】と同様の方法により約5μmのCu膜
を付与した(Cu粉粒径1μm、15g使用)。その
後、電解めっきにより平均10μm(最大値14μm、
最小値8μm)のNiめっき膜を形成させた。
A Cu film of about 5 μm was applied by the same method as described above (Cu powder particle size: 1 μm, 15 g was used). After that, by electroplating, average 10 μm (maximum value 14 μm,
A Ni plating film having a minimum value of 8 μm) was formed.

【0113】本実施例(Al−Li,Mg)において
は、Al,Mgがイオン化傾向がNiより非常に大きい
ため、Niめっきを直接施すことができない。そこで水
酸化ナトリウム、酸化亜鉛、ロッシェル塩その他微量添
加物からなる市販のZn置換溶液に部材を浸漬して表面
にZn置換処理(ジンケート処理)を施し後、ワット浴
による電解Niめっき処理を実施して平均10μmのN
iめっき膜を形成させた。
In this example (Al-Li, Mg), Al and Mg have a much larger ionization tendency than Ni, and therefore Ni plating cannot be directly applied. Therefore, the member is dipped in a commercially available Zn substitution solution consisting of sodium hydroxide, zinc oxide, Rochelle salt, and other trace additives to subject the surface to Zn substitution treatment (zincate treatment), and then electrolytic Ni plating treatment using a Watt bath is performed. Average 10 μm N
An i plating film was formed.

【0114】焼結体にスプレー塗装により平均10μ
mのエポキシ樹脂(カーボンブラック20%添加)皮膜
を形成した。 焼結体に皮膜を形成せず、試験した。 表8に、上記A、B、1〜5によりそれぞれの皮膜形成
法を示した。
10 μm on average by spray coating on the sintered body
m epoxy resin (20% carbon black added) film was formed. The sintered body was tested without forming a film. Table 8 shows the respective film forming methods according to A, B, and 1 to 5 above.

【0115】[0115]

【表8】 試験条件:それぞれ20個を85℃×90%RH放置 チェック項目:外観 判定基準 A 全数全く発錆なし B 巨視的には発錆なし。全体の10%未満に顕微鏡オ
ーダーの点錆 C 全体の10%未満に目視でわかる点錆 D 全体の10%以上30%未満にやや大きな発錆 E 全体の30%以上に著しい発錆、膜ふくれ、はがれ
錆は白粉状のAlもしくはMgの酸化物とみられる は、めっき液の残留によると思われる膜はがれが多く
見られた。
[Table 8] Test condition: 20 pieces each were left at 85 ° C. × 90% RH Check item: Appearance Criteria A No total rusting B Macroscopically no rusting. Less than 10% of all rust spots on the order of a microscope C Less than 10% of all rust visibly visible D: 10% or more and less than 30% of all rust E E Remarkably rust at 30% or more of all, film swelling , Peeling rust is considered to be white powdery Al or Mg oxide, but many film peeling was observed, which is probably due to the residual plating solution.

【0116】実施例9 下記の粉末をダイプレス法により成形して、20mm×
20mm×5mmのプレート状圧粉体を作成した。 (A)Fe−0.3%C 電解アニール粉末(平
均粒度50μm) 加圧力 3ton /cm2 (B)Al−1%Si ガスアトマイズ粉末
(平均粒度25μm) 加圧力 3ton /cm2 (A)については真空中で1300℃で6時間、(B)
については600℃で6時間焼結した。焼結体の密度は
(A)については85%、(B)については90%であ
った。得られた焼結体に次のような被覆処理を各20ケ
ずつ施した。 容積2.8リットル,深さ150mmの円形ポットに
直径φ3.0mmの鋼球10kg(見掛け密度5kg/
リットル)を入れ、平均粒度1μmのFe23 粉末を
20gを投入して5分間振動させて、均一にFe23
粉末を分散させた。振動の条件は振動数2500c.
p.m.、振幅5mmであった。
Example 9 The following powder was molded by a die press method to give a size of 20 mm ×
A 20 mm × 5 mm plate-shaped green compact was prepared. (A) Fe-0.3% C electrolytically annealed powder (average particle size 50 μm) applied pressure 3 ton / cm 2 (B) Al-1% Si gas atomized powder (average particle size 25 μm) applied pressure 3 ton / cm 2 (A) 6 hours at 1300 ° C in vacuum (B)
Was sintered at 600 ° C. for 6 hours. The density of the sintered body was 85% for (A) and 90% for (B). The obtained sintered body was subjected to the following coating treatment for each 20 pieces. A circular pot with a volume of 2.8 liters and a depth of 150 mm has 10 kg of steel balls with a diameter of 3.0 mm (apparent density 5 kg /
Liter), 20 g of Fe 2 O 3 powder having an average particle size of 1 μm, and vibrating for 5 minutes to make Fe 2 O 3 uniform.
The powder was dispersed. The condition of vibration is a frequency of 2500 c.
p. m. The amplitude was 5 mm.

【0117】次にあらかじめ、樹脂分(エポキシ樹脂9
7wt%、硬化剤3wt%)10%を溶かしたメチルエ
チルケトン(MEK)に浸漬することにより、樹脂膜で
覆った部材を投入してさらに15分間振動を続けた。こ
れを120℃で2hr加熱した後、破砕したクルミ殻
(平均粒度2mm)2kg(見掛け密度1kg/リット
ル)と共に前記ポットと同サイズのポットに投入し、同
様の条件にて5分間振動させることにより、部材表面に
残留した余剰の粉末を除去した。膜厚は平均10μmで
あった。
Next, the resin component (epoxy resin 9
The member covered with the resin film was charged by immersing it in methyl ethyl ketone (MEK) in which 7% by weight and 10% by weight of the curing agent (3% by weight) were dissolved, and vibration was continued for another 15 minutes. After heating this at 120 ° C. for 2 hours, it was put into a pot of the same size as the pot together with 2 kg of crushed walnut shells (average particle size 2 mm) (apparent density 1 kg / liter) and vibrated under the same conditions for 5 minutes. The excess powder remaining on the surface of the member was removed. The film thickness was 10 μm on average.

【0118】と同様の方法により約5μmのCu膜
を付与した(Cu粉粒径1μm、15g使用)。その
後、電解めっきにより平均10μmのNiめっき膜を形
成させた。
A Cu film of about 5 μm was applied in the same manner as in (Cu powder particle size 1 μm, 15 g was used). Then, an Ni plating film having an average thickness of 10 μm was formed by electrolytic plating.

【0119】部材をあらかじめ実施例8−と同様に
Zn置換処理後、電解めっきにより平均10μmのNi
めっき膜を形成させた。
The member was preliminarily subjected to Zn substitution treatment in the same manner as in Example 8-, and then electrolytically plated to obtain an average Ni content of 10 μm.
A plated film was formed.

【0120】スプレー塗装により膜厚が平均10μm
のエポキシ樹脂皮膜(TiO2 20%添加)を形成させ
た。 被覆なし
Average film thickness of 10 μm by spray coating
The epoxy resin film (adding 20% of TiO 2 ) was formed. Uncoated

【0121】以上の処理を施した焼結体に対しJIS腐
食試験方法による中性塩水噴霧試験(35℃、5%Na
Cl)を行い、外観観察を行った。結果を表9に示す。
表9に、上記A、B、1〜5によりそれぞれの皮膜形成
法を示した。
A neutral salt spray test (35 ° C., 5% Na) according to the JIS corrosion test method was performed on the sintered body subjected to the above treatment.
Cl) was performed and the appearance was observed. The results are shown in Table 9.
Table 9 shows the respective film forming methods according to A, B, and 1 to 5 above.

【0122】[0122]

【表9】 判定基準 A 全数全く発錆なし B 巨視的には発錆なし。全体の10%未満に顕微鏡オ
ーダーの点錆 C 全体の10%未満に目視でわかる点錆 D 全体の10%以上30%未満にやや大きな発錆 E 全体の30%以上に著しい発錆、膜ふくれ、はがれ
A,B共にについてはめっき膜に多数のふくれが生じ
た。
[Table 9] Judgment Criteria A All No rusting at all B Macroscopically no rusting. Less than 10% of all rust spots on the order of a microscope C Less than 10% of all rust visibly visible D: 10% or more and less than 30% of all rust E E Remarkably rust at 30% or more of all, film swelling With respect to both peeling and peeling A and B, a large number of blisters were formed on the plating film.

【0123】実施例10 下記非金属部材A〜Bを作成した。 A.Ni−Znフェライト焼結体(密度−真密度に対し
て98%)を下記の原料を混合し、圧粉し、焼結して得
た。NiO:Fe23 :ZnO=20:50:30
(モル比)。焼結体を切断し、研磨して15mm×15
mm×5mmのブロックを得た。 B.Srフェライト焼結体(密度−真密度に対して98
%)を下記の原料を混合し、圧粉し、焼結して得た。S
rCO3 :Fe23 =1:5.9(モル比)。焼結体
を切断し、研磨して15mmΦ×4mmの円柱を得た。
Example 10 The following non-metal members A to B were prepared. A. A Ni-Zn ferrite sintered body (density-98% based on true density) was obtained by mixing the following raw materials, pressing and sintering. NiO: Fe 2 O 3 : ZnO = 20: 50: 30
(Molar ratio). Cut the sintered body and polish it to 15mm × 15
A block of mm × 5 mm was obtained. B. Sr ferrite sintered body (density-98 to true density)
%) Was obtained by mixing the following raw materials, pressing and sintering. S
rCO 3: Fe 2 O 3 = 1: 5.9 ( molar ratio). The sintered body was cut and polished to obtain a cylinder of 15 mmΦ × 4 mm.

【0124】これらの非金属部材A,Bに次の皮膜処理
を施した。 実施例8と同様の処理によりTiO2 皮膜を形成し
た。(図10、A−,B−) エポキシ樹脂(TiO2 20%添加)をスプレー塗装
した。(図10、A−,B−) 処理後切断して顕微鏡により非金属部材上の膜厚分布状
態を観察した。結果を図10に示す。図より本発明法
の方が、コーナー部でのつき回りが薄く従来法より均
一な塗装が可能であることがわかる。
These non-metal members A and B were subjected to the following film treatment. A TiO 2 film was formed by the same treatment as in Example 8. (Figure 10, A-, B-) of the epoxy resin (TiO 2 20% added) was spray painted. (FIG. 10, A-, B-) After processing, the film was cut and the state of film thickness distribution on the non-metal member was observed with a microscope. The results are shown in Fig. 10. From the figure, it can be seen that the method of the present invention has less throwing power at the corners and can be applied more uniformly than the conventional method.

【0125】実施例11 直径40mm,肉厚2mmの半球状おわん型のプラスチ
ック部材を金型成形した。容積2.8リットル、深さ1
50mmの円形ポットに直径φ3.0mmの鋼球を10
kg入れ、平均粒度1μmのCu粉末を10g投入して
5分間振動させた。次に部材の全面にMEKを吹きつ
け、表面を粘着性とし、前記ポット内に投じて15分間
振動を続けた。その後プラスチック部材を取り出して5
0℃で2hr加熱した後、破砕したクルミ殻(粒径2m
m)2kgと共に同サイズの別のポットに入れ、5分間
振動させ、部材表面の残留粉をとり除いた。
Example 11 A hemispherical bowl-shaped plastic member having a diameter of 40 mm and a wall thickness of 2 mm was die-molded. Volume 2.8 liters, depth 1
10 mm steel balls with a diameter of 3.0 mm are placed in a 50 mm circular pot.
Then, 10 kg of Cu powder having an average particle size of 1 μm was charged and shaken for 5 minutes. Next, MEK was sprayed on the entire surface of the member to make the surface tacky, and the member was placed in the pot and vibrated for 15 minutes. Then take out the plastic member and
After heating for 2 hours at 0 ° C, crushed walnut shells (particle size 2m
m) It was put together with 2 kg in another pot of the same size and vibrated for 5 minutes to remove the residual powder on the surface of the member.

【0126】これにより部材表面に約4μmのCu層が
形成され、処理前には無限大であった表面の抵抗値が
0.2〜0.5Ω/cmに減少し、通常のワット浴を用
いて容易にNiめっきを施すことができた。めっき後の
部材にテープ試験を行ったが、剥離は起こらなかった。
As a result, a Cu layer of about 4 μm was formed on the surface of the member, and the resistance value of the surface, which was infinite before the treatment, was reduced to 0.2 to 0.5 Ω / cm. The Ni plating could be applied easily. A tape test was conducted on the plated member, but no peeling occurred.

【0127】実施例12 図11に示す心臓型のガラス片100個に下記の処理を
施した。 5%MEK溶液を樹脂として使用したほかは実施例8
と同じ処理により、平均粒径1μmの金粉5gを投入し
て15分振動させたところ、約2μmの美しい金皮覆が
施された。テ−プ試験で剥離はみられなかった。
Example 12 100 heart-shaped glass pieces shown in FIG. 11 were subjected to the following treatment. Example 8 except that a 5% MEK solution was used as the resin
By the same treatment as above, 5 g of gold powder having an average particle size of 1 μm was charged and vibrated for 15 minutes. As a result, a beautiful metal skin covering of about 2 μm was applied. No peeling was observed in the tape test.

【0128】実施例8と同様の処理により、平均粒径
1μmのCu粉20gを投入して15分振動させること
により、約10μmのCu皮覆を施した。これにより、
部材の表面抵抗は0.2〜0.5Ω/cmとなり、充分
電気めっきが可能な状態となった。引き続き電解めっき
により約2μmの金めっきを施すことにより、光沢のあ
る極めて美しい表面が得られた。
In the same manner as in Example 8, 20 g of Cu powder having an average particle diameter of 1 μm was charged and vibrated for 15 minutes to cover the Cu with a thickness of about 10 μm. This allows
The surface resistance of the member was 0.2 to 0.5 Ω / cm, and it was in a state where sufficient electroplating was possible. Subsequent electrolytic plating of about 2 μm of gold resulted in a glossy and extremely beautiful surface.

【0129】実施例13 Nd13.8Dy0.4 Fe78.27.6 の組成をもつインゴッ
トをスタンプミルで平均粒径が20μmになるように粗
粉砕し、次にジェットミルで平均粒径が3.0μmにな
るように微粉砕粉に12kOeの磁場をかけながら金型
中で磁場と直角の方向に1.5t/cm2 の力で加圧し
圧粉体を得た。この圧粉体を真空中で1100℃で2時
間焼結した後、650℃で1時間時効処理して60個の
焼結体を得た。この焼結体をグラインダーで全面研磨し
た後、遠心バレル研磨によりコーナーを落とした後、洗
滌乾燥した。製品の寸法は20mmφ×5mmの円盤状
であった。次に容積2.8リットル深さ150mmの円
形ポットに、直径φ3.0mmの鋼球を10kg投入
し、振動数2500c.p.m.、振幅5mmの振動を
加えながら、平均粒度1μmのスズ粉末30gを投入し
5分間スズ粉末と鋼球に振動を加えた。次にあらかじめ
5%パラフィンMEK溶液に浸漬して表面を樹脂で覆っ
た磁石を20個投入し、15分間振動させた後取り出し
た。最後に平均粒径2mmのクルミ殻片2kgと共に同
じサイズのポットに入れて5分間振動させ、表面に残留
した余剰の粉末を除去した。
Example 13 An ingot having a composition of Nd 13.8 Dy 0.4 Fe 78.2 B 7.6 was roughly crushed by a stamp mill so that the average particle size was 20 μm, and then by a jet mill, the average particle size was 3.0 μm. Thus, while applying a magnetic field of 12 kOe to the finely pulverized powder, the powder was pressed in the mold in a direction perpendicular to the magnetic field with a force of 1.5 t / cm 2 to obtain a green compact. This green compact was sintered in vacuum at 1100 ° C. for 2 hours and then aged at 650 ° C. for 1 hour to obtain 60 sintered bodies. The whole surface of this sintered body was polished with a grinder, the corners were removed by centrifugal barrel polishing, and then washed and dried. The size of the product was a disk shape of 20 mmφ × 5 mm. Next, 10 kg of a steel ball having a diameter of 3.0 mm was placed in a circular pot having a volume of 2.8 liters and a depth of 150 mm, and the frequency was 2500 c. p. m. While adding vibration with an amplitude of 5 mm, 30 g of tin powder having an average particle size of 1 μm was charged and vibration was applied to the tin powder and the steel balls for 5 minutes. Next, 20 magnets each of which was previously immersed in a 5% paraffin MEK solution and the surface of which was covered with a resin were put thereinto, vibrated for 15 minutes and then taken out. Finally, 2 kg of walnut shell pieces having an average particle diameter of 2 mm was put into a pot of the same size and vibrated for 5 minutes to remove the excess powder remaining on the surface.

【0130】次に部材を300℃で4時間真空中で加熱
して取り出し、85℃×90%RHの条件で耐食性を評
価した。その結果を表10に示す
Next, the member was heated at 300 ° C. for 4 hours in a vacuum and taken out, and the corrosion resistance was evaluated under the condition of 85 ° C. × 90% RH. The results are shown in Table 10.

【0131】表の左欄の数字は以下の処理を意味する。 1 スズ処理品(平均膜厚 10μm) 2 スプレー塗装(エポキシ樹脂;TiO2 20%添
加) 平均膜厚10μm 3 処理なし
The numbers in the left column of the table mean the following processes. 1 Tin treated product (average film thickness 10 μm) 2 Spray coating (epoxy resin; TiO 2 20% added) Average film thickness 10 μm 3 No treatment

【0132】[0132]

【表10】 試験条件:85℃×90%RH放置 チェック項
目:外観 判定基準 A 全数全く発錆なし B 巨視的には発錆なし。全体の10%未満に顕微鏡オ
ーダーの点錆 C 全体の10%未満に目視でわかる点錆 D 全体の10%以上30%未満にやや大きな発錆 E 全体の30%以上に著しい発錆、膜ふくれ、はがれ
[Table 10] Test conditions: 85 ° C x 90% RH left Check item: Appearance Criteria A All 100% no rust B Macroscopically no rust. Less than 10% of all rust spots on the order of a microscope C Less than 10% of all rust spots visibly visible D: 10% or more and less than 30% of the entire rust E Large rust, film swelling of 30% or more , Peel off

【0133】[0133]

【発明の効果】以上説明したように本発明は簡便な方法
により、耐食性、密着性にすぐれた粉体皮膜を各種部材
に施すことができるので、従来よりも粉体皮膜の適用範
囲が拡大される。さらに、従来樹脂塗装では十分な耐食
性が得られない被処理材に本発明法を適用することによ
って優れた耐食性を得ることができる。
As described above, according to the present invention, a powder coating having excellent corrosion resistance and adhesiveness can be applied to various members by a simple method, so that the range of application of the powder coating is expanded as compared with the conventional one. It Further, excellent corrosion resistance can be obtained by applying the method of the present invention to a material to be treated which cannot be sufficiently corroded by conventional resin coating.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による撹拌をアームにより行う実施例を
示す図である。
FIG. 1 is a diagram showing an embodiment in which stirring according to the present invention is performed by an arm.

【図2】本発明による撹拌を羽により行う実施例を示す
図である。
FIG. 2 is a view showing an example in which the stirring according to the present invention is performed by a blade.

【図3】本発明による撹拌を回転容器の回転により行う
実施例を示す図である。
FIG. 3 is a diagram showing an example in which stirring according to the present invention is performed by rotating a rotary container.

【図4】本発明による撹拌を円筒容器の回転により行う
実施例を示す図である。
FIG. 4 is a diagram showing an example in which stirring according to the present invention is performed by rotating a cylindrical container.

【図5】本発明による撹拌を円筒容器の揺動により行う
実施例を示す図である。
FIG. 5 is a diagram showing an example in which stirring according to the present invention is performed by rocking a cylindrical container.

【図6】本発明による撹拌を容器を回転軸の回りに回転
させて行う実施例を示す図である。
FIG. 6 is a diagram showing an example in which stirring according to the present invention is performed by rotating a container around a rotation axis.

【図7】本発明による振動をポットの加振により行う実
施例を示す図である。
FIG. 7 is a diagram showing an embodiment in which vibration according to the present invention is performed by vibrating a pot.

【図8】本発明による振動をといの加振により行う実施
例を示す図である。
FIG. 8 is a diagram showing an embodiment in which the vibration according to the present invention is applied by vibrating a bridle.

【図9】といの実施例を示す図である。FIG. 9 is a diagram showing an example of a carrot;

【図10】皮膜の付き回りを示す図である。FIG. 10 is a diagram showing the surroundings of a film.

【図11】被処理部材の図である。FIG. 11 is a diagram of a member to be processed.

【図12】皮膜中のTiO2 粒子の構造を示す電子顕微
鏡写真である。
FIG. 12 is an electron micrograph showing the structure of TiO 2 particles in a film.

【符号の説明】 2 容器 3 アーム 4 回転軸 5 羽根 6 ローラー 8 加振器 10 皮膜形成混合物 20 とい 22 ふるい 24 皮膜形成媒体[Explanation of symbols] 2 container 3 arm 4 rotating shaft 5 blade 6 roller 8 vibrator 10 film forming mixture 20 to 22 sieving 24 film forming medium

───────────────────────────────────────────────────── フロントページの続き (72)発明者 白井 啓雄 京都府京都市右京区西京極西向河原町2番 地の2 マウンテンビレッジ303号 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hiroo Shirai 2 Mountain Village No. 303, No. 2 Nishikaigawaracho, Nishikyogoku, Ukyo-ku, Kyoto City, Kyoto Prefecture

Claims (18)

【特許請求の範囲】[Claims] 【請求項1】 被処理部材表面に皮膜を密着して形成す
る方法において、被処理部材、皮膜形成過程の少なくと
も初期において少なくとも部分的に未硬化の状態にある
樹脂、粉体物質(皮膜形成過程において前記樹脂よりも
硬質の樹脂粉末のこともある)、および前記被処理部材
よりも寸法が実質的に小さくかつ前記粉体物質よりは寸
法が実質的に大きい皮膜形成媒体に容器内にて振動また
は攪拌を加えることにより、粉体物質を含む皮膜を形成
することを特徴とする皮膜形成方法。
1. A method for forming a coating film on a surface of a member to be treated, wherein the member to be treated, a resin which is at least partially uncured at least at an early stage of the film formation process, a powder substance (a film formation process process). In some cases, a resin powder that is harder than the above resin) and a film-forming medium whose size is substantially smaller than that of the member to be treated and substantially larger than the powder substance is vibrated in the container. Alternatively, a method of forming a film, which comprises forming a film containing a powder substance by adding stirring.
【請求項2】 前記容器内に予め皮膜形成媒体を入れ、
振動又は攪拌を加えながら前記被処理部材、粉体物質及
び樹脂を逐次あるいは同時に前記容器に装入することを
特徴とする請求項1記載の皮膜形成方法。
2. A film-forming medium is previously placed in the container,
The film forming method according to claim 1, wherein the member to be treated, the powder substance and the resin are charged into the container sequentially or simultaneously while applying vibration or stirring.
【請求項3】 前記樹脂を振動又は攪拌中に硬化させる
ことを特徴とする請求項1から2記載の皮膜形成方法。
3. The film forming method according to claim 1, wherein the resin is cured during vibration or stirring.
【請求項4】 前記容器内にて皮膜形成媒体、前記被処
理部材及び樹脂を混合し、さらに前記容器に粉体物質を
装入して、振動又は攪拌を行うことを特徴とする請求項
1から3までのいずれか1項記載の皮膜形成方法。
4. The film forming medium, the member to be treated and the resin are mixed in the container, and a powder substance is charged into the container, and vibration or agitation is performed. 4. The film forming method according to any one of 1 to 3.
【請求項5】 被処理部材表面に皮膜を密着して形成す
る方法において、皮膜形成過程の少なくとも初期におい
て少なくとも部分的に未硬化の状態にある第一の樹脂か
らなる皮膜を施した被処理部材、粉体物質(皮膜形成過
程において前記樹脂よりも硬質の樹脂粉末のこともあ
る)、および前記被処理部材よりは寸法が実質的に小さ
くかつ前記粉体物質よりは寸法が実質的に大きい皮膜形
成媒体に容器内にて振動又は攪拌を加えることにより、
粉体物質を含む皮膜を形成することを特徴とする皮膜形
成方法。
5. A method for forming a coating film on a surface of a member to be processed by applying a film made of a first resin which is at least partially uncured at least at an initial stage of the film formation process. A powder substance (which may be a resin powder harder than the resin in the film forming process), and a film having a size substantially smaller than the member to be treated and a size substantially larger than the powder substance. By adding vibration or stirring to the forming medium in the container,
A method for forming a film, which comprises forming a film containing a powder substance.
【請求項6】 前記第一の樹脂と同種又は異種の樹脂で
あって皮膜形成過程の少なくとも初期において少なくと
も部分的に未硬化の状態にある第二の樹脂を前記被処理
部材、粉体物質及び皮膜形成媒体と混合することを特徴
とする請求項5記載の皮膜形成方法。
6. A second resin, which is the same as or different from the first resin and which is at least partially uncured at least in the initial stage of the film formation process, is treated with the treated member, the powder substance, and The film forming method according to claim 5, wherein the film forming medium is mixed with the film forming medium.
【請求項7】 前記被処理部材表面に皮膜形成後、該皮
膜中の樹脂を硬化することを特徴とする請求項1から6
までいずれか1項記載の皮膜形成方法。
7. The resin in the coating is cured after the coating is formed on the surface of the member to be treated.
The method for forming a film according to any one of the above.
【請求項8】 前記被処理部材表面に皮膜形成後、該皮
膜の表面部に残留する遊離粉体物質を除去することを特
徴とする請求項1から7までのいずれか1項記載の皮膜
形成方法。
8. The film formation according to claim 1, wherein after the film is formed on the surface of the member to be treated, the free powder substance remaining on the surface of the film is removed. Method.
【請求項9】 前記皮膜表面部の残留遊離粉体を除去す
る際に、該皮膜を形成した被処理部材表面を軟質の媒体
により摩擦することを特徴とする請求項8記載の皮膜形
成方法。
9. The method of forming a coating film according to claim 8, wherein when the residual free powder on the surface of the coating film is removed, the surface of the member to be treated on which the coating film is formed is rubbed with a soft medium.
【請求項10】 前記皮膜を形成した被処理部材に熱処
理を施すことを特徴とする請求項1から9までのいずれ
か1項記載の皮膜形成方法。
10. The film forming method according to claim 1, wherein the member to be processed on which the film is formed is subjected to heat treatment.
【請求項11】 前記皮膜を形成した被処理部材を前記
樹脂と同一のあるいは前記樹脂とは異なる樹脂で被覆す
ることを特徴とする請求項1から10までのいずれか1
項記載の皮膜形成方法。
11. The member to be treated on which the film is formed is coated with the same resin as the resin or a resin different from the resin.
The method for forming a film according to the item.
【請求項12】 請求項11記載の樹脂被覆を施す際
に、前記被処理部材よりは寸法が実質的に小さい皮膜形
成媒体及び該樹脂に容器内にて振動又は撹拌を加えるこ
とを特徴とする請求項11記載の皮膜形成方法。
12. When applying the resin coating according to claim 11, vibration or agitation is applied to the film forming medium having a size substantially smaller than that of the member to be treated and the resin in a container. The film forming method according to claim 11.
【請求項13】 請求項11記載の樹脂被覆を塗装によ
り行うことを特徴とする請求項11記載の皮膜形成方
法。
13. The film forming method according to claim 11, wherein the resin coating according to claim 11 is performed by coating.
【請求項14】 前記皮膜を導電性粉体物質を用いて形
成した被処理部材に金属または合金の皮膜を形成するこ
とを特徴とする請求項1から10までのいずれか1項記
載の皮膜形成方法。
14. The film formation according to any one of claims 1 to 10, characterized in that a metal or alloy film is formed on a member to be treated in which the film is formed by using a conductive powder substance. Method.
【請求項15】 前記金属または合金の皮膜を電気めっ
き又は無電解めっきにより形成することを特徴とする請
求項14記載の皮膜形成方法。
15. The method for forming a film according to claim 14, wherein the film of the metal or alloy is formed by electroplating or electroless plating.
【請求項16】 前記被処理部材が希土類焼結磁石であ
ることを特徴とする請求項1から15までのいずれか1
項記載の皮膜形成方法。
16. The method according to claim 1, wherein the member to be processed is a rare earth sintered magnet.
The method for forming a film according to the item.
【請求項17】 前記被処理部材が希土類樹脂結合磁石
であることを特徴とする請求項1から16までのいずれ
か1項記載の皮膜形成方法。
17. The film forming method according to claim 1, wherein the member to be processed is a rare earth resin-bonded magnet.
【請求項18】 前記被処理部材、前記粉体物質、皮膜
形成媒体と共に振動又は攪拌が加えられる樹脂の一部ま
たは全部に代えて無機粘着物質を使用することを特徴と
する請求項1から17までのいずれか1項記載の皮膜形
成方法。
18. An inorganic adhesive material is used in place of part or all of the resin that is vibrated or stirred together with the member to be treated, the powder substance and the film forming medium. The method for forming a film according to any one of 1 to 6 above.
JP3224782A 1991-08-09 1991-08-09 Film formation method Expired - Fee Related JP2991544B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP3224782A JP2991544B2 (en) 1991-08-09 1991-08-09 Film formation method
EP92113479A EP0528292B1 (en) 1991-08-09 1992-08-07 Coated parts with film having powder-skeleton structure, and method for forming the coating
DE69223877T DE69223877T2 (en) 1991-08-09 1992-08-07 Coated components with powder-structured film and process for their production
US07/926,433 US5273782A (en) 1991-08-09 1992-08-10 Coated parts with film having powder-skeleton structure, and method for forming coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3224782A JP2991544B2 (en) 1991-08-09 1991-08-09 Film formation method

Publications (2)

Publication Number Publication Date
JPH05302176A true JPH05302176A (en) 1993-11-16
JP2991544B2 JP2991544B2 (en) 1999-12-20

Family

ID=16819126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3224782A Expired - Fee Related JP2991544B2 (en) 1991-08-09 1991-08-09 Film formation method

Country Status (1)

Country Link
JP (1) JP2991544B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1180610A (en) * 1997-09-01 1999-03-26 Inter Metallics Kk Powder coating and film forming method using said powder coating
US6383558B1 (en) 1999-07-15 2002-05-07 Tomoegawa Paper Co., Ltd. Method for forming monolayer powder film
US6660326B2 (en) 2000-08-04 2003-12-09 Tomoegawa Paper Co. Ltd. Production method for monolayer powder film and production apparatus therefor
WO2004108304A1 (en) * 2003-06-06 2004-12-16 Intermetallics Co., Ltd. Adhesive layer forming method
JP2005290460A (en) * 2004-03-31 2005-10-20 Fujitsu Ltd Powder preparation method and apparatus
JP2006128426A (en) * 2004-10-29 2006-05-18 Tdk Corp Rare earth sintered magnet and its producing process
JP2008053668A (en) * 2006-08-23 2008-03-06 Makoto Yafuji Ferrite magnet
WO2008032426A1 (en) 2006-09-15 2008-03-20 Intermetallics Co., Ltd. PROCESS FOR PRODUCING SINTERED NdFeB MAGNET
JP2008294469A (en) * 2008-08-04 2008-12-04 Inter Metallics Kk METHOD OF MANUFACTURING NdFeB-BASED SINTERED MAGNET, AND MOLD FOR MANUFACTURING NdFeB-BASED SINTERED MAGNET
JP2013219352A (en) * 2012-04-04 2013-10-24 Gm Grobal Technology Operations Llc Vibrator for performing powder coating
JP2013244534A (en) * 2012-05-29 2013-12-09 Toyota Motor Corp Method of surface treatment and facing agent

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5674000B2 (en) * 2010-07-28 2015-02-18 アイシン精機株式会社 Method for separating coating media

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1180610A (en) * 1997-09-01 1999-03-26 Inter Metallics Kk Powder coating and film forming method using said powder coating
KR100662534B1 (en) * 1999-07-15 2006-12-28 가부시키가이샤 도모에가와 세이시쇼 Method for forming single-layered powder coating film
US6383558B1 (en) 1999-07-15 2002-05-07 Tomoegawa Paper Co., Ltd. Method for forming monolayer powder film
US6660326B2 (en) 2000-08-04 2003-12-09 Tomoegawa Paper Co. Ltd. Production method for monolayer powder film and production apparatus therefor
US7014712B2 (en) 2000-08-04 2006-03-21 Tomoegawa Paper Co., Ltd. Production apparatus for a monolayer powder film on a base material in a shape of an elongated film
WO2004108304A1 (en) * 2003-06-06 2004-12-16 Intermetallics Co., Ltd. Adhesive layer forming method
US7354621B2 (en) 2003-06-06 2008-04-08 Intermetallics Co., Ltd. Method for forming adhesive layer
EP1645338A4 (en) * 2003-06-06 2006-11-02 Intermetallics Co Ltd Adhesive layer forming method
JP2005290460A (en) * 2004-03-31 2005-10-20 Fujitsu Ltd Powder preparation method and apparatus
JP2006128426A (en) * 2004-10-29 2006-05-18 Tdk Corp Rare earth sintered magnet and its producing process
JP4539288B2 (en) * 2004-10-29 2010-09-08 Tdk株式会社 Rare earth sintered magnet
JP2008053668A (en) * 2006-08-23 2008-03-06 Makoto Yafuji Ferrite magnet
WO2008032426A1 (en) 2006-09-15 2008-03-20 Intermetallics Co., Ltd. PROCESS FOR PRODUCING SINTERED NdFeB MAGNET
US8420160B2 (en) 2006-09-15 2013-04-16 Intermetallics Co., Ltd. Method for producing sintered NdFeB magnet
JP2008294469A (en) * 2008-08-04 2008-12-04 Inter Metallics Kk METHOD OF MANUFACTURING NdFeB-BASED SINTERED MAGNET, AND MOLD FOR MANUFACTURING NdFeB-BASED SINTERED MAGNET
JP2013219352A (en) * 2012-04-04 2013-10-24 Gm Grobal Technology Operations Llc Vibrator for performing powder coating
JP2013244534A (en) * 2012-05-29 2013-12-09 Toyota Motor Corp Method of surface treatment and facing agent
US9605157B2 (en) 2012-05-29 2017-03-28 Toyota Jidosha Kabushiki Kaisha Surface treatment method and coating agent

Also Published As

Publication number Publication date
JP2991544B2 (en) 1999-12-20

Similar Documents

Publication Publication Date Title
US5273782A (en) Coated parts with film having powder-skeleton structure, and method for forming coating
US4655832A (en) Blast material for mechanical plating and continuous mechanical plating using the same
JPH05302176A (en) Method for forming coating film
US5505990A (en) Method for forming a coating using powders of different fusion points
KR100374398B1 (en) HIGH CORROSION-RESISTANT R-Fe-B BASE BONDED MAGNET AND METHOD OF MANUFACTURING THE SAME
CN100351420C (en) Method for supersonic flame spraying crystallizer brass plate
JPH05237439A (en) Method for forming film
JPH09205013A (en) Bond magnet having rust-resistant coat layer and its rust-resistant coating method
KR100371786B1 (en) METHOD OF MANUFACTURING R-Fe-B BOND MAGNETS OF HIGH CORROSION RESISTANCE
JPH08186016A (en) Bonded magnet having plating film and manufacturing method thereof
EP0178135A2 (en) Impact plating powdered metal on to metallic articles
JP2000133541A (en) Manufacture of corrosion-resistant r-fe-b bonded magnet
US5529237A (en) Method of forming a metallic coating layer utilizing media having high energy
JPH0927432A (en) Manufacture of highly anticorrosive r-fe-b bond magnet
JP3159534B2 (en) Parts having a coating containing powder
US3164448A (en) Preparation of metallic surfaces for cladding with comminuted metals and the products so clad
JP3927103B2 (en) Rare earth magnet film forming method
JP3482225B2 (en) Film formation method
JPH0927433A (en) Manufacture of highly acticorrosive r-fe-b bond magnet
JPH07313923A (en) Formation of solid lubricating film
JPH11195515A (en) High-corrosive r-fe-b bonded magnet and manufacture thereof
JP3293223B2 (en) Film formation method
JPH0762559A (en) Formation of powder film
JPH11233324A (en) Highly corrosion-resistant r-fe-b bond magnet and its manufacture
JPH11335640A (en) Tack agent for powdery film formation and powdery film formation using the same

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20071015

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081015

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees