JPH05296942A - Device for detecting bubble within linear body resin covering - Google Patents

Device for detecting bubble within linear body resin covering

Info

Publication number
JPH05296942A
JPH05296942A JP4121156A JP12115692A JPH05296942A JP H05296942 A JPH05296942 A JP H05296942A JP 4121156 A JP4121156 A JP 4121156A JP 12115692 A JP12115692 A JP 12115692A JP H05296942 A JPH05296942 A JP H05296942A
Authority
JP
Japan
Prior art keywords
light
linear body
linear
angle
incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4121156A
Other languages
Japanese (ja)
Other versions
JP3189378B2 (en
Inventor
Motohide Yoshida
元秀 吉田
Susumu Inoue
享 井上
Katsuyuki Tsuneishi
克之 常石
Shinya Okuyama
信也 奥山
Takehito Kobayashi
勇仁 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP12115692A priority Critical patent/JP3189378B2/en
Publication of JPH05296942A publication Critical patent/JPH05296942A/en
Application granted granted Critical
Publication of JP3189378B2 publication Critical patent/JP3189378B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

PURPOSE:To detect presence or absence of bubbles within resin covering of a linear body with an improved sensitivity. CONSTITUTION:Light which is irradiated from an He-Ne constant polarization laser 1 is reflected by a mirror 2, advances a light axis b, and then enters a linear body skewly for its longer direction. Light which is branched by a beam splitter 5 halfway impinges on a light receiver 6 for monitoring light source output. Light which impinged on a line 4 to be measured is reflected by surface air bubble within resin covering, partially advances a light axis c, and then impinges on a light receiver 3. A polarization filter and a wavelength selection filter are incorporated in the light receiver 3, thus receiving only light which is irradiated from the He-Ne constant polarization laser 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、線状体の樹脂被覆内の
気泡の検出を、非接触で全長にわたって行なう線状体樹
脂被覆内気泡検出装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a linear-body resin-coated air bubble detection device for detecting air bubbles in a linear resin coating over the entire length in a non-contact manner.

【0002】[0002]

【従来の技術】従来より、線状体の品質検査、例えば、
光ファイバの樹脂被覆内の気泡の有無の検査が行なわれ
ている。特に、光ファイバでは、その樹脂被覆内に気泡
が混入していると、光通信に用いた場合、光ファイバ設
置後、低温時に伝送損失が増加することがある。そのた
め、光ファイバ樹脂被覆中に混入した気泡を検出するこ
とは、光ファイバの品質を保証する上で重要な項目であ
る。
2. Description of the Related Art Conventionally, quality inspection of linear objects, for example,
The presence or absence of air bubbles in the resin coating of an optical fiber is inspected. Particularly in an optical fiber, if air bubbles are mixed in the resin coating, when used for optical communication, the transmission loss may increase at a low temperature after the optical fiber is installed. Therefore, detecting air bubbles mixed in the optical fiber resin coating is an important item for ensuring the quality of the optical fiber.

【0003】光ファイバ内部の異常を検知する方法とし
て、特表平3−503937号公報に示されているよう
に、製造中の光ファイバの軸に垂直な方向から平行光を
照射し、その散乱光を受光し、受光量の変化を検知する
方法が考えられている。この方法においては、外観不
良、傷などの光ファイバの異常について、検出可能であ
る。しかし、この方法は、線状体表面の反射の影響が大
きく、かつ微少な外径変動や、ゴミなどで出力の変化が
生じ、気泡以外に起因する散乱光も検出してしまう。そ
のため、線状体の被覆樹脂内の気泡に起因する出力を抽
出できず、光ファイバの異常検出において最も重要な項
目である光ファイバの樹脂被覆内の気泡の検出について
は、検出能力が低いものであった。
As a method of detecting an abnormality inside an optical fiber, as shown in Japanese Patent Publication No. 3-503937, parallel light is irradiated from a direction perpendicular to the axis of the optical fiber being manufactured, and its scattering is performed. A method of receiving light and detecting a change in the amount of received light has been considered. With this method, it is possible to detect abnormalities in the optical fiber such as a defective appearance and scratches. However, in this method, the influence of the reflection on the surface of the linear body is large, and the output changes due to a slight fluctuation in the outer diameter or dust, and scattered light caused by other than bubbles is also detected. Therefore, it is not possible to extract the output caused by the air bubbles in the coating resin of the linear body, and the detection capability of the air bubbles in the resin coating of the optical fiber, which is the most important item in the detection of abnormality of the optical fiber, is low. Met.

【0004】[0004]

【発明が解決しようとする課題】本発明は、上述の問題
に鑑みてなされたもので、線状体の樹脂被覆内の気泡の
有無を、感度良く検出することを目的とするものであ
る。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and an object thereof is to detect the presence or absence of air bubbles in the resin coating of the linear body with high sensitivity.

【0005】[0005]

【課題を解決するための手段】本発明は、樹脂被覆を有
する線状体に光を照射し、その散乱光の変化から前記樹
脂被覆中に含まれる気泡を検出する線状体樹脂被覆内気
泡検出装置において、請求項1記載の発明では、前記線
状体の検出領域に、前記線状体の長手方向に対し斜め方
向から光を照射する光照射手段と、前記検出領域からの
散乱光を受光する受光器を有することを特徴とするもの
である。
DISCLOSURE OF THE INVENTION The present invention is to irradiate a linear body having a resin coating with light and detect bubbles contained in the resin coating from the change of scattered light thereof. In the detection device according to the invention of claim 1, a light irradiation unit that irradiates the detection area of the linear body with light obliquely to the longitudinal direction of the linear body, and scattered light from the detection area is provided. It is characterized by having a light receiver for receiving light.

【0006】請求項2記載の発明は、請求項1の発明に
おいて、線状体に入射する照射光軸と、線状体の長手方
向に対し垂直な軸とのなす角度が、5゜〜70゜である
ことを特徴とするものである。
According to a second aspect of the invention, in the invention of the first aspect, the angle formed by the irradiation optical axis incident on the linear body and the axis perpendicular to the longitudinal direction of the linear body is 5 ° to 70 °. It is characterized by being °.

【0007】請求項3記載の発明は、請求項1または2
の発明において、照射光が、線状体の長手方向に対し垂
直な方向の直線偏光であることを特徴とするものであ
る。
The invention according to claim 3 is the same as claim 1 or 2.
In the invention, the irradiation light is linearly polarized light in a direction perpendicular to the longitudinal direction of the linear body.

【0008】請求項4記載の発明は、請求項1、2また
は3の発明において、受光部に線状体の長手方向に対し
垂直な方向の直線偏光を透過させる検光子を設けたこと
を特徴とするものである。
According to a fourth aspect of the invention, in the first, second or third aspect of the invention, the light receiving portion is provided with an analyzer for transmitting linearly polarized light in a direction perpendicular to the longitudinal direction of the linear body. It is what

【0009】また、請求項5記載の発明は、請求項1、
2、3または4の発明において、照射光の強度の変化を
モニタする光源出力モニタ用受光器を設け、散乱光の受
光レベルを補正することを特徴とするものである。
According to the invention of claim 5, the invention according to claim 1
The invention of 2, 3, or 4 is characterized in that a light source output monitor light receiver for monitoring a change in intensity of irradiation light is provided to correct the light reception level of scattered light.

【0010】[0010]

【作用】本発明によれば、請求項1記載の発明において
は、線状体の長手方向に対し、斜め方向から光を照射
し、特に、請求項2記載の発明においては、斜めの角度
を5゜〜70゜とすることによって、気泡からの反射光
量を有効に検出できる。また、そのほかの傷、外観不良
などからの散乱光および迷光の影響を最小限にできるか
ら、気泡検出のS/N比を大幅に向上させることがで
き、微少な樹脂内の気泡でも検出することができる。斜
めの角度は、より望ましくは、20゜〜60゜、さらに
望ましくは、45゜付近とするのがよい。
According to the present invention, in the invention described in claim 1, light is emitted from an oblique direction with respect to the longitudinal direction of the linear body, and particularly, in the invention described in claim 2, the oblique angle is set. By setting the angle to 5 ° to 70 °, the amount of light reflected from the bubbles can be effectively detected. In addition, the influence of scattered light and stray light from other scratches and appearance defects can be minimized, so the S / N ratio for bubble detection can be greatly improved, and even small bubbles in resin can be detected. You can The oblique angle is more preferably 20 ° to 60 °, and further preferably about 45 °.

【0011】請求項3記載の発明においては、照射光
を、線状体長手方向と垂直な方向の直線偏光とし、ま
た、請求項4記載の発明においては、受光部に線状体の
長手方向と垂直な方向の直線偏光を透過させる検光子を
設けたことにより、さらに気泡の検出効果を高めること
ができる。
In the invention according to claim 3, the irradiation light is linearly polarized light in a direction perpendicular to the longitudinal direction of the linear body, and in the invention according to claim 4, the light receiving portion has a longitudinal direction of the linear body. By providing an analyzer that transmits linearly polarized light in a direction perpendicular to the direction, the effect of detecting bubbles can be further enhanced.

【0012】また、請求項5記載の発明においては、光
源出力モニタ用受光器を設け、散乱光の受光レベルを補
正したから、光源出力の時間的出力変動の影響を受けず
に、気泡の検出を行なうことができる。
Further, according to the present invention, since the light source output monitor light receiver is provided to correct the light reception level of the scattered light, the bubble detection can be performed without being affected by the temporal output fluctuation of the light source output. Can be done.

【0013】[0013]

【実施例】図1は、本発明による線状体樹脂被覆内気泡
検出装置の一実施例の模式図であり、図1(A)は側面
図、図1(B)は平面図である。図中、1はHe−Ne
定偏光レーザー、2はミラー、3は受光器、4は被測定
線状体、5はビームスプリッター、6は光源出力モニタ
用受光器である。
FIG. 1 is a schematic view of an embodiment of a bubble detecting device in a linear resin coating according to the present invention. FIG. 1 (A) is a side view and FIG. 1 (B) is a plan view. In the figure, 1 is He-Ne
A constant polarization laser, 2 a mirror, 3 a light receiver, 4 a linear object to be measured, 5 a beam splitter, and 6 a light source output monitor light receiver.

【0014】He−Ne定偏光レーザー1およびミラー
2によって、光照射手段を形成し、被測定線状体4の長
手方向に対して斜めに光を照射する。受光器3は、被測
定線状体4に入射する光軸bと角度θをもって配置され
る。照射光の位置および光軸角度と、受光器の位置およ
び角度θは、樹脂被覆内の気泡からの散乱光が最も強く
受光され、かつ気泡検出に関するS/N比を最大にする
ように、最適な位置および角度で配置される。ビームス
プリッター5は、入射側をミラーとし、反射光を光源出
力モニタ用受光器6に導くようにしている。
The He-Ne constant polarization laser 1 and the mirror 2 form a light irradiation means, and light is obliquely irradiated to the longitudinal direction of the linear body 4 to be measured. The light receiver 3 is arranged at an angle θ with respect to the optical axis b which is incident on the linear body 4 to be measured. The position and the optical axis angle of the irradiation light and the position and the angle θ of the light receiver are optimal so that the scattered light from the bubbles in the resin coating is received most strongly and the S / N ratio for bubble detection is maximized. It is arranged in various positions and angles. The beam splitter 5 has a mirror on the incident side, and guides the reflected light to the light source output monitor light receiver 6.

【0015】ミラー2は必ず必要なものではなく、He
−Ne定偏光レーザー1から直接被測定線状体4に光を
照射しても良い。また、ビームスプリッター5をミラー
2の代わりに用い、透過光を光源出力モニタ用受光器6
へ、反射光を被測定線状体4へ入射させても良い。しか
し、ミラー2を用いることにより、He−Ne定偏光レ
ーザー1と受光器3およびその他の図示されていない回
路等を、被測定線状体4に対して片側にまとめることが
でき、装置の小型化が可能となる。小型化のために、各
光路にミラーを1枚または複数枚用いて良いことは当然
であって、例えば、ビームスプリッター5と光源出力モ
ニタ用受光器6との間にミラーを設け、光源出力モニタ
用受光器6を、He−Ne定偏光レーザー1および受光
器3と同じ側に配置することもできる。
The mirror 2 is not always necessary, but He
The linear object to be measured 4 may be directly irradiated with light from the Ne constant polarization laser 1. A beam splitter 5 is used instead of the mirror 2, and the transmitted light is used as a light source output monitor light receiver 6
Alternatively, the reflected light may be incident on the linear body 4 to be measured. However, by using the mirror 2, the He-Ne constant polarization laser 1, the light receiver 3 and other circuits (not shown) and the like can be integrated on one side with respect to the linear body 4 to be measured, and the device can be made compact. Can be realized. It is natural that one or a plurality of mirrors may be used for each optical path for downsizing. For example, a mirror is provided between the beam splitter 5 and the light source output monitor light receiver 6, and the light source output monitor is provided. The optical receiver 6 may be arranged on the same side as the He-Ne constant polarization laser 1 and the optical receiver 3.

【0016】上述の実施例につき動作を説明する。He
−Ne定偏光レーザー1から出射された光は、光路aを
進んだのちミラー2で反射され、光路bを進み、ビーム
スプリッター5に入射する。ビームスプリッター5で反
射した光は、光源出力モニタ用受光器6に入射する。一
方、ビームスプリッター5を透過した光は、光路bを進
み、線状体の長手方向に対して斜めに入射される。入射
光は、まず空気と被測定線状体4の樹脂被覆界面にて透
過、反射され、そして被測定線状体4の樹脂被覆内に気
泡がある場合は、その気泡にて反射、透過され、最後に
被測定線状体4の樹脂被覆と空気界面にて反射、透過さ
れる。被測定線状体4の樹脂被覆内に気泡がなければ、
入射光の多くはそのまま直進し、光路dを進む。気泡が
ある場合、気泡表面で入射光は反射され、その一部は光
路cを進み、受光器3に入射する。受光器3には、偏光
フィルタおよび波長選択フィルタが内蔵されており、H
e−Ne定偏光レーザー1から出射された光のみを受光
する。受光器3からは受光した光量に従った電気信号が
出力される。
The operation of the above embodiment will be described. He
The light emitted from the -Ne constant polarization laser 1 travels along the optical path a, is then reflected by the mirror 2, travels along the optical path b, and enters the beam splitter 5. The light reflected by the beam splitter 5 enters the light source output monitor light receiver 6. On the other hand, the light transmitted through the beam splitter 5 travels along the optical path b and is obliquely incident on the longitudinal direction of the linear body. The incident light is first transmitted and reflected at the interface between the air and the resin coating of the linear body 4 to be measured, and if there is a bubble in the resin coating of the linear body 4 to be measured, it is reflected and transmitted by the bubble. Finally, it is reflected and transmitted at the interface between the resin coating of the linear object 4 to be measured and the air. If there are no air bubbles in the resin coating of the linear object 4 to be measured,
Most of the incident light goes straight on and goes along the optical path d. When there is a bubble, the incident light is reflected on the surface of the bubble, and a part of it travels along the optical path c and enters the light receiver 3. The light receiver 3 has a built-in polarization filter and wavelength selection filter.
Only the light emitted from the e-Ne constant polarization laser 1 is received. The light receiver 3 outputs an electric signal according to the amount of received light.

【0017】本発明の理論的背景につき説明する。図2
は、本発明の理論的背景の説明図である。図中、21は
空気−線状体面、22は気泡表面、23は線状体−空気
面、n1 は線状体の屈折率、n2 は空気の屈折率、θ1
は入射光の空気−線状体面への入射角、θ2 は同出射
角、θ3 は線状体−空気面への入射角、θ4 は同出射
角、θ5 は気泡表面における入射および反射角、I1
入射光の強度、I2 は線状体内に出射される光の強度、
3 は気泡表面で反射された光の強度、I4 は再び空気
中に出射される光の強度である。
The theoretical background of the present invention will be described. Figure 2
FIG. 3 is an explanatory diagram of a theoretical background of the present invention. In the figure, 21 is the air-linear body surface, 22 is the bubble surface, 23 is the linear body-air surface, n 1 is the refractive index of the linear body, n 2 is the refractive index of air, θ 1
Is the incident angle of incident light on the air-linear surface, θ 2 is the same exit angle, θ 3 is the incident angle on the linear-air surface, θ 4 is the same exit angle, θ 5 is the incident angle on the bubble surface and The reflection angle, I 1 is the intensity of the incident light, I 2 is the intensity of the light emitted into the linear body,
I 3 is the intensity of light reflected on the bubble surface, and I 4 is the intensity of light emitted into the air again.

【0018】上述の一実施例の動作の説明でも述べたよ
うに、入射光が気泡表面において反射した光を受光する
ことを考える。図2に示すように、強度I1 の入射光は
線状体に向かい、空気−線状体面21に角度θ1 で入射
し、角度θ2 、強度I2 で線状体内に出射される。そし
て、気泡があれば、光はその気泡表面22に角度θ5
入射して、同じ角度θ5 で反射し、線状体の入射した側
とは反対の側に向かう。この時の光の強度はI3 であ
る。気泡で反射された光は、線状体−空気面23に角度
θ3 で入射し、角度θ4 、強度I4 で空気中へ出射され
る。この光を受光することとなる。気泡は球状体として
考える。
As described in the description of the operation of the above-described embodiment, consider that the incident light receives the light reflected on the bubble surface. As shown in FIG. 2, the incident light having the intensity I 1 is directed to the linear body, is incident on the air-linear body surface 21 at the angle θ 1 , and is emitted into the linear body at the angle θ 2 and the intensity I 2 . Then, if there is a bubble, the light is incident on the bubble surface 22 at an angle θ 5 , is reflected at the same angle θ 5 , and goes to the side opposite to the incident side of the linear body. The intensity of light at this time is I 3 . The light reflected by the bubbles enters the linear body-air surface 23 at an angle θ 3 and is emitted into the air at an angle θ 4 and an intensity I 4 . This light will be received. Consider the bubbles as spheres.

【0019】以下、上述の光路に沿って説明する。ま
ず、空気−線状体面21における光の透過について考察
する。図2のように、空気−線状体面21に入射光が角
度θ1 で入射し、角度θ2 で出射するとすれば、スネル
の法則により、 n2 sinθ1 =n1 sinθ2 (1) という関係が存在する。
The optical path will be described below. First, the transmission of light on the air-linear body surface 21 will be considered. As shown in FIG. 2, if incident light enters the air-linear body surface 21 at an angle θ 1 and exits at an angle θ 2 , then Snell's law states that n 2 sin θ 1 = n 1 sin θ 2 (1) There is a relationship.

【0020】光の強度については、偏光成分によって透
過する光量が違うから、入射光のP偏光成分の強度をI
P1、S偏光成分の強度をIS1、線状体内に出射される光
のP偏光成分の強度をIP2、S偏光成分の強度をIS2
すれば、 I2 =IP2+IS2=TP1P1+TS1S1 (2) TP1=1−tan2 (θ1 −θ2 )/tan2 (θ1 +θ2 ) TS1=1−sin2 (θ1 −θ2 )/sin2 (θ1 +θ2 ) となる。
Regarding the intensity of light, the intensity of the P-polarized component of the incident light is I
Assuming that the intensity of P1 and S polarization component is I S1 , the intensity of P polarization component of the light emitted into the linear body is I P2 , and the intensity of S polarization component is I S2 , I 2 = I P2 + I S2 = T P1 I P1 + T S1 I S1 (2) T P1 = 1-tan 21 −θ 2 ) / tan 21 + θ 2 ) T S1 = 1−sin 21 −θ 2 ) / sin 21 + θ 2 ).

【0021】また、入射光の角度によっては、線状体表
面で全反射してしまう。故に、 (n2 /n1 )sinθ1 <1 (3) の式を満足する光のみが透過し、そのほかの光は線状体
表面で反射される。そのため、式(3)を満たす角度θ
1 から強度I1 の光を線状体に入射させる。すると、式
(1)で与えられる角度θ2 の方向に、式(2)で与え
られる強度I2 で線状体内に透過することとなる。透過
光は、線状体内を進み、気泡がなければ線状体の入射側
とは反対側の面に到達し、再び屈折されて空気へ出射さ
れる。
Further, depending on the angle of the incident light, the surface of the linear body is totally reflected. Therefore, only the light that satisfies the formula (n 2 / n 1 ) sin θ 1 <1 (3) is transmitted, and the other light is reflected by the surface of the linear body. Therefore, the angle θ that satisfies the equation (3)
Light of intensity I 1 from 1 is incident on the linear body. Then, the light is transmitted into the linear body in the direction of the angle θ 2 given by the equation (1) with the intensity I 2 given by the equation (2). The transmitted light travels in the linear body, and if there is no bubble, reaches the surface of the linear body on the side opposite to the incident side, is refracted again, and is emitted to the air.

【0022】線状体内に気泡があると、気泡表面22で
反射および屈折が起こる。全反射する場合を考えると、
その条件は、 (n1 /n2 )sinθ5 >1 (4) である。ここで、気泡内には空気が入っているものと
し、気泡内の屈折率を空気の屈折率n1 としている。全
反射の場合は、入射光と出射光の強度は等しくなる。故
に、 I3 =I2 (5) である。
When bubbles are present in the linear body, reflection and refraction occur on the bubble surface 22. Considering the case of total reflection,
The condition is (n 1 / n 2 ) sin θ 5 > 1 (4). Here, it is assumed that air is contained in the bubble and the refractive index in the bubble is the refractive index n 1 of air. In the case of total reflection, the intensities of the incident light and the emitted light are equal. Therefore, I 3 = I 2 (5).

【0023】気泡表面22において透過する場合の条件
は、 (n1 /n2 )sinθ5 <1 (6) である。この場合、入射光は気泡内に透過するが、一部
は反射される。反射光の強度I3 は、入射光のP偏光成
分の強度をIP2、S偏光成分の強度をIS2、反射光のP
偏光成分の強度をIP3、S偏光成分の強度をIS3とし、
透過する光の角度をθ5'とすれば、 I3 =IP3+IS3=RP2P2+RS2S2 (7) RP2=tan2 (θ5 −θ5')/tan2 (θ5 +θ5') RS2=sin2 (θ5 −θ5')/sin2 (θ5 +θ5') となる。気泡表面22においては、面の角度が各点によ
って違うので、入射光の角度θ5 がそれぞれの点によっ
て違う。そのため、気泡表面の各点における条件によっ
て反射または透過が起こる。このように、気泡表面にお
いては、入射する光は散乱されることとなる。
The condition for permeation on the bubble surface 22 is (n 1 / n 2 ) sin θ 5 <1 (6). In this case, the incident light is transmitted inside the bubble, but a part thereof is reflected. The intensity I 3 of the reflected light is the intensity of the P-polarized component of the incident light is I P2 , the intensity of the S-polarized component is I S2 , and the intensity of the reflected light is P 3.
Let I P3 be the intensity of the polarized component and I S3 be the intensity of the S polarized component,
If the angle of the transmitted light is θ 5 ′, I 3 = I P3 + I S3 = R P2 I P2 + R S2 I S2 (7) R P2 = tan 25 −θ 5 ′) / tan 25 + theta 5 a ') R S2 = sin 2 ( θ 5 -θ 5') / sin 2 (θ 5 + θ 5 '). On the bubble surface 22, the angle of the surface is different at each point, so the angle θ 5 of the incident light is different at each point. Therefore, reflection or transmission occurs depending on the conditions at each point on the bubble surface. Thus, the incident light is scattered on the bubble surface.

【0024】気泡表面において反射された光は、線状体
内を再び進み、線状体−空気面23に達する。線状体−
空気面23への入射光が角度θ3 で入射するとすれば、
スネルの法則により、 n1 sinθ3 =n2 sinθ4 (8) を満足する角度θ4 で空気中に出射することとなる。ま
た、光の強度については、入射光のP偏光成分の強度を
P3、S偏光成分の強度をIS3、空気中に出射される光
のP偏光成分の強度をIP4、S偏光成分の強度をIS4
すれば、 I4 =IP4+IS4=TP3P3+TS3S3 (9) TP3=1−tan2 (θ3 −θ4 )/tan2 (θ3 +θ4 ) TS3=1−sin2 (θ3 −θ4 )/sin2 (θ3 +θ4 ) となる。また、入射光の角度によっては、線状体内で全
反射し、空気中に透過されない。故に、 (n1 /n2 )sinθ3 <1 (10) の式を満足する光のみが透過し、そのほかの光は線状体
内で反射される。そのため、式(10)を満たす角度θ
3 からの強度I3 の光が線状体−空気面に入射したとき
に、式(8)で与えられる角度θ4 の方向に、式(9)
で与えられる強度I4 で空気中に透過することとなる。
この透過光を受光器で受光すれば、気泡からの反射光の
みを受光できることになる。
The light reflected on the bubble surface travels again in the linear body and reaches the linear body-air surface 23. Linear body
If the incident light on the air surface 23 is incident at an angle θ 3 ,
According to Snell's law, the light is emitted into the air at an angle θ 4 that satisfies n 1 sin θ 3 = n 2 sin θ 4 (8). Regarding the intensity of light, the intensity of the P-polarized component of the incident light is I P3 , the intensity of the S-polarized component is I S3 , the intensity of the P-polarized component of the light emitted in the air is I P4 , and the intensity of the S-polarized component is If the intensity is I S4 , then I 4 = I P4 + I S4 = T P3 I P3 + T S3 I S3 (9) T P3 = 1-tan 23 −θ 4 ) / tan 23 + θ 4 ). T S3 = 1-sin 23 −θ 4 ) / sin 23 + θ 4 ). Further, depending on the angle of incident light, it is totally reflected inside the linear body and is not transmitted into the air. Therefore, only the light that satisfies the expression (n 1 / n 2 ) sin θ 3 <1 (10) is transmitted, and the other light is reflected in the linear body. Therefore, the angle θ that satisfies the expression (10)
Light linear body intensity I 3 from 3 - when entering the air surface, in the direction of the angle theta 4 given by Equation (8), (9)
It is permeated into the air with an intensity I 4 given by.
If the transmitted light is received by the light receiver, only the reflected light from the bubbles can be received.

【0025】上述の考察からもわかるように、受光する
光の強度は、線状体への入射光の角度θ1 、線状体の屈
折率n1 、線状体から出射される角度θ4 および偏光に
よって変化する。これらのパラメータを考慮して、入射
光の角度および受光器の角度を決定すれば、受光器に入
射する光量を最大にすることができる。
As can be seen from the above consideration, the intensity of the received light depends on the angle θ 1 of the incident light on the linear body and the refractive index n 1 of the linear body. , The angle θ 4 emitted from the linear body and the polarization. If the angle of the incident light and the angle of the light receiver are determined in consideration of these parameters, the amount of light incident on the light receiver can be maximized.

【0026】以下、上述のパラメータによる受光量の変
化を、図3乃至図9を用いて説明する。図3および図4
は、受光器の角度を変化させたときの、気泡からの反射
光の受光量の変化を示すグラフである。このグラフは、
入射角θ1 を、図3では0゜、図4では45゜とし、受
光器の角度θ4 を変化させたときの受光量の相対値を示
している。線状体の屈折率n1 は1.495のものを用
いている。通常の光ファイバなどの屈折率は、およそ
1.5付近である。このグラフからも分かるように、線
状体への入射光は、従来のように0゜から入射させてい
たのに比べ、斜めに入射させた方が、気泡からの反射光
を約2倍以上強く受光することができる。
The change in the amount of received light due to the above parameters will be described below with reference to FIGS. 3 to 9. 3 and 4
[Fig. 4] is a graph showing changes in the amount of received light of reflected light from bubbles when the angle of the light receiver is changed. This graph is
The incident angle θ 1 is 0 ° in FIG. 3 and 45 ° in FIG. 4, and the relative value of the amount of received light when the angle θ 4 of the light receiver is changed is shown. Refractive index of linear body n 1 Uses 1.495. The refractive index of an ordinary optical fiber is around 1.5. As can be seen from this graph, the incident light on the linear body is more than twice as much as the reflected light from the bubbles when it is incident at an angle, as compared to when it was incident from 0 ° as in the past. Can receive strong light.

【0027】図5乃至図7は、入射角θ1 を変化させた
ときの、気泡からの反射光量の変化を示すグラフであ
る。これらのグラフでは、屈折率による変化を見るた
め、屈折率n1 を、それぞれ図5では1.485、図6
では2.0、図7では1.2としている。縦軸は、入射
角を決めたときに、受光器の角度を変えて最も強く受光
した時の受光量の相対値である。図7より、屈折率n1
が1.2のときに入射角θ1 が40゜付近で受光量が最
大になることが分かる。同様に、図5より、屈折率n1
が1.485のときに入射角θ1 が45゜付近で、図6
より、屈折率n1 が2.0のときに入射角θ1 が45゜
付近でそれぞれ受光量が最大になることが分かる。同じ
屈折率の線状体を用いた図5と図3とを比較すると、図
3において従来の方法による受光量の相対値が0.5程
度であったから、図5よりみて入射角が5゜〜70゜程
度であれば、従来の方法よりも大きい受光量を得ること
ができる。また、図5乃至図7のグラフから、入射角が
20゜〜60゜であれば、最大受光量の80%程度の十
分大きな受光量が得られることも分かる。このようなこ
とから、入射光は、5゜〜70゜、望ましくは20゜〜
60゜、さらに望ましくは45゜付近とすればよいこと
が分かる。
5 to 7 show the incident angle θ 1 7 is a graph showing changes in the amount of light reflected from bubbles when V is changed. In these graphs, the refractive index n 1 FIG. 5 shows 1.485 and FIG. 6 respectively.
2.0 and 1.2 in FIG. 7. The vertical axis is the relative value of the amount of light received when the angle of the light receiver is changed and the strongest light is received when the incident angle is determined. From FIG. 7, the refractive index n 1
Is 1.2, the incident angle θ 1 It can be seen that the amount of received light is maximum around 40 °. Similarly, from FIG. 5, the refractive index n 1
Is 1.485 when the incident angle θ 1 Around 45 °,
Therefore, the refractive index n 1 Is 2.0, the incident angle is θ 1 It can be seen that the amount of received light is maximum around 45 °. Comparing FIG. 5 and FIG. 3 using the linear body having the same refractive index, the relative value of the amount of received light by the conventional method is about 0.5 in FIG. 3, and therefore the incident angle is 5 ° as seen from FIG. If the angle is about 70 °, a larger amount of received light can be obtained as compared with the conventional method. It is also understood from the graphs of FIGS. 5 to 7 that when the incident angle is 20 ° to 60 °, a sufficiently large light receiving amount of about 80% of the maximum light receiving amount can be obtained. For this reason, the incident light is 5 ° to 70 °, preferably 20 ° to
It can be seen that the angle may be 60 °, and more preferably around 45 °.

【0028】上述の屈折率の違いによる受光量の変化
は、まず、上述した式(3)、(4)、(6)、(1
0)で与えられている臨界角が異なるため、気泡表面に
おける反射の状態が変化し、また、線状体と空気との界
面における反射光量が変化したことが考えられる。さら
に、透過光の光束の太さの変化が考えられる。図8は、
透過光束の太さの変化の説明図である。図8(A)は屈
折率が小さいとき、図8(B)は屈折率が大きいときを
示している。図中、sは入射光の光束の断面積、s’、
s”は透過光の光束の断面積を示している。透過光の角
度を同じにするためには入射角を変化させる必要がある
が、この場合、図8からもわかるように、透過光の光束
の断面積は、s’よりもs”の方が大きい。そのため
に、単位面積あたりの光量は小さくなり、受光量を変化
させているものと考えられる。
The change in the amount of received light due to the difference in the above-mentioned refractive index is as follows. First, the expressions (3), (4), (6) and (1
Since the critical angle given by 0) is different, it is considered that the state of reflection on the bubble surface changed and the amount of reflected light at the interface between the linear body and air changed. Further, the thickness of the transmitted light flux may change. Figure 8
It is explanatory drawing of the change of the thickness of a transmitted light beam. FIG. 8A shows the case where the refractive index is small, and FIG. 8B shows the case where the refractive index is large. In the figure, s is the cross-sectional area of the luminous flux of incident light, s ′,
s ″ indicates the cross-sectional area of the transmitted light flux. In order to make the transmitted light angles the same, it is necessary to change the incident angle. In this case, as can be seen from FIG. The cross-sectional area of the light flux is larger in s ″ than in s ′. Therefore, it is considered that the amount of light per unit area becomes small and the amount of received light is changed.

【0029】図9は、入射角と、入射光と受光器の開き
角との関係を示すグラフである。図5において、入射角
θ1 を決めたときに、最大の受光量を得ることができ
る、入射光と受光器の開き角を示している。例えば、入
射角θ1 が45゜付近であれば、開き角は、90゜付
近、すなわち、出射角θ4 は、45゜付近で受光器の出
力が最大となる。
FIG. 9 is a graph showing the relationship between the incident angle and the incident angle between the incident light and the light receiver. In FIG. 5, the incident angle θ 1 Shows the opening angle between the incident light and the light receiver that can obtain the maximum amount of received light when is determined. For example, the incident angle θ 1 Is about 45 °, the opening angle is about 90 °, that is, the output angle θ 4 is about 45 °, and the output of the photodetector is maximum.

【0030】このように、受光器3は、気泡表面におけ
る散乱光を受光することになるから、入射角θ1 、屈折
率n1 、出射角θ4 などのパラメータにより、受光でき
る光量が異なってくる。そこで、本発明では、これらの
パラメータを考慮に入れ、線状体にレーザー光を斜めに
入射させ、かつ最適な位置に受光器を設置することによ
り、線状体の樹脂被覆内の気泡から散乱され、受光器に
入射する光量を最大にし、他の異常点(外観不良、傷な
ど)による出力に比べ気泡からの散乱光を十分大きな出
力として得ることができ、微少な気泡の検出を有効に行
なうことができる。
As described above, since the light receiver 3 receives the scattered light on the bubble surface, the incident angle θ 1 , Refractive index n 1 The amount of light that can be received differs depending on parameters such as the output angle θ 4 . Therefore, in the present invention, taking these parameters into consideration, the laser light is obliquely incident on the linear body, and the light receiver is installed at an optimum position to scatter from the bubbles in the resin coating of the linear body. The maximum amount of light incident on the light receiver can be obtained, and the scattered light from the bubbles can be obtained as a sufficiently large output compared to the output due to other abnormal points (defects in appearance, scratches, etc.), making it possible to detect minute bubbles effectively. Can be done.

【0031】さらに、もう1つのパラメータである偏光
方向について説明する。上述の式(2)、(7)、
(9)で示したように、P偏光とS偏光とでは、屈折率
の異なる物質間では、反射率、透過率が異なる。例え
ば、線状体樹脂被覆と、その中に含まれている気泡との
界面では、偏光状態が異なると、反射率が、2倍以上違
ってくる。偏光状態が時間的に変化するレーザーを用い
ると、気泡表面でのレーザー光の反射率が時間的に変化
し、受光器3の出力が時間的に不安定となってしまう。
そのため、本発明では、常に偏光状態が一定の定偏光レ
ーザーを用いることにより、出力の安定化を図ってい
る。
Further, the polarization direction which is another parameter will be described. Equations (2), (7) above,
As shown in (9), P-polarized light and S-polarized light have different reflectances and transmittances between substances having different refractive indexes. For example, at the interface between the linear resin coating and the bubbles contained therein, if the polarization state is different, the reflectance will be twice or more different. When a laser whose polarization state changes with time is used, the reflectance of the laser light on the bubble surface changes with time, and the output of the light receiver 3 becomes unstable with time.
Therefore, in the present invention, the output is stabilized by using a constant polarization laser whose polarization state is always constant.

【0032】さらに、偏光方向を、線状体の長手方向に
垂直な方向とすると、気泡表面での反射率が最も高くな
るとともに、樹脂表面での反射率が最小となり、受光器
3から高出力を得ることができる。また、レーザー光以
外の光によって、受光器3からの出力が影響されるのを
防ぐことも必要である。そのため、本発明では、照射さ
れるレーザー光の偏光方向を線状体の長手方向に垂直な
方向とし、受光器3にレーザー光の波長の光のみを選択
する波長選択フィルタと、レーザー光の偏光方向と同一
方向の偏光のみを選択する偏光フィルタを内蔵すること
ができる。これにより、レーザー光以外の光の影響を最
小限に抑えるとともに、気泡表面からの反射光を効率よ
く受光することができ、線状体の樹脂被覆内の気泡を効
果的に検知している。
Further, when the polarization direction is perpendicular to the longitudinal direction of the linear body, the reflectance on the bubble surface is the highest and the reflectance on the resin surface is the minimum, so that the light output from the light receiver 3 is high. Can be obtained. It is also necessary to prevent the output from the light receiver 3 from being affected by light other than laser light. Therefore, in the present invention, the polarization direction of the laser light to be irradiated is set to a direction perpendicular to the longitudinal direction of the linear body, and a wavelength selection filter for selecting only the light of the wavelength of the laser light to the light receiver 3 and the polarization of the laser light. It is possible to incorporate a polarization filter that selects only the polarized light in the same direction. As a result, the influence of light other than the laser light can be minimized, and the reflected light from the bubble surface can be efficiently received, and the bubbles in the resin coating of the linear body are effectively detected.

【0033】一方、レーザー光の時間的な出力変動や、
偏光の変化など、装置自体の要因によって、受光信号が
変動することが確認された。レーザー光の時間的出力変
動については、線状体にレーザー光が入射されるまでの
光路上に、ビームスプリッター5を挿入して光を分岐
し、光源出力モニタ用受光器6にてモニタする。光源出
力が変化した場合、受光器3の出力信号の増幅器の増幅
率を変化させるなどして、光源出力の変化の影響をなく
している。
On the other hand, the temporal output variation of the laser light,
It was confirmed that the received light signal fluctuates due to factors of the device itself, such as changes in polarization. Regarding the temporal output variation of the laser light, the beam splitter 5 is inserted on the optical path until the laser light is incident on the linear body to split the light, and the light source output monitoring light receiver 6 monitors the light. When the light source output changes, the amplification factor of the amplifier for the output signal of the light receiver 3 is changed to eliminate the influence of the change in the light source output.

【0034】本発明の一実験例について説明する。樹脂
被覆内に気泡を混入させた光ファイバを試作し、従来の
検出装置と、本発明による線状体樹脂被覆内気泡検出装
置により、気泡の検出能力を比較した。試作した光ファ
イバには、気泡数が、0個/cm、30個/cm、
100個/cmと、異なった数の気泡を混入し、時間
をおいて順に検出位置に来るようにした。図10は、本
発明の線状体樹脂被覆内気泡検出装置による受光器出力
グラフ、図11は、従来の検出装置による受光器出力グ
ラフである。横軸は、光ファイバの製造時間であり、縦
軸は、受光器出力である。この出力が大きくなるほど、
気泡が数多く含まれていることを示す。この実験の結
果、図10および図11からも分かるように、従来の装
置では、、、の場合で出力のベースラインは変化
しているが、ノイズが多く含まれており、樹脂内に気泡
が混入しているかどうかの判断がつきにくい。それに対
して、本発明の線状体樹脂内気泡測定装置では、樹脂内
気泡数の多少により、出力の大小が変化しており、かつ
安定していてノイズの影響も少ないため、樹脂内気泡が
存在しているかどうかの判断が容易である。さらに、
、、の場合の受光器出力が大きく変化しているか
ら、受光器の出力により樹脂内気泡の数を判断できる。
An experimental example of the present invention will be described. An optical fiber having bubbles mixed in the resin coating was prototyped, and the detection ability of bubbles was compared by the conventional detection device and the bubble detection device in the linear resin coating according to the present invention. In the prototype optical fiber, the number of bubbles is 0 / cm, 30 / cm,
Different numbers of air bubbles of 100 / cm were mixed in, and they were made to come to the detection position in order after a certain time. FIG. 10 is a photoreceiver output graph of the linear resin coating bubble detection device of the present invention, and FIG. 11 is a photoreceiver output graph of the conventional detection device. The horizontal axis is the manufacturing time of the optical fiber, and the vertical axis is the photodetector output. The larger this output is,
It shows that many bubbles are contained. As a result of this experiment, as can be seen from FIGS. 10 and 11, in the case of the conventional device, the baseline of the output changes in the cases of ,, but a lot of noise is contained, and bubbles are present in the resin. It is difficult to judge whether they are mixed. On the other hand, in the linear-body resin bubble measuring device of the present invention, the size of the output changes depending on the number of resin bubbles in the resin, and since the output is stable and the influence of noise is small, the bubble in the resin is small. It is easy to determine whether it exists. further,
In the cases of ,, and, since the output of the light receiver changes greatly, the number of bubbles in the resin can be determined from the output of the light receiver.

【0035】[0035]

【発明の効果】以上の説明から明らかなように、本発明
によれば、線状体にレーザー光を斜めに入射し、かつ最
適な位置に受光器を設置することにより、受光器におけ
る線状体の樹脂被覆内の気泡からの散乱光の光量を最大
にし、他の異常点(外観不良、傷など)による出力に比
べ十分大きな出力が得られ、気泡検出に対するS/N比
の向上が図られているため、光ファイバ製造などの分野
で、製造中の気泡の混入の有無および混入量を正確に把
握することができる。
As is apparent from the above description, according to the present invention, the laser beam is obliquely incident on the linear body and the light receiver is installed at the optimum position, so that the linear shape of the light receiver is improved. Maximizes the amount of scattered light from the bubbles inside the resin coating of the body, and a sufficiently large output is obtained compared to the output due to other abnormal points (defects in appearance, scratches, etc.), improving the S / N ratio for bubble detection. Therefore, in the field of optical fiber manufacturing and the like, it is possible to accurately grasp the presence or absence and the amount of mixing of bubbles during manufacturing.

【0036】また、常に偏光状態が一定の定偏光レーザ
ーを用い、照射されるレーザー光の偏光方向を線状体の
長手方向に垂直な方向とし、さらに受光器にレーザー光
の波長の光のみを選択する波長選択フィルタと、レーザ
ー光の偏光方向と同一方向の偏光のみを選択する偏光フ
ィルタを内蔵したから、レーザー光以外の光の影響を最
小限に抑えるとともに、気泡表面からの反射光を効率よ
く受光することができ、線状体の樹脂被覆内の気泡を効
果的に検知することができる。
Further, a constant polarization laser whose polarization state is always constant is used, the direction of polarization of the laser light to be irradiated is perpendicular to the longitudinal direction of the linear body, and only the light of the wavelength of the laser light is received by the light receiver. The built-in wavelength selection filter for selection and a polarization filter for selecting only polarization in the same direction as the polarization direction of the laser light minimize the effect of light other than laser light and efficiently reflect light from the bubble surface. Light can be well received, and bubbles in the resin coating of the linear body can be effectively detected.

【0037】さらに、光源出力モニタ用受光器6にてレ
ーザー光の時間的出力変動をモニタすることにより、光
源出力が変化した場合に受光器3の出力信号の増幅率を
変化させることができ、光源出力の変化の影響をなくす
ことができる、という効果がある。
Further, by monitoring the temporal output fluctuation of the laser light by the light source output monitoring light receiver 6, it is possible to change the amplification factor of the output signal of the light receiver 3 when the light source output changes. There is an effect that the influence of the change in the light source output can be eliminated.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による線状体樹脂被覆内気泡検出装置の
一実施例の模式図である。
FIG. 1 is a schematic view of an embodiment of a bubble detecting device in a linear resin coating according to the present invention.

【図2】本発明の理論的背景の説明図である。FIG. 2 is an explanatory diagram of a theoretical background of the present invention.

【図3】〜[Figure 3]

【図4】受光器の角度を変化させたときの、気泡からの
反射光の受光量の変化を示すグラフである。
FIG. 4 is a graph showing changes in the amount of received light of reflected light from bubbles when the angle of the light receiver is changed.

【図5】〜[Figure 5]

【図7】入射角θ1 を変化させたときの、気泡からの反
射光量の変化を示すグラフである。
[Figure 7] Incident angle θ 1 7 is a graph showing changes in the amount of light reflected from bubbles when V is changed.

【図8】透過光束の太さの変化の説明図である。FIG. 8 is an explanatory diagram of a change in thickness of a transmitted light flux.

【図9】入射角と、入射光と受光器の開き角との関係を
示すグラフである。
FIG. 9 is a graph showing a relationship between an incident angle and an incident angle of light and an opening angle of a light receiver.

【図10】本発明の線状体樹脂被覆内気泡検出装置によ
る受光器出力グラフである。
FIG. 10 is a photodetector output graph by the bubble detecting device for resin in a linear resin according to the present invention.

【図11】従来の検出装置による受光器出力グラフであ
る。
FIG. 11 is a photodetector output graph of a conventional detection device.

【符号の説明】[Explanation of symbols]

1 He−Ne定偏光レーザー 2 ミラー 3 受光器 4 被測定線状体 5 ビームスプリッター 6 光源出力モニタ用受光器 1 He-Ne constant polarization laser 2 Mirror 3 Light receiver 4 Linear object to be measured 5 Beam splitter 6 Light source output monitor light receiver

───────────────────────────────────────────────────── フロントページの続き (72)発明者 奥山 信也 神奈川県横浜市栄区田谷町1番地 住友電 気工業株式会社横浜製作所内 (72)発明者 小林 勇仁 神奈川県横浜市栄区田谷町1番地 住友電 気工業株式会社横浜製作所内 ─────────────────────────────────────────────────── ─── Continued front page (72) Inventor Shinya Okuyama 1 Taya-cho, Sakae-ku, Yokohama-shi, Kanagawa Sumitomo Electric Industries, Ltd. Yokohama Works (72) Inventor Yuji Kobayashi 1 Taya-cho, Sakae-ku, Yokohama, Kanagawa Sumitomo Electric Industry Co., Ltd. Yokohama Works

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 樹脂被覆を有する線状体に光を照射し、
その散乱光の変化から前記樹脂被覆中に含まれる気泡を
検出する線状体樹脂被覆内気泡検出装置において、前記
線状体の検出領域に、前記線状体の長手方向に対し斜め
方向から光を照射する光照射手段と、前記検出領域から
の散乱光を受光する受光器を有することを特徴とする線
状体樹脂被覆内気泡検出装置。
1. A linear body having a resin coating is irradiated with light,
In the linear body resin-coated bubble detection device for detecting bubbles contained in the resin coating from the change of the scattered light, in the detection region of the linear body, the light is oblique from the longitudinal direction of the linear body. A linear-body resin-coated air bubble detection device comprising: a light irradiation unit that irradiates the light; and a light receiver that receives scattered light from the detection region.
【請求項2】 線状体に入射する照射光軸と、線状体の
長手方向に対し垂直な軸とのなす角度が、5゜〜70゜
であることを特徴とする請求項1記載の線状体樹脂被覆
内気泡検出装置。
2. The angle between the irradiation optical axis incident on the linear body and the axis perpendicular to the longitudinal direction of the linear body is 5 ° to 70 °. Air bubble detection device for linear resin coating.
【請求項3】 照射光が、線状体の長手方向に対し垂直
な方向の直線偏光であることを特徴とする請求項1また
は2記載の線状体樹脂被覆内気泡検出装置。
3. The linear-body resin-coated bubble detecting device according to claim 1, wherein the irradiation light is linearly polarized light in a direction perpendicular to the longitudinal direction of the linear body.
【請求項4】 受光部に線状体の長手方向に対し垂直な
方向の直線偏光を透過させる検光子を設けたことを特徴
とする請求項1、2または3記載の線状体樹脂被覆内気
泡検出装置。
4. The linear resin coating according to claim 1, wherein the light receiving portion is provided with an analyzer for transmitting linearly polarized light in a direction perpendicular to the longitudinal direction of the linear body. Bubble detector.
【請求項5】 照射光の強度の変化をモニタする光源出
力モニタ用受光器を設け、散乱光の受光レベルを補正す
ることを特徴とする請求項1、2、3または4記載の線
状体樹脂被覆内気泡検出装置。
5. The linear body according to claim 1, wherein a light source output monitor light receiver for monitoring a change in the intensity of the irradiation light is provided to correct the light reception level of the scattered light. Bubble detector for resin coating.
JP12115692A 1992-04-15 1992-04-15 Device for detecting bubbles in optical fiber resin coating and method for detecting bubbles in optical fiber resin coating Expired - Lifetime JP3189378B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12115692A JP3189378B2 (en) 1992-04-15 1992-04-15 Device for detecting bubbles in optical fiber resin coating and method for detecting bubbles in optical fiber resin coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12115692A JP3189378B2 (en) 1992-04-15 1992-04-15 Device for detecting bubbles in optical fiber resin coating and method for detecting bubbles in optical fiber resin coating

Publications (2)

Publication Number Publication Date
JPH05296942A true JPH05296942A (en) 1993-11-12
JP3189378B2 JP3189378B2 (en) 2001-07-16

Family

ID=14804242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12115692A Expired - Lifetime JP3189378B2 (en) 1992-04-15 1992-04-15 Device for detecting bubbles in optical fiber resin coating and method for detecting bubbles in optical fiber resin coating

Country Status (1)

Country Link
JP (1) JP3189378B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007003376A (en) * 2005-06-24 2007-01-11 Toppan Printing Co Ltd Irregularity inspection device of cyclic pattern and cyclic pattern imaging method
JP2008170293A (en) * 2007-01-12 2008-07-24 Furukawa Electric Co Ltd:The Wire surface inspection device
CN104237253A (en) * 2013-06-14 2014-12-24 村田机械株式会社 Strand state detection method and strand state detection device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5316674A (en) * 1976-07-30 1978-02-15 Toray Industries Device for measuring nap
JPS5560842A (en) * 1978-10-31 1980-05-08 Toshiba Corp Failure checking unit
JPS5594553U (en) * 1978-12-18 1980-06-30
JPS62147348A (en) * 1985-12-17 1987-07-01 ツエルヴエ−ゲル・ウステル・アクチエンゲゼルシヤフト Method and device for measuring surface texture of slender sample
JPS63159757U (en) * 1987-04-09 1988-10-19
JPH0454427A (en) * 1990-06-22 1992-02-21 Sumitomo Electric Ind Ltd Abnormal point detecting method for clad for optical fiber cladding

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5316674A (en) * 1976-07-30 1978-02-15 Toray Industries Device for measuring nap
JPS5560842A (en) * 1978-10-31 1980-05-08 Toshiba Corp Failure checking unit
JPS5594553U (en) * 1978-12-18 1980-06-30
JPS62147348A (en) * 1985-12-17 1987-07-01 ツエルヴエ−ゲル・ウステル・アクチエンゲゼルシヤフト Method and device for measuring surface texture of slender sample
JPS63159757U (en) * 1987-04-09 1988-10-19
JPH0454427A (en) * 1990-06-22 1992-02-21 Sumitomo Electric Ind Ltd Abnormal point detecting method for clad for optical fiber cladding

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007003376A (en) * 2005-06-24 2007-01-11 Toppan Printing Co Ltd Irregularity inspection device of cyclic pattern and cyclic pattern imaging method
JP2008170293A (en) * 2007-01-12 2008-07-24 Furukawa Electric Co Ltd:The Wire surface inspection device
CN104237253A (en) * 2013-06-14 2014-12-24 村田机械株式会社 Strand state detection method and strand state detection device
JP2015001433A (en) * 2013-06-14 2015-01-05 村田機械株式会社 Yarn state detection method and yarn state detection device

Also Published As

Publication number Publication date
JP3189378B2 (en) 2001-07-16

Similar Documents

Publication Publication Date Title
CN101529200B (en) Determining surface and thickness
US4829186A (en) Methods and apparatus for measuring the light absorbance of a fluid medium
US4278353A (en) Optical inspection of gold surfaces
JP3741465B2 (en) Dual beam tunable spectrometer
KR20010018816A (en) Method for detecting micro scratch and device adopting the same
US6266137B1 (en) Particle detecting apparatus using two light beams
JPH05296942A (en) Device for detecting bubble within linear body resin covering
US4764017A (en) Method for identifying timber surface properties
US11650150B2 (en) Prism for measuring liquid concentration
JP3384927B2 (en) Transparent long body defect detection device
JP3292599B2 (en) Inspection method for gradient index lens array
JP3214416B2 (en) Image processing method for multi-core tape optical fiber, relative position detection method and detection device, image acquisition device and manufacturing method
JPH0776758B2 (en) Defect detection method for sheet
JP7069786B2 (en) Detection device
JPH0894540A (en) Surface inspection device
JP2002139423A (en) Oil film detector
JPS63285441A (en) Optical fiber inspection method and apparatus
US12038366B2 (en) Detection device and method for tiny particles in liquid
JP3325690B2 (en) Gas concentration measurement device
KR100232635B1 (en) Optical fiber failure detection device for laser transmission
JP2932783B2 (en) Equipment for measuring characteristics of sheet-like objects
TWI687331B (en) Multi-wavelength laser radar system for detecting specific substances
JP2006112807A (en) Surface plasmon sensor
FR2682476A1 (en) Method for detecting and measuring the energy emitted by a laser source and device for its implementation
US20220412865A1 (en) Detection device and method for tiny particles in liquid

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090518

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090518

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100518

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 11

EXPY Cancellation because of completion of term