JPH05290822A - Alkaline secondary battery and manufacture thereof - Google Patents

Alkaline secondary battery and manufacture thereof

Info

Publication number
JPH05290822A
JPH05290822A JP4115490A JP11549092A JPH05290822A JP H05290822 A JPH05290822 A JP H05290822A JP 4115490 A JP4115490 A JP 4115490A JP 11549092 A JP11549092 A JP 11549092A JP H05290822 A JPH05290822 A JP H05290822A
Authority
JP
Japan
Prior art keywords
aromatic polyamide
separator
amorphous aromatic
battery
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4115490A
Other languages
Japanese (ja)
Other versions
JP3168686B2 (en
Inventor
Masayuki Yoshimura
吉村  公志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP11549092A priority Critical patent/JP3168686B2/en
Publication of JPH05290822A publication Critical patent/JPH05290822A/en
Application granted granted Critical
Publication of JP3168686B2 publication Critical patent/JP3168686B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/423Polyamide resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • H01M50/466U-shaped, bag-shaped or folded
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To improve a charge/discharge cycle life and capacity transition in a cycle, by using amorphous aromatic polyamide alone or amorphous aromatic polyamide and a substance having good heat-proof and oxidation resistant property, for a separator. CONSTITUTION:Amorphous aromatic polyamide alone or amorphous aromatic polyamide and another substance having good heat-proof and oxidation-resistant property are used as a separator material. In a secondary batter in which a separator composed of amorphous aromatic polyamide alone or composed of the combination of amorphous aromatic polyamide with another substance having a good heat-proof and oxidation-resistant property, stable performance for a long time can be retained, and a charge/discharge cycle life and transition capacity in a cycle can be improved based on the good oxidation-resistant property and hydrophillic property of the separator. Moreover an ultrasonic welding method is prefered to a means to wind the separator on a platelike electrode.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はニッケル−カドミウム蓄
電池,ニッケル−亜鉛蓄電池およびニッケル−水素蓄電
池などのアルカリ二次電池に関するものであり、特に充
放電寿命の長いアルカリ二次電池を提供するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an alkaline secondary battery such as a nickel-cadmium storage battery, a nickel-zinc storage battery and a nickel-hydrogen storage battery, and particularly to provide an alkaline secondary battery having a long charge / discharge life. is there.

【0002】[0002]

【従来の技術とその課題】従来、アルカリ二次電池のセ
パレータの材質としては脂肪族ポリアミド、いわゆるナ
イロンが主として用いられてきた。ナイロンはそれ自体
親水性を有し、また、耐熱性もポリプロピレン等に比べ
て高いのでセパレータ材質としては比較的すぐれている
が、耐酸化性に問題があり、アルカリ電解液の炭酸化を
生じやすく、これに起因して電池性能が劣化する問題点
を有していた。
2. Description of the Related Art Conventionally, aliphatic polyamide, so-called nylon, has been mainly used as a material for a separator of an alkaline secondary battery. Nylon has hydrophilicity per se, and its heat resistance is higher than that of polypropylene, etc., so it is relatively excellent as a separator material, but it has a problem in oxidation resistance and easily causes carbonation of the alkaline electrolyte. However, there is a problem that the battery performance is deteriorated due to this.

【0003】一方、最近ではセパレータの材質としてポ
リプロピレンやポリサルフォン等の耐酸化性が良好なも
のが提案されているが、各々に問題点を有している。例
えば、ポリプロピレン系やポリサルフォン系のセパレー
タでは、繊維自体が疎水性であるため界面活性剤によっ
て親水化しているが、長期間の使用で親水化作用が失わ
れて二次電池の内部抵抗が増大する不都合があった。
On the other hand, recently, as a material for the separator, polypropylene, polysulfone, and the like having good oxidation resistance have been proposed, but each has its own problems. For example, in polypropylene-based and polysulfone-based separators, the fibers themselves are hydrophobic, so they are hydrophilized with a surfactant, but the hydrophilization action is lost with long-term use, and the internal resistance of the secondary battery increases. There was an inconvenience.

【0004】また、ポリプロピレン系のセパレータで
は、耐熱性が低いために微小な短絡が発生すると、これ
が一挙に大きな短絡に拡大する(微小な短絡によって発
生した熱でセパレータが溶融し短絡面積が一挙に増加す
る)ことで電池が著しく発熱することがあり危険であ
る。
Further, in the polypropylene type separator, since a minute short circuit occurs due to its low heat resistance, it expands into a large short circuit all at once (the heat generated by the minute short circuit melts the separator to reduce the short circuit area all at once). It is dangerous because the battery may overheat.

【0005】さらに、ポリサルフォン系のセパレータで
はポリサルフォン繊維同士が熱溶着しないことから、不
織布化するに際してアクリル系樹脂やポリ塩化ビニル等
のバインダー繊維を必要とし、このバインダー繊維がセ
パレータの耐熱性や耐酸化性を損なっていた。
Further, in the polysulfone-based separator, since the polysulfone fibers are not heat-welded to each other, a binder fiber such as an acrylic resin or polyvinyl chloride is required when forming a non-woven fabric, and the binder fiber has heat resistance and oxidation resistance. I was dying.

【0006】以上のことからわかるように、従来の電池
は、セパレータの特性が充分でないことに起因して、長
期間にわたって安定した性能を保持することができなか
った。
As can be seen from the above, conventional batteries cannot maintain stable performance for a long period of time due to insufficient separator characteristics.

【0007】[0007]

【課題を解決するための手段】本発明はアルカリ電解液
を用いるいわゆるアルカリ二次電池に関するものであ
り、セパレータが非晶質の芳香族ポリアミド単独あるい
は非晶質の芳香族ポリアミドと他の耐熱性,耐酸化性が
良好な物質とからなることを特徴とする。
The present invention relates to a so-called alkaline secondary battery using an alkaline electrolyte, in which the separator is an amorphous aromatic polyamide alone or an amorphous aromatic polyamide and other heat resistant materials. , It is characterized by being made of a material having good oxidation resistance.

【0008】[0008]

【作用】芳香族ポリアミドは脂肪族ポリアミド(いわゆ
るナイロン)と同様に親水性(親アルカリ電解液性)で
あるだけでなく、脂肪族ポリアミドに比べて耐熱性およ
び耐酸化性が著しくすぐれていることが知られている。
[Function] Aromatic polyamide is not only hydrophilic (aliphatic alkaline electrolyte solution) like aliphatic polyamide (so-called nylon), but also remarkably superior in heat resistance and oxidation resistance to aliphatic polyamide. It has been known.

【0009】このように芳香族ポリアミドはセパレータ
の材質として極めて適しているが、加熱時に溶融状態を
経ずに炭化してしまうために、繊維同士を強固に接着す
ることが困難である。つまり、空孔率および機械的強度
が大きい不織布とすることができなかった。
As described above, aromatic polyamide is extremely suitable as a material for the separator, but it is difficult to firmly bond the fibers to each other because the aromatic polyamide is carbonized without heating during heating. That is, it was not possible to obtain a nonwoven fabric having high porosity and high mechanical strength.

【0010】また、溶融しないことから、セパレータを
極板に巻き付ける手段として一般的な超音波溶着法で袋
状に加工できない不都合を有していた。このことは、平
板状の極板を積層して極板群とする角形二次電池のセパ
レータの材質として芳香族ポリアミドが実質的には使用
できないことを意味する。
Further, since it does not melt, it has a disadvantage that it cannot be processed into a bag by a general ultrasonic welding method as a means for winding the separator around the electrode plate. This means that aromatic polyamide cannot be used substantially as a material for a separator of a prismatic secondary battery in which plate-like electrode plates are laminated to form an electrode plate group.

【0011】しかしながら、種々の検討の結果、芳香族
ポリアミドのうち非晶質のものからなるセパレータは超
音波溶着法にて溶融させることができ、袋状に加工でき
ることがわかった。
However, as a result of various studies, it was found that a separator made of an amorphous aromatic polyamide can be melted by an ultrasonic welding method and can be processed into a bag shape.

【0012】つまり、非晶質の芳香族ポリアミドを用い
ることで耐熱性および耐酸化性が良好でしかも超音波溶
着法で加工できるセパレータとなる。具体的には、非晶
質の芳香族ポリアミド単独からなるセパレータあるい
は、非晶質の芳香族ポリアミドと結晶質の芳香族ポリア
ミドとの組み合わせや非晶質の芳香族ポリアミドとポリ
サルフォンとの組み合わせ、さらには非晶質の芳香族ポ
リアミドとチタン酸カリウムなどの無機繊維との組み合
わせからなるセパレータを用いた二次電池は、セパレー
タの耐酸化性が良好であり、しかも芳香族ポリアミドの
親水性が良好であることに基づき、長期間安定した性能
を持続する。また、非晶質の芳香族ポリアミドの融点が
約450℃と、脂肪族ポリアミドの約230℃、ポリプ
ロピレンの約110℃に比べて著しく高いことに基づい
て、微小短絡による発熱が引き金となる、セパレータの
溶融→短絡面積の拡大→電池の著しい発熱、という問題
も抑制できる。
That is, by using the amorphous aromatic polyamide, the separator has good heat resistance and oxidation resistance and can be processed by the ultrasonic welding method. Specifically, a separator consisting of an amorphous aromatic polyamide alone, or a combination of an amorphous aromatic polyamide and a crystalline aromatic polyamide, or a combination of an amorphous aromatic polyamide and polysulfone, Is a secondary battery using a separator made of a combination of amorphous aromatic polyamide and inorganic fibers such as potassium titanate, the separator has good oxidation resistance, and the aromatic polyamide has good hydrophilicity. Based on this, it maintains stable performance for a long time. In addition, since the melting point of amorphous aromatic polyamide is about 450 ° C., which is significantly higher than that of aliphatic polyamide of about 230 ° C. and that of polypropylene of about 110 ° C., heat generation due to micro short circuit triggers. It is possible to suppress the problem of melting of the battery → expansion of the short-circuit area → remarkable heat generation of the battery.

【0013】なお、芳香族ポリアミドをセパレータの材
質として用いることは、すでに特開昭58-147956 号で提
案されているが、耐酸化性の劣るナイロンとの混用であ
るため二次電池の性能を長期間安定して保持することに
関しては充分でなく、ほとんど実使用されていない模様
である。また、芳香族ポリアミドの結晶性に基づく特性
の違いについては述べられておらず、このことについて
は認識されていなかったものと考えられる。
The use of aromatic polyamide as a material for the separator has already been proposed in Japanese Patent Laid-Open No. 58-147956, but since it is mixed with nylon having poor oxidation resistance, the performance of the secondary battery is It seems that it has not been used for a long time, and it is hardly used in practice. In addition, the difference in the characteristics based on the crystallinity of the aromatic polyamide is not mentioned, and it is considered that this has not been recognized.

【0014】以上のことからわかるように、本発明によ
れば従来と同等の作業性で電池が製作することができ、
長期間にわたって性能の低下が少ない二次電池とするこ
とができる。
As can be seen from the above, according to the present invention, a battery can be manufactured with workability equivalent to that of the conventional one,
It is possible to obtain a secondary battery in which the performance is less deteriorated over a long period of time.

【0015】[0015]

【実施例】以下、本発明を好適な実施例を用いて詳細に
説明する。本発明はニッケル−カドミウム電池,ニッケ
ル−亜鉛電池,ニッケル−水素電池および銀−カドミウ
ム電池などのアルカリ二次電池に適用することができ
る。実施例ではこれらのアルカリ二次電池の中で最も一
般的なニッケル−カドミウム電池を用いて説明する。
The present invention will be described in detail below with reference to preferred embodiments. The present invention can be applied to alkaline secondary batteries such as nickel-cadmium batteries, nickel-zinc batteries, nickel-hydrogen batteries and silver-cadmium batteries. In the examples, the most common nickel-cadmium battery among these alkaline secondary batteries will be described.

【0016】電池に用いる正極板および負極板は以下の
ようにして製作した。多孔度が約80%の焼結式ニッケ
ル基板に硝酸ニッケルを主体とし硝酸コバルトを含有す
る混合水溶液を含浸した後、乾燥を行い、ついで水酸化
ナトリウム水溶液中で中和するといういわゆる化学含浸
の工程を繰り返して理論容量が200mAh の正極板を製
作した。
The positive electrode plate and the negative electrode plate used for the battery were manufactured as follows. A so-called chemical impregnation process in which a sintered nickel substrate having a porosity of about 80% is impregnated with a mixed aqueous solution containing nickel nitrate as a main component and containing cobalt nitrate, then dried, and then neutralized in an aqueous sodium hydroxide solution. By repeating the above, a positive electrode plate having a theoretical capacity of 200 mAh was manufactured.

【0017】一方、負極板も硝酸カドミウムの水溶液を
用いた以外は、正極板を製作したのと同様に化学含浸の
工程を繰り返して理論容量が400mAh の負極板を製作
した。さらに、この負極板を水酸化カリウム水溶液中で
化成していわゆるプリチャージの金属カドミウムを生成
させた。
On the other hand, except that an aqueous solution of cadmium nitrate was also used for the negative electrode plate, the chemical impregnation process was repeated in the same manner as the positive electrode plate was manufactured to manufacture a negative electrode plate having a theoretical capacity of 400 mAh. Further, this negative electrode plate was formed in a potassium hydroxide aqueous solution to generate so-called precharged metal cadmium.

【0018】つぎに、このようにして製作した正極板3
枚に超音波溶着機を用いて厚み0.17mm,目付重量6
5g/m 2 のセパレータを袋状に取り付け、負極板4枚と
交互になるように組み合わせて極板群を作製したのち、
電解液として比重1.30(20℃)の水酸化カリウム
水溶液を用いて公称容量が600mAh でいわゆるリザー
ブ用の水酸化カドミウムを有する密閉形の角形ニッケル
−カドミウム電池を製作した。なお、用いたセパレータ
は表1に示した通りである。
Next, the positive electrode plate 3 thus manufactured
Using an ultrasonic welding machine for each sheet, the thickness is 0.17mm, and the weight is 6
After attaching a 5g / m 2 separator in the shape of a bag and combining it with four negative plates alternately to form an electrode plate group,
A sealed rectangular nickel-cadmium battery having a nominal capacity of 600 mAh and having so-called reserve cadmium hydroxide was manufactured using an aqueous potassium hydroxide solution having a specific gravity of 1.30 (20 ° C.) as an electrolyte. The separators used are as shown in Table 1.

【0019】[0019]

【表1】 電池の性能評価は以下のようにして行った。すなわち、
通電電流1CA(600mA)で120%の充電を行っ
た後、同じく1CAの電流で1Vまで放電するという充
放電サイクルを繰り返して放電容量の推移を測定した。
結果を図1に示す。
[Table 1] The battery performance was evaluated as follows. That is,
After charging 120% at a current of 1 CA (600 mA), the charging / discharging cycle of discharging to 1 V at a current of 1 CA was repeated to measure the change in discharge capacity.
The results are shown in Figure 1.

【0020】図から本発明実施例の電池A,B,Cおよ
びDは従来例の電池EおよびFに比べてサイクル寿命が
30%程度長く、しかも放電容量の推移が安定している
ことがわかる。
From the figure, it can be seen that the batteries A, B, C and D of the embodiment of the present invention have a cycle life of about 30% longer than the batteries E and F of the conventional example, and the discharge capacity is stable. ..

【0021】なお、各電池の500サイクル目の内部抵
抗と電解液中の炭酸根の量を化学分析した結果を表2に
示す。表から本発明の実施例の電池A,B,CおよびD
の内部抵抗は低くしかも炭酸根の量は、耐酸化性が良好
であるといわれているプロピレンを用いた電池Fとほぼ
同等であることがわかる。
Table 2 shows the results of chemical analysis of the internal resistance of each battery at the 500th cycle and the amount of carbonate radical in the electrolytic solution. From the table, batteries A, B, C and D of the embodiment of the present invention
It can be seen that the internal resistance is low and the amount of carbonate is almost the same as that of the battery F using propylene, which is said to have good oxidation resistance.

【0022】[0022]

【表2】 また、寿命末期の微小短絡から著しい発熱に至る現象に
関しては30℃以上の温度上昇がポリプロピレンセパレ
ータを用いた電池Fで約20%の確率で発生したが、本
発明電池においては認められなかった。このことは、充
放電サイクルでの放電容量の推移を示した図1からも推
察される。
[Table 2] Regarding the phenomenon from the minute short circuit at the end of the life to the remarkable heat generation, the temperature rise of 30 ° C. or more occurred in the battery F using the polypropylene separator with a probability of about 20%, but it was not observed in the battery of the present invention. This can be inferred from FIG. 1 showing the transition of the discharge capacity in the charge / discharge cycle.

【0023】すなわち、セパレータが溶融温度の低い材
質でできているものほどサイクル寿命が短く、しかも寿
命末期での容量低下の度合いが急激であり、微小短絡が
完全な短絡に移行しやすい傾向を有しているものと考え
られる。これらのことからわかるように本発明によれば
サイクル寿命が長く、しかも放電容量の推移が安定した
ニッケル−カドミウム電池とすることができる。
That is, as the separator is made of a material having a lower melting temperature, the cycle life is shorter, and the degree of capacity decrease at the end of the life is more rapid, and a micro short circuit tends to shift to a complete short circuit. It is thought that it is doing. As can be seen from the above, according to the present invention, a nickel-cadmium battery having a long cycle life and a stable discharge capacity transition can be obtained.

【0024】なお、非晶質の芳香族ポリアミドは、放射
状(海島構造)のフィブリルと直線状のファイバーとの
混合比率を変化させることで機械的特性に幅を持たせた
セパレータとすることができる。
The amorphous aromatic polyamide can be used as a separator having a wide range of mechanical properties by changing the mixing ratio of radial (sea-island structure) fibrils and linear fibers. ..

【0025】つぎに、セパレータの超音波溶着特性につ
いて説明する。セパレータの超音波溶着特性は、非晶質
な芳香族ポリアミドの含有率が30wt%以上で実使用に
耐えるものになる。例として先の実施例2で用いた非晶
質の芳香族ポリアミドと結晶質の芳香族ポリアミドとの
混合系セパレータを用いて以下に説明する。
Next, the ultrasonic welding characteristics of the separator will be described. The ultrasonic welding characteristics of the separator are such that the amorphous aromatic polyamide content is 30 wt% or more and it can be used practically. As an example, description will be given below using the mixed system separator of the amorphous aromatic polyamide and the crystalline aromatic polyamide used in the above-mentioned Example 2.

【0026】実験は非晶質な芳香族ポリアミドと結晶質
の芳香族ポリアミドとの混合比を変えて製作した目付重
量65g/ m2 のセパレータ2枚を超音波溶着機にて接着
したのち、接着部の引き裂き強力を測定した。結果を図
2に示す。
In the experiment, two separators having an areal weight of 65 g / m 2 produced by changing the mixing ratio of the amorphous aromatic polyamide and the crystalline aromatic polyamide were adhered by an ultrasonic welding machine, and then adhered. The tear strength of the part was measured. The results are shown in Figure 2.

【0027】図から非晶質の芳香族ポリアミドが30%
以上で接着部の引き裂き強力が大きく向上しており、セ
パレータの装着方法として超音波溶着法が適用できるこ
とがわかる。この特性の傾向は結晶質の芳香族ポリアミ
ドの代わりにポリサルフォンあるいはチタン酸カリウム
等の無機繊維を用いた場合にも同様である。
From the figure, amorphous aromatic polyamide is 30%.
As described above, the tear strength of the adhesive portion is greatly improved, and it can be seen that the ultrasonic welding method can be applied as a method of attaching the separator. The tendency of this characteristic is the same as in the case of using an inorganic fiber such as polysulfone or potassium titanate instead of the crystalline aromatic polyamide.

【0028】したがって、セパレータの材質は非晶質の
芳香族ポリアミド単独あるいは非晶質の芳香族ポリアミ
ドと他の耐熱性および耐酸化性のすぐれた物質との混合
系でも良く、これらの材質からなるセパレータを用いる
ことで電池は安定した性能を長期間持続する。
Therefore, the material of the separator may be an amorphous aromatic polyamide alone or a mixed system of an amorphous aromatic polyamide and another substance having excellent heat resistance and oxidation resistance. By using the separator, the battery maintains stable performance for a long time.

【0029】以上で本発明の作用を説明したが、本発明
の効果はニッケル−亜鉛電池、ニッケル−水素電池およ
び銀−カドミウム電池などの他のアルカリ二次電池にお
いても同様に得ることができる。さらに、特開昭63-250
068 号などで提案されているいわゆるリザーブ用の放電
状態の負極活物質を有しないアルカリ二次電池において
も同様である。
Although the operation of the present invention has been described above, the effect of the present invention can be similarly obtained in other alkaline secondary batteries such as nickel-zinc batteries, nickel-hydrogen batteries and silver-cadmium batteries. Furthermore, JP-A-63-250
The same applies to an alkaline secondary battery that does not have a negative electrode active material in a discharged state for so-called reserve proposed in No. 068 or the like.

【0030】[0030]

【発明の効果】上述したように、本発明によればアルカ
リ二次電池の充放電サイクル寿命およびサイクルでの容
量推移を向上できることから、その工業的価値は大き
い。
Industrial Applicability As described above, according to the present invention, the charge / discharge cycle life of an alkaline secondary battery and the capacity transition in the cycle can be improved, and therefore its industrial value is great.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明電池と従来電池との充放電サイクルでの
容量推移を比較した図
FIG. 1 is a diagram comparing the capacity transitions of a battery of the present invention and a conventional battery during charge / discharge cycles.

【図2】セパレータの超音波溶着部の引裂き強力と非晶
質な芳香族ポリアミドの含有率との関係を示した図
FIG. 2 is a diagram showing the relationship between the tear strength of the ultrasonically welded portion of the separator and the content ratio of amorphous aromatic polyamide.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 セパレータが非晶質な芳香族ポリアミド
単独あるいは非晶質な芳香族ポリアミドと他の耐熱性,
耐酸化性が良好な物質とからなることを特徴とするアル
カリ二次電池。
1. A separator comprising an amorphous aromatic polyamide alone or an amorphous aromatic polyamide and other heat resistance,
An alkaline secondary battery comprising a substance having good oxidation resistance.
【請求項2】 非晶質な芳香族ポリアミドを含むセパレ
ータを平板状の極板に巻く手段として超音波溶着法を用
いることを特徴とするアルカリ二次電池の製造方法。
2. A method for manufacturing an alkaline secondary battery, characterized in that an ultrasonic welding method is used as a means for winding a separator containing an amorphous aromatic polyamide on a flat electrode plate.
JP11549092A 1992-04-07 1992-04-07 Alkaline secondary battery and method of manufacturing the same Expired - Fee Related JP3168686B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11549092A JP3168686B2 (en) 1992-04-07 1992-04-07 Alkaline secondary battery and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11549092A JP3168686B2 (en) 1992-04-07 1992-04-07 Alkaline secondary battery and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH05290822A true JPH05290822A (en) 1993-11-05
JP3168686B2 JP3168686B2 (en) 2001-05-21

Family

ID=14663811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11549092A Expired - Fee Related JP3168686B2 (en) 1992-04-07 1992-04-07 Alkaline secondary battery and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3168686B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5492781A (en) * 1994-01-18 1996-02-20 Pall Corporation Battery separators
US5591539A (en) * 1993-04-13 1997-01-07 Pall Corporation Electrolytically conductive battery separator polymeric film
JP2013143337A (en) * 2012-01-12 2013-07-22 Nissan Motor Co Ltd Manufacturing method of secondary battery, secondary battery, and welding device
JP2017091929A (en) * 2015-11-13 2017-05-25 日本電気株式会社 Separator for battery, battery including the separator, method for manufacturing the separator, and method for manufacturing the battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5591539A (en) * 1993-04-13 1997-01-07 Pall Corporation Electrolytically conductive battery separator polymeric film
US5492781A (en) * 1994-01-18 1996-02-20 Pall Corporation Battery separators
JP2013143337A (en) * 2012-01-12 2013-07-22 Nissan Motor Co Ltd Manufacturing method of secondary battery, secondary battery, and welding device
US9620755B2 (en) 2012-01-12 2017-04-11 Nissan Motor Co., Ltd. Secondary battery manufacturing method, secondary battery, welding apparatus thereof
JP2017091929A (en) * 2015-11-13 2017-05-25 日本電気株式会社 Separator for battery, battery including the separator, method for manufacturing the separator, and method for manufacturing the battery

Also Published As

Publication number Publication date
JP3168686B2 (en) 2001-05-21

Similar Documents

Publication Publication Date Title
CA1060949A (en) Rechargeable nickel-zinc battery
JP2015122339A (en) Battery electrode pair
JP3040041B2 (en) Alkaline secondary battery and method of manufacturing the same
JP3168686B2 (en) Alkaline secondary battery and method of manufacturing the same
JPH1167273A (en) Lithium secondary battery
JPH0151855B2 (en)
JP4868761B2 (en) Current collector with terminal and electrochemical device using the same
KR100645970B1 (en) Separator for electrode plate of lead-acid battery and the manufacturing method thereof
EP1039566A2 (en) Alkaline storage battery with two separators
JPH11162440A (en) Manufacture of alkaline storage battery
JP3523775B2 (en) Manufacturing method of alkaline secondary battery
JP4479236B2 (en) Non-aqueous electrolyte secondary battery
JP2917702B2 (en) Sealed nickel-hydrogen battery
JP4291794B2 (en) Battery separator and battery using the same
JP3031156B2 (en) Alkaline storage battery
JP2884570B2 (en) Sealed alkaline secondary battery
JPH07134979A (en) Battery
JPS6381763A (en) Enclosed type alkaline storage battery
JP4193923B2 (en) Alkaline storage battery
JP2001084982A (en) Metal hydroxide-hydrogen storage battery
JPH0436954A (en) Separator for battery
JP3260931B2 (en) Alkaline battery separator using alkali-resistant fiber and alkaline battery using the same
JPH11162438A (en) Storage battery with nickel-cadmium or nickel-hydroxide metal type alkaline electrolyte in particular
JPS6039765A (en) Zinc electrode
JP2005050763A (en) Alkaline accumulator

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees