JPH0529656A - Light emitting device - Google Patents

Light emitting device

Info

Publication number
JPH0529656A
JPH0529656A JP3207446A JP20744691A JPH0529656A JP H0529656 A JPH0529656 A JP H0529656A JP 3207446 A JP3207446 A JP 3207446A JP 20744691 A JP20744691 A JP 20744691A JP H0529656 A JPH0529656 A JP H0529656A
Authority
JP
Japan
Prior art keywords
light emitting
semiconductor light
forward current
lighting
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3207446A
Other languages
Japanese (ja)
Inventor
Yoshio Kano
快男 鹿野
Jun Nishiyama
潤 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsubakimoto Chain Co
Original Assignee
Tsubakimoto Chain Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsubakimoto Chain Co filed Critical Tsubakimoto Chain Co
Priority to JP3207446A priority Critical patent/JPH0529656A/en
Publication of JPH0529656A publication Critical patent/JPH0529656A/en
Pending legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)

Abstract

PURPOSE:To realized a substantially increased range of optical communication and improve resolution, while using conventional semiconductor light-emitting device such as LED. CONSTITUTION:A light-emitting device includes LEDs 1 to 7, a drive circuit 11 for energizing the LEDs individually, and a timing control circuit 12 for the drive circuit 11. The timing control circuit functions to control the individual LEDs to operate at the substantially maximum forward pulse current. In addition, it controls the drive circuit 11 to light the LEDs in sequence at predetermined intervals.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、発光装置に係り、とく
に発光ダイオード(LED)等の半導体発光素子を用い
た発光装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light emitting device, and more particularly to a light emitting device using a semiconductor light emitting element such as a light emitting diode (LED).

【0002】[0002]

【従来の技術】LED等の半導体発光素子は、その直流
順電流値が一般に例えば100〔mA〕程度となってお
り、小さい。また、外径寸法が小さく、量産可能で耐久
性があり、しかも消費電力が小さいことから、パイロッ
トランプ用をはじめ各種表示用の点灯素子として、その
応用は多方面にわたっている。
2. Description of the Related Art A semiconductor light emitting element such as an LED has a small DC forward current value, which is generally about 100 mA. In addition, since it has a small outer diameter, can be mass-produced, has durability, and consumes little power, it has a wide range of applications as a lighting element for various displays including pilot lamps.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、LED
等の半導体発光素子については、その動作制御の容易性
或いは消費電力が小さい等の多くの長所を備えている反
面、大きい発光量を得ることはできないという固有の欠
点を常に有している。このため、光信号通信用として
は、信号伝播距離の短い室内通信等に限定された使い方
がなされ、信号伝播距離の長距離化は困難なものとされ
ていた。
However, the LED
While these semiconductor light emitting devices have many advantages such as easiness of operation control and low power consumption, they always have a peculiar drawback that a large light emission amount cannot be obtained. Therefore, for optical signal communication, the method is limited to indoor communication with a short signal propagation distance, and it has been difficult to increase the signal propagation distance.

【0004】一方、LEDについては、例えばパルス幅
W を、PW ≦100〔μs〕,デューティ比を1%,
とした場合には、最大1〔A〕の出力値を得ることがで
きる、という特質を備えている。しかしながら、この1
〔A〕のピーク値を維持しながら、例えば上記パルス幅
W の制限枠を越えてデューティ比を大きく設定するこ
とや,分解能を高めるための繰り返し周波数を高く設定
すること等については、回路的には可能であってもLE
D自体の動作が不安定となり、これを継続するとLED
が発熱し破壊に至るという本質的欠点を常に備えてい
た。
On the other hand, for the LED, for example, the pulse width P W is P W ≤100 [μs], the duty ratio is 1%,
In this case, the characteristic is that the maximum output value of 1 [A] can be obtained. However, this one
While maintaining the peak value of [A], for example, to set a large duty ratio beyond the limit frame of the pulse width P W , or to set a high repetition frequency for improving resolution, it is necessary to use a circuit. LE even if possible
The operation of D itself becomes unstable, and if this continues, the LED
It always had the essential drawback that it would generate heat and lead to destruction.

【0005】[0005]

【発明の目的】本発明は、かかる従来例の有する不都合
を改善し、とくに、LED等の半導体発光素子を用いて
当該半導体発光素子の特質を損なうことなく、しかも、
光信号伝送距離の飛躍的拡大および分解能の著しい向上
を図った発光装置を提供することを、その目的とする。
It is an object of the present invention to improve the disadvantages of the conventional example, and in particular, by using a semiconductor light emitting element such as an LED without deteriorating the characteristics of the semiconductor light emitting element,
It is an object of the present invention to provide a light emitting device in which the optical signal transmission distance is dramatically expanded and the resolution is significantly improved.

【0006】[0006]

【課題を解決するための手段】本発明では、複数の半導
体発光素子と、この複数の各半導体発光素子を個別に点
灯駆動する点灯駆動回路と、この点灯駆動回路の動作の
タイミングを設定制御する点灯制御回路とを備えてい
る。そして、この点灯制御回路が、各半導体発光素子を
最大パルス順電流もしくはこれに近い値のパルス順電流
で導通制御する最大値導通制御機能と、各半導体発光素
子が所定の時間をずらして等間隔に順次点灯するように
前記点灯駆動回路を駆動制御する等間隔点灯制御機能と
を備えている、等の構成をとっている。これによって前
述した目的を達成しようとするものである。
According to the present invention, a plurality of semiconductor light emitting elements, a lighting drive circuit for individually lighting and driving each of the plurality of semiconductor light emitting elements, and a timing control of operation of the lighting drive circuit are set and controlled. And a lighting control circuit. Then, this lighting control circuit has a maximum value conduction control function of controlling conduction of each semiconductor light emitting element with a maximum pulse forward current or a pulse forward current of a value close to this, and each semiconductor light emitting element is shifted at a predetermined time by equal intervals. Further, it is provided with an equal interval lighting control function for driving and controlling the lighting drive circuit so as to sequentially light up. This aims to achieve the above-mentioned object.

【0007】[0007]

【作用】まず、基本周波数に係るクロックパルスに基づ
いて各半導体発光素子の繰り返し点灯周期が特定され
る。次に、この半導体発光素子の点灯周期にかかる情報
を入力した発光信号分配器14は、半導体発光素子の数
に対応してこれを順次等間隔に各別に駆動するための駆
動タイミング信号を順次出力する。点灯駆動回路11
は、発光信号分配器14の出力に従い複数の半導体発光
素子を順次点灯駆動する。一方、デューティ比決定回路
15は、基本周波数にかかる情報と分周回路13から出
力される分周情報とを入力すると、直ちにデューティ比
を演算し、当該半導体発光素子が備えている最大ピーク
値に係るデューティ比を設定するデューティ比設定信号
を出力する。点灯駆動回路11は、この設定されたデュ
ーティ比に従い各半導体発光素子の導通時間を設定し、
当該各半導体発光素子を順次一定のタイミングで駆動す
る。
First, the repeated lighting cycle of each semiconductor light emitting element is specified based on the clock pulse relating to the fundamental frequency. Next, the light-emission signal distributor 14 to which the information about the lighting cycle of the semiconductor light-emitting element is input, sequentially outputs the drive timing signal for driving the semiconductor light-emitting elements separately at equal intervals in order. To do. Lighting drive circuit 11
Drive a plurality of semiconductor light emitting elements in turn according to the output of the light emitting signal distributor 14. On the other hand, when the duty ratio determination circuit 15 receives the information on the fundamental frequency and the frequency division information output from the frequency division circuit 13, it immediately calculates the duty ratio to obtain the maximum peak value provided in the semiconductor light emitting element. A duty ratio setting signal for setting the duty ratio is output. The lighting drive circuit 11 sets the conduction time of each semiconductor light emitting element according to the set duty ratio,
The respective semiconductor light emitting elements are sequentially driven at a constant timing.

【0008】[0008]

【発明の実施例】以下、本発明の一実施例を、図1ない
し図2に基づいて説明する。まず図1に示す実施例は、
複数の半導体発光素子としての発光ダイオード(LE
D)1,2,3・・・7と、この複数の各LED1〜7
を個別に点灯駆動する点灯駆動回路11と、この点灯駆
動回路11の動作のタイミングを設定制御する点灯制御
回路12とを備えている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. First, the embodiment shown in FIG.
Light emitting diodes (LEs) as a plurality of semiconductor light emitting elements
D) 1, 2, 3, ... 7 and the plurality of LEDs 1 to 7
A lighting drive circuit 11 for individually lighting and driving, and a lighting control circuit 12 for setting and controlling the operation timing of the lighting drive circuit 11.

【0009】点灯制御回路12は、各LED1〜7を最
大パルス順電流もしくはこれに近い値のパルス順電流で
導通制御する最大値導通制御機能と、各LED1〜7が
所定の時間をずらして等間隔に順次点灯するように前述
した点灯駆動回路11を駆動制御する等間隔点灯制御機
能とを備えている。
The lighting control circuit 12 has a maximum value conduction control function for controlling conduction of each of the LEDs 1 to 7 with a maximum pulse forward current or a pulse forward current of a value close to this, and each LED 1 to 7 is shifted by a predetermined time. It is provided with an equal interval lighting control function for driving and controlling the above-mentioned lighting drive circuit 11 so as to sequentially light up at intervals.

【0010】この上記点灯制御回路12は、具体的に
は、所定の基本周波数に係るクロックパルスを分周する
分周回路13と、この分周回路13の出力に基づいて作
動し点灯駆動回路11が各LED1〜7を順次駆動する
ための駆動タイミングを設定する発光信号分配器14
と、デューティ比決定回路15とを備えている。このデ
ューティ比決定回路15は、各LED1〜7のパルス順
電流を最大パルス順電流もしくはこれに近い値のパルス
順電流に設定するため、各LED1〜7の導通時のデュ
ーティ比を基本周波数に基づいて算定し、デューティ比
制御信号を出力する機能を備えている。符号30はフォ
トダイオードにより構成された光信号受信器を示す。
Specifically, the lighting control circuit 12 operates based on an output of the frequency dividing circuit 13 and a frequency dividing circuit 13 that divides a clock pulse having a predetermined fundamental frequency, and the lighting driving circuit 11 operates. The light emission signal distributor 14 that sets the drive timing for sequentially driving the LEDs 1 to 7
And a duty ratio determination circuit 15. The duty ratio determining circuit 15 sets the pulse forward current of each of the LEDs 1 to 7 to the maximum pulse forward current or a pulse forward current of a value close to the maximum pulse forward current. It is provided with a function for calculating and calculating a duty ratio control signal. Reference numeral 30 indicates an optical signal receiver including a photodiode.

【0011】ここで、点灯制御回路12の動作等につい
て説明する。点灯制御回路12に入力される基本周波数
にかかるクロックパルスは、分周回路13で分周され、
これによって、まず各LED1〜7の繰り返し点灯周期
が特定される。このLED1〜7の点灯周期にかかる情
報を入力した発光信号分配器14は、LED1〜7の数
に対応してこれを順次各別に駆動するための駆動タイミ
ング信号を順次出力する。点灯駆動回路11は、発光信
号分配器14の出力に従い、複数のLED1〜7を順次
点灯駆動する。
Now, the operation of the lighting control circuit 12 will be described. The clock pulse applied to the lighting control circuit 12 and having the fundamental frequency is divided by the frequency dividing circuit 13,
Thereby, the repeated lighting cycle of each of the LEDs 1 to 7 is specified first. The light emission signal distributor 14 to which the information regarding the lighting cycle of the LEDs 1 to 7 is input sequentially outputs a drive timing signal for sequentially driving the LEDs 1 to 7 in correspondence with the number of LEDs. The lighting drive circuit 11 sequentially drives the plurality of LEDs 1 to 7 according to the output of the light emission signal distributor 14.

【0012】一方、クロックパルスにかかる情報と分周
回路13から出力される分周情報とを入力すると、デュ
ーティ比決定回路15はあらかじめ与えられたLEDの
性能に基づき直ちにデューティ比を演算し、最大ピーク
値に係るデューティ比を設定するデューティ比設定信号
を出力する。点灯駆動回路11は、この設定されたデュ
ーティ比に従い各LED1〜7の導通時間を設定し、当
該各LED1〜7を順次一定のタイミングで駆動する。
On the other hand, when the information related to the clock pulse and the frequency division information output from the frequency division circuit 13 are input, the duty ratio determination circuit 15 immediately calculates the duty ratio based on the performance of the LED given in advance, and the maximum value is obtained. A duty ratio setting signal for setting the duty ratio related to the peak value is output. The lighting drive circuit 11 sets the conduction time of each of the LEDs 1 to 7 according to the set duty ratio, and sequentially drives each of the LEDs 1 to 7 at a constant timing.

【0013】発光ダイオード(LED)は、本実施例で
は、上述したように7本(LED1〜7)使用されてい
る。図2ないし図3に、LED1〜7の配置の一例を示
す。また、図4にLED1〜7の発光時の動作タイミン
グを示し、図5に光信号受信器30側のフォトダイオー
ドにより受信された受信波形を示す。この図5では、更
に、発光ダイオード(LED1)の発光動作のタイミン
グ(周期T)と光信号受信器30側で受信される信号波
形のタイミング(周期T’)との関係が図示されてい
る。
In this embodiment, seven light emitting diodes (LEDs) (LED1 to LED7) are used as described above. 2 to 3 show an example of the arrangement of the LEDs 1 to 7. Further, FIG. 4 shows the operation timing when the LEDs 1 to 7 emit light, and FIG. 5 shows the reception waveform received by the photodiode on the optical signal receiver 30 side. In FIG. 5, the relationship between the timing (cycle T) of the light emitting operation of the light emitting diode (LED1) and the timing (cycle T ′) of the signal waveform received on the optical signal receiver 30 side is further illustrated.

【0014】クロックパルスを分周回路13で分周して
得られたLED1を繰り返し発行させる基本周波数f、
デューティ比dと最大パルス電流値Imは、発光ダイオ
ード(LED)の特性から与えられ、「f=1/T」
「d=t/T」と表される。発光ダイオード(LED)
1〜7の各々については、周期T’づつずらされたタイ
ミングで最大パルス電流値Imで発光駆動され、「T’
=T/7」になっている。このため、上記実施例にあっ
ては、光信号受信器30側で受信される受信信号からみ
ると、発光装置側の発光周波数は、そのピーク値を下げ
ることなく明らかに7倍のf’に逓倍され、又「T’=
T/7」,即ち「f’=7f」となり、従って、デュー
ティ比d’は「d’=7d」となり、相対的に7倍に拡
大される。
A basic frequency f for repeatedly issuing the LED1 obtained by dividing the clock pulse by the frequency dividing circuit 13,
The duty ratio d and the maximum pulse current value I m are given from the characteristics of the light emitting diode (LED), and “f = 1 / T”
It is expressed as “d = t / T”. Light emitting diode (LED)
Each of 1 to 7 is driven to emit light with the maximum pulse current value I m at the timing shifted by the period T ′, and “T ′”
= T / 7 ”. Therefore, in the above-mentioned embodiment, when viewed from the received signal received on the optical signal receiver 30 side, the emission frequency on the light emitting device side is obviously 7 times f ′ without lowering its peak value. Is multiplied, and "T '=
T / 7 ”, that is,“ f ′ = 7f ”, and thus the duty ratio d ′ becomes“ d ′ = 7d ”, which is relatively expanded to 7 times.

【0015】ここで、デューティ比d〔%〕と信号伝送
距離〔m〕との関係を示す実験結果を図6に示す。この
実験結果より、出力値(ピーク値)が同一であってもデ
ューティ比dが大きいほど、光信号の伝送到達距離が拡
大することを確認することができた。
FIG. 6 shows an experimental result showing the relationship between the duty ratio d [%] and the signal transmission distance [m]. From this experimental result, it has been confirmed that the transmission distance of the optical signal increases as the duty ratio d increases even if the output value (peak value) is the same.

【0016】同時に、このデューティ比d〔%〕と信号
伝送距離〔m〕との関係にあっては、光信号受信器30
を構成するフォトダイオードの特性が重要な要素を占め
ていることを実験的に確認することができた。フォトダ
イオードは、その多くが図7に示すように、送られてく
る光信号のデューティ比dの大小に応じて電気信号への
変換能率が著しく変化する。即ち、デューティ比dが大
きい程、フォトダイオードは受信信号の出力レベルが大
きくなる。
At the same time, regarding the relationship between the duty ratio d [%] and the signal transmission distance [m], the optical signal receiver 30
We were able to confirm experimentally that the characteristics of the photodiodes that make up the device occupy an important factor. As shown in FIG. 7, most of the photodiodes have a remarkable change in conversion efficiency into an electric signal according to the magnitude of the duty ratio d of the optical signal transmitted. That is, the larger the duty ratio d, the higher the output level of the received signal from the photodiode.

【0017】図8に、他の実施例におけるLEDの発光
のタイミングを示す。この図8に示すものは、7個のL
EDを順次連続して点灯し、これによって発光周波数f
を変えることなくデューティ比を見掛け上7倍に設定し
た点に特徴を備えている。その他の構成は前述した図1
の実施例と同一となっている。
FIG. 8 shows the timing of light emission of the LED in another embodiment. The one shown in FIG. 8 has seven L's.
The ED is turned on continuously in succession, whereby the emission frequency f
The feature is that the duty ratio is set to 7 times apparently without changing. Other configurations are shown in FIG.
It is the same as that of the embodiment.

【0018】ここで、上記実施例にあっては発光ダイオ
ード(LED)を7個使用した場合を例示したが、本発
明では発光ダイオードの数について特に限定するもので
はない。また、点灯制御回路12については、送り込ま
れるクロックパルスとして繰り返しが早いクロックパル
スを想定したことから、その入力段に分周回路13を装
備した場合を例示したが、図1の分周回路13から出力
されるのと同程度の繰り返しからなるクロックパルスを
使用した場合には、この分周回路13は不要としてもよ
い。また、送り込まれるクロックパルスとして繰り返し
が遅いクロックパルスを使用した場合には、図1の分周
回路13に代えて適当な逓倍回路を組み込んでもよい。
このようにしても、前述した図1の実施例と同一の作用
効果を得ることができる。
Here, in the above embodiment, the case where seven light emitting diodes (LEDs) are used is illustrated, but the number of light emitting diodes is not particularly limited in the present invention. Further, regarding the lighting control circuit 12, since a clock pulse that repeats quickly is assumed as the clock pulse to be sent, the case where the frequency dividing circuit 13 is provided in the input stage is illustrated. However, from the frequency dividing circuit 13 of FIG. When a clock pulse that is repeated as much as being output is used, the frequency dividing circuit 13 may be unnecessary. When a clock pulse that repeats slowly is used as the clock pulse to be sent, an appropriate multiplication circuit may be incorporated instead of the frequency dividing circuit 13 in FIG.
Even in this case, it is possible to obtain the same effects as those of the embodiment shown in FIG.

【0019】[0019]

【発明の効果】本発明は、以上のように構成され機能す
るので、これによると、LED等の半導体発光素子を複
数個使用すると共に、この各半導体発光素子の駆動のタ
イミングを工夫してパルス順電流の最大値を維持しなが
ら実質的にデューティ比を大幅に拡大することができ、
これによって受信感度を著しく増大させることができ、
これがため、市販のLED等の半導体発光素子を用いて
も、その光信号の伝送到達距離を著しく遠方まで拡大す
ることが可能となり、パルス順電流の最大値を維持しな
がら発光源としての信号の繰り返し発光周期の周波数を
高くすることが可能となり、これがため受信信号の分解
能を著しく高めることがき、従って雑音の有効排除,即
ちS/N比の向上、更には移動物体の検出に係る分解能
の向上を図ることができるという従来にない優れた発光
装置を提供することができる。
Since the present invention is constructed and functions as described above, according to the present invention, a plurality of semiconductor light emitting elements such as LEDs are used, and the timing of driving each semiconductor light emitting element is devised so that a pulse is generated. The duty ratio can be increased substantially while maintaining the maximum forward current.
This can significantly increase the reception sensitivity,
For this reason, even if a semiconductor light emitting element such as a commercially available LED is used, it is possible to significantly extend the transmission reach of the optical signal to a distant point, and to maintain the maximum value of the pulse forward current, It is possible to increase the frequency of the repeated light emission period, which can significantly increase the resolution of the received signal, and thus effectively eliminate noise, that is, improve the S / N ratio, and further improve the resolution related to detection of a moving object. It is possible to provide an excellent light-emitting device which has not been achieved in the past.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示すブロック図FIG. 1 is a block diagram showing an embodiment of the present invention.

【図2】図1内に示すLEDの集合体の一例を示す説明
FIG. 2 is an explanatory diagram showing an example of an assembly of LEDs shown in FIG.

【図3】図2のLEDの配置状況を示す説明図FIG. 3 is an explanatory diagram showing an arrangement state of LEDs of FIG.

【図4】図1内に示すLEDの点灯駆動および受信波形
のタイミングを示す線図
FIG. 4 is a diagram showing the lighting drive of the LEDs shown in FIG. 1 and the timing of received waveforms.

【図5】図1内に示す一個のLEDの点灯のタイミング
と受信波形全体のタイミングとの関係を示す線図
FIG. 5 is a diagram showing the relationship between the lighting timing of one LED shown in FIG. 1 and the timing of the entire received waveform.

【図6】図1の実施例の開示に際し予め検討されたれた
同一ピーク値に対するパルス順電流のデューティ比とそ
の時の発光信号の伝送距離との関係の実験結果を示す線
6 is a diagram showing an experimental result of a relationship between a duty ratio of a pulse forward current with respect to the same peak value and a transmission distance of a light emission signal at that time, which was examined in advance when the embodiment of FIG. 1 was disclosed.

【図7】光信号受信器におけるフォトダイオードの受信
特性を示す説明図
FIG. 7 is an explanatory diagram showing a receiving characteristic of a photodiode in an optical signal receiver.

【図8】他の実施例における光信号の出力のタイミング
を示す線図である。
FIG. 8 is a diagram showing a timing of outputting an optical signal in another embodiment.

【符号の説明】[Explanation of symbols]

1乃至7 半導体発光素子としての発光ダイオード(L
ED) 11 点灯駆動回路 12 点灯制御回路 13 分周回路 14 発光信号分配器
1 to 7 light emitting diode (L
ED) 11 lighting drive circuit 12 lighting control circuit 13 frequency dividing circuit 14 light emission signal distributor

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 複数の半導体発光素子と、この複数の各
半導体発光素子を個別に点灯駆動する点灯駆動回路と、
この点灯駆動回路の動作のタイミングを設定制御する点
灯制御回路とを備え、この点灯制御回路が、前記各半導
体発光素子を最大パルス順電流もしくはこれに近い値の
パルス順電流で導通制御する最大値導通制御機能と、前
記各半導体発光素子が所定の時間をずらして等間隔に順
次点灯するように前記点灯駆動回路を駆動制御する等間
隔点灯制御機能とを備えていることを特徴とした発光装
置。
1. A plurality of semiconductor light emitting devices, and a lighting drive circuit for individually lighting and driving each of the plurality of semiconductor light emitting devices,
A lighting control circuit for setting and controlling the timing of the operation of the lighting drive circuit, wherein the lighting control circuit controls conduction of each of the semiconductor light emitting elements with a maximum pulse forward current or a pulse forward current close thereto. A light emitting device having a continuity control function and an equal-interval lighting control function for driving and controlling the lighting drive circuit so that the semiconductor light-emitting elements are sequentially turned on at regular intervals by shifting a predetermined time. .
【請求項2】 前記点灯制御回路が、所定の基本周波数
に基づいて作動し前記点灯駆動回路が前記各半導体発光
素子を順次駆動する駆動タイミングを設定する発光信号
分配器と、前記各半導体発光素子のパルス順電流が最大
パルス順電流もしくはこれに近い値のパルス順電流とな
るように前記各半導体発光素子の導通時のデューティ比
を前記基本周波数に基づいて算定しデューティ比制御信
号として出力するデューティ比決定回路とを備えている
ことを特徴とした請求項1記載の発光装置。
2. A light emission signal distributor, wherein the lighting control circuit operates based on a predetermined basic frequency, and the lighting drive circuit sets a drive timing for sequentially driving the respective semiconductor light emitting elements, and the respective semiconductor light emitting elements. The duty ratio of the semiconductor light-emitting element is calculated based on the basic frequency so that the pulse forward current becomes a maximum pulse forward current or a pulse forward current having a value close to the maximum pulse forward current, and the duty ratio is output as a duty ratio control signal. The light emitting device according to claim 1, further comprising a ratio determining circuit.
【請求項3】 前記点灯制御回路が、所定の基本周波数
を分周する分周回路と、この分周回路の出力に基づいて
作動し前記点灯駆動回路が前記各半導体発光素子を順次
駆動する駆動タイミングを設定する発光信号分配器と、
前記各半導体発光素子のパルス順電流が最大パルス順電
流もしくはこれに近い値のパルス順電流となるように前
記各半導体発光素子の導通時のデューティ比を前記基本
周波数に基づいて算定しデューティ比制御信号として出
力するデューティ比決定回路とを備えていることを特徴
とした請求項1記載の発光装置。
3. A drive circuit in which the lighting control circuit divides a predetermined basic frequency and operates based on an output of the frequency dividing circuit so that the lighting drive circuit sequentially drives each of the semiconductor light emitting elements. A light emission signal distributor that sets the timing,
The duty ratio control is performed by calculating the duty ratio of each semiconductor light emitting element at the time of conduction based on the fundamental frequency so that the pulse forward current of each semiconductor light emitting element becomes the maximum pulse forward current or a pulse forward current of a value close to this. The light emitting device according to claim 1, further comprising a duty ratio determining circuit that outputs the signal as a signal.
【請求項4】 前記点灯制御回路が、所定の基本周波数
を逓倍する逓倍回路と、この逓倍回路の出力に基づいて
作動し前記点灯駆動回路が前記各半導体発光素子を順次
駆動する駆動タイミングを設定する発光信号分配器と、
前記各半導体発光素子のパルス順電流が最大パルス順電
流もしくはこれに近い値のパルス順電流となるように前
記各半導体発光素子の導通時のデューティ比を前記基本
周波数に基づいて算定しデューティ比制御信号として出
力するデューティ比決定回路とを備えていることを特徴
とした請求項1記載の発光装置。
4. The lighting control circuit sets a driving circuit that operates based on the output of the multiplication circuit and a multiplication circuit that multiplies a predetermined basic frequency, and that the lighting drive circuit sequentially drives each of the semiconductor light emitting elements. A light emission signal distributor for
The duty ratio control is performed by calculating the duty ratio of each semiconductor light emitting element at the time of conduction based on the fundamental frequency so that the pulse forward current of each semiconductor light emitting element becomes a maximum pulse forward current or a pulse forward current of a value close to the maximum pulse forward current. The light emitting device according to claim 1, further comprising a duty ratio determining circuit that outputs the signal as a signal.
【請求項5】 複数の半導体発光素子と、この複数の各
半導体発光素子を個別に点灯駆動する点灯駆動回路と、
この点灯駆動回路の動作のタイミングを設定制御する点
灯制御回路とを備え、この点灯制御回路が、前記各半導
体発光素子を最大パルス順電流もしくはこれに近い値の
パルス順電流で導通制御する最大値導通制御機能と、前
記各半導体発光素子の少なくとも何れか一つが必ず点灯
するように前記点灯駆動回路を駆動制御する連続点灯制
御機能とを備えていることを特徴とした発光装置。
5. A plurality of semiconductor light emitting devices, and a lighting drive circuit for individually lighting and driving each of the plurality of semiconductor light emitting devices,
A lighting control circuit for setting and controlling the timing of the operation of the lighting drive circuit, wherein the lighting control circuit controls conduction of each of the semiconductor light emitting elements with a maximum pulse forward current or a pulse forward current close thereto. A light emitting device having a continuity control function and a continuous lighting control function for driving and controlling the lighting drive circuit so that at least one of the semiconductor light emitting elements is always turned on.
JP3207446A 1991-07-24 1991-07-24 Light emitting device Pending JPH0529656A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3207446A JPH0529656A (en) 1991-07-24 1991-07-24 Light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3207446A JPH0529656A (en) 1991-07-24 1991-07-24 Light emitting device

Publications (1)

Publication Number Publication Date
JPH0529656A true JPH0529656A (en) 1993-02-05

Family

ID=16539909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3207446A Pending JPH0529656A (en) 1991-07-24 1991-07-24 Light emitting device

Country Status (1)

Country Link
JP (1) JPH0529656A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019103043A1 (en) * 2017-11-27 2019-05-31 テイ・エス テック株式会社 Vehicle seat

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019103043A1 (en) * 2017-11-27 2019-05-31 テイ・エス テック株式会社 Vehicle seat
US11400841B2 (en) 2017-11-27 2022-08-02 Ts Tech Co., Ltd. Vehicle seat
US11780353B2 (en) 2017-11-27 2023-10-10 Ts Tech Co., Ltd. Vehicle seat

Similar Documents

Publication Publication Date Title
TWI430705B (en) Driving apparatus of light emitted diode and driving method thereof
CN1162826C (en) Modulating circuit, image display therewith and modulating method
US10720098B2 (en) Pulse-width-modulation control of micro LED
US8110997B2 (en) LED drive circuit
US5590652A (en) Drive circuit for light-emitting diode in pulse oximeter
JP6635689B2 (en) Illumination device, control circuit thereof, control method, and display device using the same
US8994615B2 (en) Apparatus and methods for driving solid-state illumination sources
CN110322829A (en) The pulse width modulation controlled of light emitting diode
US9319134B2 (en) Method and device for optically transmitting data
US7496297B2 (en) LED system for illumination and data transmission
US9390647B2 (en) Pulse width correction for LED display driver
JP2002324685A (en) Lighting device
US8841861B2 (en) Dimming device
CN216287524U (en) Device for reducing interference between channels in LED display system
JP2007287964A (en) Driving apparatus for light emitting element, light emitting apparatus, and driving method of same light emitting apparatus
US11495169B2 (en) Pixel circuit
TWI430710B (en) An apparatus and a method for driving leds
US11076463B1 (en) Current driving device
JPH0529656A (en) Light emitting device
TW201424446A (en) Method and apparatus for driving light emitting diode
KR100912856B1 (en) LED driving device with PWM control employing sub-scan selector and method thereof
TWI728660B (en) Light-emitting diode driving method applied for local dimming
CN112234431A (en) Method and unit for driving laser device
TWI517758B (en) Driving apparatus of light emitted diode, driving method thereof and electronic device thereof
CN108633124A (en) Light-adjustable LED lamp and its operating method, the lamp driver for light-adjustable LED lamp

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19960709