JPH0529707A - Manufacture of internal current constriction type semiconductor laser element - Google Patents

Manufacture of internal current constriction type semiconductor laser element

Info

Publication number
JPH0529707A
JPH0529707A JP18272891A JP18272891A JPH0529707A JP H0529707 A JPH0529707 A JP H0529707A JP 18272891 A JP18272891 A JP 18272891A JP 18272891 A JP18272891 A JP 18272891A JP H0529707 A JPH0529707 A JP H0529707A
Authority
JP
Japan
Prior art keywords
layer
contact layer
type semiconductor
semiconductor laser
current confinement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18272891A
Other languages
Japanese (ja)
Inventor
Kunio Matsubara
邦雄 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP18272891A priority Critical patent/JPH0529707A/en
Publication of JPH0529707A publication Critical patent/JPH0529707A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To improve efficiency of measurement and evaluation work for deciding quality of elements under the bar condition after forming a cleavage on a wafer in order to reduce mistake on judgement for the measurement by providing a substrate to a vacuum deposition source with an inclination at the time of vacuum deposition of electrodes on the surface of a second contact layer. CONSTITUTION:A SiO2 film 9a is deposited on the entire surface of a wafer and the SiO2 film is removed leaving the SiO2 film 9a only on the area for isolating elements. next, a current constriction layer 8 of a second contact layer 7b is grown. When a p-side electrode 10 is to be formed on a contact layer 7, a wafer is set with inclination against the vacuum deposition source using the inclined vacuum deposition technique. Vacuum deposition to the on of the side surfaces of the second contact layer 7b provided opposed to the vacuum deposition source is shielded by the other second contact layer 7b and thereby the electrode 10 between elements is isolated. After formation of the electrode of n-side, under the bar condition after formation of cleavage, characteristics of elements are measured. Thereby, the yield during measurement can be improved and productivity of elements can also be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は内部電流狭窄型半導体レ
ーザ素子の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing an internal current confinement type semiconductor laser device.

【0002】[0002]

【従来の技術】内部電流狭窄型半導体レーザ素子は、図
2に示す構造を有するものが知られており、通常の外部
電流狭窄型半導体レーザ素子では得られない優れた特徴
を持っている。図2は内部電流狭窄型半導体レーザ素子
の正面から見た模式断面図であり、図2のようにこの素
子はGaAs基板1の上に第1クラッド層2,活性層
3,第2クラッド層4,エッチングストップ層5,第3
クラッド層6,コンタクト層がこの順に形成されてお
り、第3クラッド層6とコンタクト層に形成されたス
トライプ状メサ部のレーザ光進行方向と平行な両側面を
電流狭窄層8で埋め込んである。この電流狭窄層8は光
の吸収層の役割を持っており、エッチングストップ層5
上の第3クラッド層6の正面から見た幅を適切に選ぶこ
とにより、素子の安定な横モード発振を可能とし、さら
に外部電流狭窄型素子に比べて、電流狭窄層8が活性層
3の発光領域に近いため、電流が活性層3の一部に集中
して流れ、発振しきい値電流を低減させることができる
ものである。
2. Description of the Related Art An internal current constriction type semiconductor laser device having a structure shown in FIG. 2 is known, and has excellent characteristics which cannot be obtained by a usual external current confinement type semiconductor laser device. FIG. 2 is a schematic cross-sectional view of the internal current confinement type semiconductor laser device seen from the front. As shown in FIG. 2, this device has a first cladding layer 2, an active layer 3, a second cladding layer 4 on a GaAs substrate 1. , Etching stop layer 5, third
The clad layer 6 and the contact layer 7 are formed in this order, and both side surfaces of the stripe-shaped mesa formed in the third clad layer 6 and the contact layer 7 parallel to the laser light traveling direction are filled with the current confinement layer 8. is there. The current confinement layer 8 has a role of a light absorption layer, and the etching stop layer 5
By appropriately selecting the width of the third cladding layer 6 viewed from the front, stable transverse mode oscillation of the device is possible, and further, the current confinement layer 8 has a smaller active layer 3 than the external current confinement type device. Since it is close to the light emitting region, current concentrates in a part of the active layer 3 and the oscillation threshold current can be reduced.

【0003】このように、内部電流狭窄型半導体レーザ
素子は、高出力化に適した構造を持っており、通常次の
ようにして製造される。図3(a)〜(d)はその主な
工程順を示したものであり、図1と共通部分を同一符号
で表わしてある。まず基板1(n−GaAs,厚さ30
0μm,キャリア濃度3×1018/cm3 )上に、減圧M
OCVD法(有機金属気相成長法)を用いて第1クラッ
ド層2(n−Alx Ga1-x As,厚さ1.5μm,キ
ャリア濃度5×1017/cm3 ),活性層3(p−Alx
Ga1-x As,厚さ0.1μm,キャリア濃度3×10
17/cm3 ),第2クラッド層4(p−Alx Ga1-x
s,厚さ1.5μm,キャリア濃度5×1017/c
m3 ),エッチングストップ層5(p−Aly Ga1-y
As,厚さ0.1μm,キャリア濃度5×1017/c
m3 ),第3クラッド層6(p−Alx Ga 1-x As,
厚さ1.2μm,キャリア濃度1×1018/cm3 ),第
一のコンタクト層7a(p−GaAs,厚さ0.5μ
m,キャリア濃度1×1018/cm3 )を順次成長させ
る。ただし、活性層3,第2クラッド層4,エッチング
ストップ層5,第3クラッド層6のAl組成z,x,y
はz<y<xの関係となるように設定する。[図3
(a)]。
Thus, the internal current confinement type semiconductor laser
The device has a structure suitable for high output, and is usually
Manufactured in this way. 3 (a) to 3 (d) are the main
It shows the order of steps, and the same parts as those in FIG.
It is represented by. First, the substrate 1 (n-GaAs, thickness 30)
0 μm, carrier concentration 3 × 1018/cm3) On the reduced pressure M
Using the OCVD method (metalorganic vapor phase epitaxy),
Layer 2 (n-AlxGa1-xAs, thickness 1.5 μm, key
Carrier concentration 5 × 1017/cm3), Active layer 3 (p-Alx
Ga1-xAs, thickness 0.1 μm, carrier concentration 3 × 10
17/cm3), The second cladding layer 4 (p-AlxGa1-xA
s, thickness 1.5 μm, carrier concentration 5 × 1017/ C
m3), Etching stop layer 5 (p-AlyGa1-y
As, thickness 0.1 μm, carrier concentration 5 × 1017/ C
m3), The third cladding layer 6 (p-AlxGa 1-xAs,
Thickness 1.2 μm, carrier concentration 1 × 1018/cm3), No.
One contact layer 7a (p-GaAs, thickness 0.5 μ
m, carrier concentration 1 × 1018/cm3) Grows sequentially
It However, active layer 3, second cladding layer 4, etching
Al composition z, x, y of the stop layer 5 and the third cladding layer 6
Is set so that z <y <x. [Figure 3
(A)].

【0004】次にこの積層体の上面全面にSiO2 膜9
をスパッタにより付着させ、フォトレジストを塗布して
パターニングし、幅5μmのSiO2 膜9をストライプ
状に形成してレジストを除去した後、SiO2膜9をマ
スクとして、はじめに硫酸系エッチング液(硫酸:過酸
化水素水:水=10:1:1),次に沃素系エッチング
液(沃素:過酸化水素水:水=100:1:1)を用い
て第3クラッド層6、第一のコンタクト層7aのエッチ
ングを行ない、第3クラッド層6の途中までエッチング
して、ストライプ状メサ部を形成する[図3(b)]。
このとき、沃素系エッチング液のAl組成に対するエッ
チング速度の違いを利用して、エッチングストップ層5
の位置で第3クラッド層6のエッチングを停止させるこ
とができる。例えば、第3クラッド層6のAl組成xを
0.45,エッチングストップ層5のAl組成yを0.
2とした場合、エッチング速度の比は5:1であり、こ
のエッチング速度の差を利用して、第3クラッド層6の
エッチングを停止させるのである。
Next, the SiO 2 film 9 is formed on the entire upper surface of this laminated body.
Are deposited by sputtering, a photoresist is applied and patterned, a SiO 2 film 9 having a width of 5 μm is formed in a stripe shape, and the resist is removed. Then, the SiO 2 film 9 is used as a mask to first remove a sulfuric acid-based etching solution (sulfuric acid). : Hydrogen peroxide water: water = 10: 1: 1), and then an iodine-based etching solution (iodine: hydrogen peroxide water: water = 100: 1: 1) is used to form the third clad layer 6 and the first contact. The layer 7a is etched, and the third cladding layer 6 is partially etched to form a stripe-shaped mesa portion [FIG. 3 (b)].
At this time, the etching stop layer 5 is utilized by utilizing the difference in etching rate with respect to the Al composition of the iodine-based etching solution.
At this position, the etching of the third cladding layer 6 can be stopped. For example, the Al composition x of the third cladding layer 6 is 0.45, and the Al composition y of the etching stop layer 5 is 0.
When it is set to 2, the etching rate ratio is 5: 1, and the etching of the third cladding layer 6 is stopped by utilizing this difference in etching rate.

【0005】次いでSiO2 膜9を付着させたまま再度
減圧MOCVD法を用いて電流狭窄層8(n−GaA
s,厚さ1.7μm,キャリア濃度5×1019/cm3
をメサ部の両側に選択成長させる[図3(c)]。
Next, the current confinement layer 8 (n-GaA) is again formed by using the low pressure MOCVD method with the SiO 2 film 9 attached.
s, thickness 1.7 μm, carrier concentration 5 × 10 19 / cm 3 )
Are selectively grown on both sides of the mesa portion [FIG. 3 (c)].

【0006】そして、SiO2 膜9を除去し、さらにM
OCVD法を用いてp−GaAsの第二のコンタクト層
7bを3μm再成長させ、始めに形成された第一のコン
タクト層7aと一体となるようにコンタクト層を形成
する。これは素子をレーザ発振させるときの放熱効果を
高めるように、素子の活性層3側の面をヒートシンクに
マウントする際、半田材料が発光領域を塞がないように
するためである。[図3(d)]。
Then, the SiO 2 film 9 is removed, and M
The second contact layer 7b of p-GaAs is regrown by 3 μm by using the OCVD method, and the contact layer 7 is formed so as to be integrated with the first contact layer 7a formed first. This is to prevent the solder material from blocking the light emitting region when the surface of the element on the active layer 3 side is mounted on the heat sink so as to enhance the heat radiation effect when the element oscillates. [FIG.3 (d)].

【0007】以上のような積層構造は、基板1となる半
導体ウエハ上に形成される多数個の素子について行なわ
れるものであり、このウェハの上下両面にそれぞれp側
オーミック電極10としてAuZn,n側オーミック電
極11としてAuGeを形成し、その後バー状に劈開
し、さらにチップ化を行なって、図2に示す内部電流狭
窄型半導体レーザ素子を得ることができる。
The laminated structure as described above is performed for a large number of elements formed on a semiconductor wafer which becomes the substrate 1. The AuZn, n side is formed as the p-side ohmic electrodes 10 on the upper and lower surfaces of the wafer, respectively. By forming AuGe as the ohmic electrode 11 and then cleaving it into a bar shape and further chipping, the internal current confinement type semiconductor laser device shown in FIG. 2 can be obtained.

【0008】[0008]

【発明が解決しようとする課題】しかし、以上の方法に
より内部電流狭窄型半導体レーザ素子を製造するとき、
次のような問題がある。それは、得られた半導体レーザ
素子のチップを、組み立てて製品とする前に、多数のチ
ップの電気的な特性を個別に測定して、これらの中から
良品を選別するのにかなりの時間を要することである。
それぞれのチップの大きさは、縦横寸法が0.3mm角
程度の極めて小さなものであるから、この選別を手作業
で行なうとすれば、非常に時間がかかり、また自動測定
を行なう場合も、このように小さなチップを精度よくレ
ーザ光出射方向に揃えるのが非常に難しい。チップとす
る前のウエハを劈開したバーの状態では、その大きさは
0.3mm角で長さが20mm程度あるから、この状態
で特性測定を行なえば、取扱いやすくなり、所要時間も
短くて済ませられるが、そのバー上に形成されているそ
れぞれのチップの特性を分離するのが難しく、良品と不
良品との区別に誤判断を起こすことがある。即ち、バー
状のウエハには複数個の素子が含まれており、互いに分
離されていないから電流が重畳して流れると、所期の光
出力を得るためには見掛け上電流が大き過ぎ、個々の素
子について、良品を不良品として扱ってしまうことであ
る。
However, when the internal current confinement type semiconductor laser device is manufactured by the above method,
There are the following problems. It takes a considerable time to individually measure the electrical characteristics of a large number of chips before assembling the obtained semiconductor laser device chips into products and to select good products from these. That is.
The size of each chip is extremely small, with vertical and horizontal dimensions of about 0.3 mm square, so if this sorting is done manually, it will take a very long time, and even if automatic measurement is performed, this It is very difficult to accurately align such small chips in the laser beam emission direction. In the state of the bar cleaved from the wafer before being made into chips, the size is 0.3 mm square and the length is about 20 mm, so if the characteristics are measured in this state, it will be easy to handle and the time required will be short. However, it is difficult to separate the characteristics of each chip formed on the bar, and an erroneous determination may be made in distinguishing a good product from a defective product. That is, since the bar-shaped wafer contains a plurality of elements and they are not separated from each other, if currents flow in superposition, the apparent currents are too large to obtain the desired optical output, and the individual With regard to the element, the non-defective product is treated as a defective product.

【0009】本発明は上述の点に鑑みてなされたもので
あり、その目的は、内部電流狭窄型半導体レーザ素子を
製造するに当たり、ウエハ劈開後のバー状態で素子の良
否を判定する特性測定を、測定作業の効率よくしかも測
定上の判断ミスなく行なうことができる製造方法を提供
することにある。
The present invention has been made in view of the above-mentioned points, and an object thereof is to perform a characteristic measurement for determining the quality of an element in a bar state after wafer cleavage in manufacturing an internal current confinement type semiconductor laser element. SUMMARY OF THE INVENTION It is an object of the present invention to provide a manufacturing method capable of efficiently performing a measurement operation and making a measurement error.

【0010】[0010]

【課題を解決するための手段】上記の課題を解決するた
めに、本発明は内部電流狭窄型半導体レーザ素子を製造
する過程において、電流狭窄層を形成した後、その表面
上に素子を分離するSiO2 膜をレーザ光進行方向と平
行にパターニングした後、第二のコンタクト層を選択的
に成長させるものであり、第二のコンタクト層表面に電
極を蒸着するとき、蒸着源に対して基板を素子のレーザ
光進行方向と傾けて配置し、隣合って対向する第二のコ
ンタクト層の両側面の一方にのみレーザ光進行方向と平
行な方向に電極を形成する。
In order to solve the above-mentioned problems, the present invention forms a current confinement layer in the process of manufacturing an internal current confinement type semiconductor laser device and then separates the device on the surface thereof. The second contact layer is selectively grown after the SiO 2 film is patterned in parallel with the laser beam traveling direction. When the electrode is vapor-deposited on the surface of the second contact layer, the substrate is placed against the vapor deposition source. The element is arranged so as to be inclined with respect to the laser light traveling direction, and an electrode is formed in a direction parallel to the laser light traveling direction only on one of both side surfaces of the second contact layer which are adjacent and opposed to each other.

【0011】[0011]

【作用】本発明は以上の方法を用いることにより、エピ
タキシャル成長の段階で素子を分離しているので、ウエ
ハ劈開後のバー状態で特性の測定を行なうとき、短時間
にしかも個々の素子について特性の良否を誤って判断す
ることがなくなり、測定時の歩留りも向上する。
According to the present invention, since the elements are separated at the stage of epitaxial growth by using the above method, when the characteristics are measured in the bar state after the cleavage of the wafer, the characteristics of individual elements can be measured in a short time. There is no erroneous determination of pass / fail, and the yield at the time of measurement is improved.

【0012】[0012]

【実施例】以下本発明を実施例に基づき説明する。本発
明の方法は、図3(c)の電流狭窄層8をメサ部の両側
に選択成長させる過程までは、従来と同じであるからそ
の説明を省略し、その後の工程を図1(a)〜(c)を
参照して述べるが、ここでは、素子の分離個所を図示す
るために、説明の便宜上、二つの素子構造を有する領域
で示してある。図1(a)〜(c)における図3(a)
〜(d)と共通する部分を同一符号で表わす。
EXAMPLES The present invention will be described below based on examples. The method of the present invention is the same as the conventional method up to the step of selectively growing the current confinement layer 8 of FIG. 3C on both sides of the mesa portion, and therefore the description thereof is omitted and the subsequent steps are illustrated in FIG. Although the description will be made with reference to (c) to (c), in order to illustrate the isolation portion of the element, it is shown as a region having two element structures for convenience of description. FIG. 3A in FIGS. 1A to 1C
Parts common to (d) are represented by the same reference numerals.

【0013】本発明では、まず図3(c)に相当するS
iO2 膜9を除去した後、再びウエハ全面にSiO2
9aを付着させて、素子を分離する個所にのみSiO2
膜9aを残し、それ以外の個所に付着しているSiO2
膜9aは除去する[図1(a)]。
In the present invention, first, S corresponding to FIG.
iO 2 After the film 9 is removed, by adhering SiO 2 film 9a on the entire wafer surface again, SiO only point to separate the element 2
SiO 2 adhered to other parts except the film 9a
The film 9a is removed [FIG. 1 (a)].

【0014】次に、再度MOCVD法を用いて、第二の
コンタクト層7bを3μm再成長させる。このとき、電
流狭窄層8を成長させたときと同様に、第二のコンタク
ト層7bの選択成長が行なわれ、第一のコンタクト層7
aと一体に形成されるコンタクト層は、素子毎に完全
に分離される[図1(b)]。
Next, the second contact layer 7b is regrown to 3 μm by MOCVD again. At this time, as in the case of growing the current confinement layer 8, the selective growth of the second contact layer 7b is performed, and the first contact layer 7 is formed.
The contact layer 7 formed integrally with a is completely separated for each element [FIG. 1 (b)].

【0015】かくして形成された複数個のコンタクト層
は、第2クラッド層4の表面上でSiO2 膜9aを挟
んで隣り合う側面同士が、傾斜して対向するようになる
ので、コンタクト層上にp側電極10を形成すると
き、斜め蒸着の手法を用いて、このウエハを蒸着源に対
し、傾けてセットする。そして電極材料の蒸着を行なう
と、傾斜して対向する第二のコンタクト層7bの側面の
一方は、他方の第二のコンタクト層7bによって蒸着が
遮られ、その面には蒸着が行なわれず、素子間の電極1
0も分離させることができる[図1(c)]。
A plurality of contact layers thus formed
In the case of forming the p-side electrode 10 on the contact layer 7 , the side surfaces of the second cladding layer 4 which are adjacent to each other with the SiO 2 film 9a sandwiched therebetween face each other with an inclination. Using a vapor deposition technique, this wafer is set at an angle to the vapor deposition source. When the electrode material is vapor-deposited, one of the side surfaces of the second contact layer 7b, which is inclined and faces the other side, is blocked from vapor deposition by the other second contact layer 7b, and vapor deposition is not performed on that surface. Electrode 1 between
0 can also be separated [Fig. 1 (c)].

【0016】次いで、n側電極(図示せず)を形成した
後、バー状に劈開し、チップ化を行ない、本発明の方法
を用いた内部電流狭窄型半導体レーザ素子が得られる。
このようにして得られる内部電流狭窄型半導体レーザ素
子を、劈開終了後のバーの状態で、そのバーに属する素
子の特性測定を行ない、同時に従来の方法により作製し
たバー状のものも測定し、良品と不良品との分別作業に
おける測定時の誤判断の割合を比較した。その結果、本
発明の方法により作製した素子は、良否の判断ミスは2
%であったのに対し、従来の方法により作製した素子は
38%であり、本発明の方法を用いることにより、36
%も判断ミスを減少させることができた。これは、測定
したバーに形成されている多数個の素子が、互いによく
分離され電気的に相互の影響を及ぼすことがないからで
ある。
Next, after forming an n-side electrode (not shown), it is cleaved into a bar shape and chipped to obtain an internal current confinement type semiconductor laser device using the method of the present invention.
The internal current confinement type semiconductor laser device obtained in this manner is measured for the characteristics of the devices belonging to the bar in the state of the bar after the end of cleavage, and at the same time, the bar-shaped one manufactured by the conventional method is also measured. The rate of misjudgment at the time of measurement in the separation work of good products and defective products was compared. As a result, in the element manufactured by the method of the present invention, the number of erroneous judgments of quality is 2
%, Whereas the element produced by the conventional method is 38%, and by using the method of the present invention,
% Could also reduce judgment errors. This is because the large number of elements formed on the measured bar are well separated from each other and do not electrically affect each other.

【0017】なお、本発明の方法において、コンタクト
上にp側電極10を形成するのを、斜め蒸着の手法
を用いる代わりに、図1(b)の状態からコンタクト層
の表面、即ち第二のコンタクト層7bの表面全面に、
p側電極10を付着させた後、これをパターニングして
素子を分離しても、前述と同様の構造を持つ素子を得る
ことができる。このようにして作製したバーについての
素子特性測定時の良否判別の誤りは1%に過ぎず、この
場合も素子間の分離がよく行なわれていることを示して
いる。
In the method of the present invention, the p-side electrode 10 is formed on the contact layer 7 from the state of FIG. 1 (b) instead of using the oblique deposition method.
7 surface, that is, the entire surface of the second contact layer 7b,
Even if the p-side electrode 10 is attached and then patterned to separate the elements, an element having the same structure as described above can be obtained. The error in the pass / fail judgment at the time of measuring the element characteristics of the bar thus manufactured is only 1%, and in this case as well, it is shown that the elements are often separated.

【0018】[0018]

【発明の効果】本発明は内部電流狭窄型半導体レーザ素
子を製造するに当たり、電流狭窄層を形成した後、その
表面上に素子を分離するSiO2 膜をレーザ光進行方向
と平行にパターニングした後、第二のコンタクト層を選
択的に成長させ、第二のコンタクト層表面に電極を蒸着
することにより、エピタキシャル成長の段階で素子を分
離したために、ウエハ劈開後のバー状態で特性の測定を
行なうとき、効率よくしかも個々の素子について特性の
良否を誤って判断することがないので、測定時の歩留り
も向上し、素子の生産性を高めることができる。
According to the present invention, in manufacturing an internal current confinement type semiconductor laser device, a current confinement layer is formed, and then a SiO 2 film for isolating the device is patterned on the surface thereof in parallel with the laser light traveling direction. , When the characteristics are measured in the bar state after the wafer is cleaved because the elements were separated at the stage of epitaxial growth by selectively growing the second contact layer and depositing the electrode on the surface of the second contact layer. Since the quality of the characteristics of each element is not erroneously judged efficiently, the yield at the time of measurement can be improved, and the productivity of the element can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)〜(c)は本発明による内部電流狭窄型
半導体レーザ素子の製造工程図
1A to 1C are manufacturing process diagrams of an internal current confinement type semiconductor laser device according to the present invention.

【図2】内部電流狭窄型半導体レーザ素子の模式断面図FIG. 2 is a schematic cross-sectional view of an internal current confinement type semiconductor laser device.

【図3】(a)〜(d)は内部電流狭窄型半導体レーザ
素子の製造工程図
3A to 3D are manufacturing process diagrams of an internal current confinement type semiconductor laser device.

【符号の説明】[Explanation of symbols]

1 基板 2 第1クラッド層 3 活性層 4 第2クラッド層 5 エッチングストップ層 6 第3クラッド層 コンタクト層 7a 第一のコンタクト層 7b 第二のコンタクト層 8 電流狭窄層 9 SiO2 膜 9a SiO2 膜 10 p側電極 11 n側電極1 substrate 2 first clad layer 3 active layer 4 second clad layer 5 etching stop layer 6 third clad layer 7 contact layer 7a first contact layer 7b second contact layer 8 current confinement layer 9 SiO 2 film 9a SiO 2 Membrane 10 p-side electrode 11 n-side electrode

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】半導体基板の一主面上に少なくとも第1ク
ラッド層,活性層,第2クラッド層,第3クラッド層,
および第一のコンタクト層を順次形成し、前記第一のコ
ンタクト層が前記第3クラッド層に形成されるメサ部上
面と接触する領域のレーザ光進行方向と平行な両側面
に、前記第2クラッド層とは逆導電型の電流狭窄層を埋
め込み、この電流狭窄層は前記第2クラッド層の前記活
性層と反対側の面で第二のコンタクト層と接触し、前記
第一のコンタクト層と前記第二のコンタクト層が一体と
なる素子構造を前記基板上に多数形成する内部電流狭窄
型半導体レーザ素子の製造方法であって、前記電流狭窄
層を形成した後、その表面上に素子を分離するSiO2
膜をレーザ光進行方向と平行にパターニングする工程
と、前記第二のコンタクト層を選択的に成長させる工程
とを有することを特徴とする内部電流狭窄型半導体レー
ザ素子の製造方法。
1. A semiconductor substrate having at least a first cladding layer, an active layer, a second cladding layer, and a third cladding layer on a main surface thereof.
And a first contact layer are sequentially formed, and the second clad is formed on both side surfaces parallel to the laser light traveling direction in a region where the first contact layer contacts the upper surface of the mesa formed in the third clad layer. A current confinement layer having a conductivity type opposite to that of the layer is buried, and the current confinement layer is in contact with the second contact layer on the surface of the second cladding layer opposite to the active layer, and the first contact layer and the first contact layer. A method of manufacturing an internal current confinement type semiconductor laser device, comprising forming a plurality of device structures having a second contact layer integrated on the substrate, wherein the device is separated on the surface after forming the current confinement layer. SiO 2
A method of manufacturing an internal current constriction type semiconductor laser device, comprising: a step of patterning a film parallel to a laser light traveling direction; and a step of selectively growing the second contact layer.
【請求項2】請求項1記載の選択成長した第二のコンタ
クト層表面に蒸着法を用いて電極を形成するに当たり、
蒸着源に対して基板を素子のレーザ光進行方向と傾けて
配置し、隣合って対向する前記第二のコンタクト層の両
側面の一方にのみ前記レーザ光進行方向と平行な方向に
電極を形成することを特徴とする内部電流狭窄型半導体
レーザ素子の製造方法。
2. When forming an electrode on the surface of the selectively grown second contact layer according to claim 1 by an evaporation method,
The substrate is arranged so as to be inclined with respect to the vapor deposition source with respect to the laser beam traveling direction of the device, and electrodes are formed on one of both side surfaces of the second contact layer which are adjacent and opposed to each other in a direction parallel to the laser beam traveling direction. A method of manufacturing an internal current constriction type semiconductor laser device, comprising:
JP18272891A 1991-07-24 1991-07-24 Manufacture of internal current constriction type semiconductor laser element Pending JPH0529707A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18272891A JPH0529707A (en) 1991-07-24 1991-07-24 Manufacture of internal current constriction type semiconductor laser element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18272891A JPH0529707A (en) 1991-07-24 1991-07-24 Manufacture of internal current constriction type semiconductor laser element

Publications (1)

Publication Number Publication Date
JPH0529707A true JPH0529707A (en) 1993-02-05

Family

ID=16123409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18272891A Pending JPH0529707A (en) 1991-07-24 1991-07-24 Manufacture of internal current constriction type semiconductor laser element

Country Status (1)

Country Link
JP (1) JPH0529707A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11177184A (en) * 1997-12-11 1999-07-02 Ricoh Co Ltd Semiconductor laser device and its manufacture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11177184A (en) * 1997-12-11 1999-07-02 Ricoh Co Ltd Semiconductor laser device and its manufacture

Similar Documents

Publication Publication Date Title
US4835783A (en) Semiconductor laser
JPH11330609A (en) Surface-emission laser with monitor and manufacture thereof
US6654396B1 (en) Semiconductor laser device and method for fabricating thereof
US7537945B2 (en) Semiconductor laser device and method of manufacturing the same, and optical transmission module and optical disk apparatus using the semiconductor laser device
JPH0529707A (en) Manufacture of internal current constriction type semiconductor laser element
EP1130727A2 (en) Method of fabricating a semiconductor light-emitting device and the semiconductor light-emitting device
JPH09205250A (en) Lateral current injection type surface emitting semiconductor laser device and its manufacture
JP3505913B2 (en) Method for manufacturing semiconductor light emitting device
JPH0437598B2 (en)
JPH0770779B2 (en) Semiconductor laser manufacturing method
JPH0629618A (en) Multibeam semiconductor laser and manufacturing method thereof
JPH06310800A (en) Fabrication of semiconductor laser
JPH06112592A (en) Fabrication of semiconductor laser element
JP2674592B2 (en) Semiconductor laser
US20040264534A1 (en) Semiconductor laser device and method for manufacturing the same
JPH07131110A (en) Manufacture of semiconductor laser device
JPH08116134A (en) Manufacture of semiconductor laser element
JP2005123416A (en) Surface emitting laser element and manufacturing method thereof, and surface emitting laser array and optical transmission system
JP4839497B2 (en) Semiconductor light emitting device and method for manufacturing semiconductor light emitting device
JPH11284276A (en) Semiconductor laser device and its manufacture
JPH03185889A (en) Semiconductor laser element and manufacture thereof
JPH08340151A (en) Manufacture of semiconductor laser element
JPH10178200A (en) Semiconductor optically integrated element
KR940008578B1 (en) Surface protection film building method of semiconductor laser diode
JPH07221406A (en) Semiconductor light-emitting device