JPH05289490A - Image forming device - Google Patents

Image forming device

Info

Publication number
JPH05289490A
JPH05289490A JP4112429A JP11242992A JPH05289490A JP H05289490 A JPH05289490 A JP H05289490A JP 4112429 A JP4112429 A JP 4112429A JP 11242992 A JP11242992 A JP 11242992A JP H05289490 A JPH05289490 A JP H05289490A
Authority
JP
Japan
Prior art keywords
gap
control
image
command
forming apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4112429A
Other languages
Japanese (ja)
Inventor
Kazue Nishiyama
和重 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP4112429A priority Critical patent/JPH05289490A/en
Publication of JPH05289490A publication Critical patent/JPH05289490A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Or Security For Electrophotography (AREA)
  • Dry Development In Electrophotography (AREA)

Abstract

PURPOSE:To calculate a control amt. being the deviation of a gap between an image carrier to a developer carrier by fuzzy inference from the quantity of state of maximum copy density, air pressure, humidity, cumulative number of sheets of copy, fogging, etc., and to properly control the gap between the image carrier to the developer carrier. CONSTITUTION:The maximum copy density, atmospheric pressure and humidity are detected by sensers 109, 110, 111 respectively and the deviation of the gap between a photosensitive body drum and a development sleeve is calculated based on a membership function expressed by the fuzzy set of the state quantum and the control amt. stored in a ROM 102 and a fuzzy rule relating to the quantity of state with the control amt. qualitatively in a CPU 101, and the inference results of respective rules are synthesized and the inference value of the control amt. of the highest probability is decided. The inference value of the deviation of the gap obtained by the fuzzy inference is inputted to a motor drive circuit 108 as the control amt. and the drive motor 200 of a gap control means is rotated and the gap between the photosensitive body drum and the development drum is controlled to a proper interval.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は像担持体上に形成された
静電潜像に現像剤担持体に担持された現像剤を付着させ
て可視画像を形成する電子写真方式、静電記録方式など
の複写機、プリンタ等の画像形成装置に関し、特に、像
担持体と現像剤担持体間の隙間を所定の間隔に保持する
隙間規制手段をファジイ推論を用いて最適に制御するよ
うにした画像形成装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrophotographic system and an electrostatic recording system for forming a visible image by adhering a developer carried by a developer carrier to an electrostatic latent image formed on an image carrier. The present invention relates to an image forming apparatus such as a copying machine or a printer, and particularly, an image in which a gap control unit that holds a gap between an image carrier and a developer carrier at a predetermined interval is optimally controlled by using fuzzy inference. The present invention relates to a forming device.

【0002】[0002]

【従来の技術】周知のように、複写機、プリンタ等の画
像形成装置は累積複写枚数が多くなると最大コピー濃度
の値が低下する。これは静電潜像が形成される像担持体
の劣化により現像のコントラストが小さくなること、或
は現像剤(トナー)の劣化による。このような欠点は現
像電界強度を大きくすれば除去できるため、従来は像担
持体と現像剤担持体との隙間を狭くするという対策が取
られていた。
2. Description of the Related Art As is well known, in image forming apparatuses such as copying machines and printers, the maximum copy density decreases as the cumulative number of copies increases. This is because the contrast of development is reduced due to the deterioration of the image carrier on which the electrostatic latent image is formed, or the deterioration of the developer (toner). Since such a defect can be removed by increasing the strength of the developing electric field, conventionally, a measure has been taken to narrow the gap between the image carrier and the developer carrier.

【0003】一方、最大コピー濃度は環境によっても変
化し、高湿になると像担持体の電位が下がり、コントラ
ストが小さくなるために最大コピー濃度が低くなってし
まう。この場合にも現像電界強度を大きくすればよいの
で、従来は高湿時にも像担持体と現像剤担持体との隙間
を狭くするという対策が取られていた。また、低湿にな
ると現像剤担持体上の現像剤の電荷量が大きくなり、最
大コピー濃度がやはり低くなってしまう。この場合には
トリボの高い現像剤を像担持体へ付着させればよいの
で、低湿時にも像担持体と現像剤担持体との隙間を狭く
して現像電界強度を大きくし、現像中に強い電界がかか
るようにしていた。
On the other hand, the maximum copy density also changes depending on the environment, and when the humidity is high, the potential of the image bearing member is lowered and the contrast is decreased, so that the maximum copy density is lowered. In this case as well, the strength of the developing electric field may be increased, and conventionally, a measure has been taken to narrow the gap between the image bearing member and the developer bearing member even at high humidity. Further, when the humidity is low, the charge amount of the developer on the developer carrying member is large, and the maximum copy density is also low. In this case, since a developer having a high tribo may be attached to the image carrier, the gap between the image carrier and the developer carrier may be narrowed even in a low humidity to increase the developing electric field strength and to strengthen during development. An electric field was applied.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、最大コ
ピー濃度を維持するために、上述のように累積複写枚
数、湿度等に応じて像担持体と現像剤担持体間の隙間を
狭くし、現像電界強度を大きくすると、気圧が低い場合
には像担持体と現像剤担持体間にリークが発生してしま
うという欠点、或は現像電界が強くなることにより非画
像部にかぶりが生じてしまうという欠点がある。
However, in order to maintain the maximum copy density, the gap between the image carrier and the developer carrier is narrowed according to the cumulative number of copies, humidity, etc., as described above, and the developing electric field is reduced. If the strength is increased, a leak occurs between the image bearing member and the developer bearing member when the atmospheric pressure is low, or a fogging occurs in the non-image portion due to the strong developing electric field. There is.

【0005】従来より、気圧、湿度、累積複写枚数、か
ぶり等の状態量が変動した場合に最大コピー濃度維持の
ための適切な像担持体−現像剤担持体間の隙間が複雑に
変動するという経験的な関係は知られているが、それら
の状態量と制御量の関係を定式化することは困難であっ
た。また、ルックアップテーブル等を設けることによっ
て上記状態量と制御量の関係を求めることも不可能では
ないが、莫大な数のテーブルを設けなければならず、そ
のためには莫大なメモリを必要とするから、事実上実現
困難である。
Conventionally, when the atmospheric pressure, humidity, cumulative number of copies, fogging, and other state variables fluctuate, the appropriate gap between the image carrier and the developer carrier for maintaining the maximum copy density varies in a complicated manner. Although the empirical relationship is known, it was difficult to formulate the relationship between the state quantity and the controlled quantity. Further, it is not impossible to obtain the relationship between the state quantity and the control quantity by providing a look-up table or the like, but an enormous number of tables must be provided, which requires an enormous memory. Therefore, it is practically difficult to realize.

【0006】従って、本発明の目的は、最大コピー濃
度、気圧、湿度、累積複写枚数、かぶり等の状態量と像
担持体−現像剤担持体間の隙間の偏差である制御量を定
性的な規則によって関係付け、これら規則に基づいて状
態量と制御量のあいまいな関係を推論して適正な制御量
を算出することができる画像形成装置を提供することで
ある。
Therefore, an object of the present invention is to qualitatively determine the control amount, which is the deviation of the state of maximum copy density, atmospheric pressure, humidity, cumulative number of copies, fog, etc. and the gap between the image carrier and the developer carrier. An object of the present invention is to provide an image forming apparatus capable of calculating a proper control amount by inferring an ambiguous relationship between a state amount and a control amount based on these rules, based on these rules.

【0007】[0007]

【課題を解決するための手段】上記目的は本発明に係る
画像形成装置によって達成される。要約すれば、本発明
は、静電潜像が形成される像担持体と、該像担持体上の
静電潜像に、現像剤担持体に担持された現像剤を付着さ
せて可視画像を形成する現像手段と、前記像担持体と現
像剤担持体間の隙間を所定の間隔に保持する隙間規制手
段とを備えた画像形成装置において、前記隙間規制手段
を制御するための少なくとも1つの状態量を検知する状
態量検知手段と、前記隙間規制手段を制御する制御量を
制御するための制御量制御手段と、前記状態量と制御量
を関係付ける定性的な規則を記憶する規則記憶手段と、
前記状態量と制御量をそれぞれ少なくとも1つのあいま
い集合で表現した関数を記憶する関数記憶手段と、前記
各規則に従い検知状態量の前記集合に属する度合から制
御量の前記集合に属する度合を算出し、その最も可能性
の高い制御量を推論する推論手段とを具備し、前記制御
量を前記推論手段により推論し、制御することを特徴と
する画像形成装置である。
The above object is achieved by an image forming apparatus according to the present invention. In summary, the present invention provides an image bearing member on which an electrostatic latent image is formed, and a developer carried on a developer bearing member is attached to the electrostatic latent image on the image bearing member to form a visible image. At least one state for controlling the gap regulating means in an image forming apparatus provided with a developing means to be formed and a gap regulating means for keeping a gap between the image carrier and the developer carrier at a predetermined distance. A state quantity detecting means for detecting a quantity, a control quantity controlling means for controlling a control quantity for controlling the gap regulating means, and a rule storing means for storing a qualitative rule relating the state quantity and the control quantity. ,
A function storage unit that stores a function in which each of the state quantity and the control quantity is represented by at least one ambiguous set, and the degree of belonging to the set of control quantities is calculated from the degree of belonging to the set of detected state quantities according to each rule. An image forming apparatus comprising: an inference unit that infers the most likely control amount, and infers and controls the control amount by the inference unit.

【0008】[0008]

【実施例】以下、本発明の実施例について添付図面を参
照して詳細に説明する。
Embodiments of the present invention will be described in detail below with reference to the accompanying drawings.

【0009】本発明は、静電潜像が形成される像担持体
と、該像担持体上の静電潜像に、現像剤担持体に担持さ
れた現像剤を付着させて可視画像(トナー像)を形成す
る現像手段と、前記像担持体と現像剤担持体間の隙間を
所定の間隔に保持する隙間規制手段とを備えた電子写真
方式、静電記録方式などの複写機、プリンタ等の画像形
成装置に等しく適用できるものであるが、以下において
は説明を簡便にするために、像担持体として感光体ドラ
ムを使用し、現像剤担持体として現像スリーブを使用し
た電子写真方式の画像形成装置に本発明を適用した場合
について説明する。
The present invention relates to an image carrier on which an electrostatic latent image is formed, and a developer carried on a developer carrier is attached to the electrostatic latent image on the image carrier to form a visible image (toner). Image forming means and a gap control means for holding a gap between the image carrier and the developer carrier at a predetermined distance, a copying machine such as an electrophotographic system or an electrostatic recording system, a printer, etc. However, in order to simplify the description, an electrophotographic image using a photoconductor drum as an image carrier and a developing sleeve as a developer carrier will be described below. A case where the present invention is applied to a forming apparatus will be described.

【0010】図1は本発明による画像形成装置の第1の
実施例の制御系を示すブロック図である。CPU(中央
処理装置)101は装置全体の動作を制御すると共に、
本発明を実行するための種々の演算制御を行なうもの
で、まず、適合度算出手段として、検知された状態量の
適合度をリード・オンリー・メモリ(ROM)102に
記憶されている状態量のメンバーシップ関数に基づき算
出し、また、演算手段として、算出された適合度に基づ
き所定の演算を行なってROM102に記憶されている
各ファジイ規則の推論結果を求め、さらに、算出手段と
して、求められた各ファジイ規則の推論結果に基づき制
御量を算出し、ファジイ推論を行なうものである。
FIG. 1 is a block diagram showing a control system of a first embodiment of an image forming apparatus according to the present invention. A CPU (Central Processing Unit) 101 controls the operation of the entire device and
Various types of arithmetic control are carried out to carry out the present invention. First, as the fitness calculating means, the fitness of the detected state quantity is calculated based on the state quantity stored in the read-only memory (ROM) 102. It is calculated based on the membership function, and as the calculation means, a predetermined calculation is performed based on the calculated conformance to obtain the inference result of each fuzzy rule stored in the ROM 102, and further as the calculation means. The fuzzy inference is performed by calculating the control amount based on the inference result of each fuzzy rule.

【0011】CPU101に接続された上記ROM10
2は上記メンバーシップ関数及びファジイ規則を記憶し
ているだけでなく、本実施例に係る制御プログラム(制
御手順)を記憶している。また、101にはランダム・
アクセス・メモリ(RAM)103が接続されており、
検知された最大コピー濃度、気圧、湿度等の状態量を少
なくとも予め定められた期間分記憶し、また、ファジイ
推論を行なう際に、さらには装置全体のシーケンス制御
を行なう際に、作業用記憶領域として使用される。
The ROM 10 connected to the CPU 101
Reference numeral 2 not only stores the membership function and the fuzzy rule, but also stores a control program (control procedure) according to this embodiment. In addition, 101 is random
An access memory (RAM) 103 is connected,
The detected maximum copy density, atmospheric pressure, humidity, and other state quantities are stored for at least a predetermined period, and a working storage area is used when performing fuzzy inference and when performing sequence control of the entire device. Used as.

【0012】CPU101から出力されるデジタルの制
御信号(本実施例ではパルス幅変調された駆動パルス)
はI/Oポート104を介して制御量としてモータ駆動
回路108に供給される。このモータ駆動回路108は
入力された制御信号に従って感光体ドラム(像担持体)
と現像スリーブ(現像剤担持体)間の隙間を所定の間隔
に保持する隙間規制手段の駆動モータ200を回転さ
せ、該隙間をファジイ推論によって算出された間隔に保
持する。さらに、状態量検知手段として、感光体ドラム
面上の最大コピー濃度を検知する濃度センサ109、周
囲環境の気圧を検知する気圧センサ110、及び周囲環
境の湿度を検知する湿度センサ111がそれぞれ設けら
れており、これらセンサ109、110、111によっ
て検知されたアナログの濃度、気圧、及び湿度情報信号
はそれぞれアナログ−デジタル変換器(A/D)10
5、106、及び107によってデジタル信号に変換さ
れた後、状態量信号としてCPU101に入力される。
Digital control signal output from the CPU 101 (pulse width modulated drive pulse in this embodiment)
Is supplied to the motor drive circuit 108 as a controlled variable via the I / O port 104. This motor drive circuit 108 is a photosensitive drum (image carrier) according to the input control signal.
The drive motor 200 of the clearance regulating means for maintaining the clearance between the developer and the developing sleeve (developer carrier) at a predetermined interval is rotated, and the clearance is maintained at the interval calculated by the fuzzy inference. Further, a density sensor 109 for detecting the maximum copy density on the photosensitive drum surface, an atmospheric pressure sensor 110 for detecting the atmospheric pressure of the surrounding environment, and a humidity sensor 111 for detecting the humidity of the surrounding environment are respectively provided as state quantity detecting means. The analog concentration, atmospheric pressure, and humidity information signals detected by the sensors 109, 110, and 111 are analog-to-digital converter (A / D) 10 respectively.
After being converted into a digital signal by 5, 106 and 107, it is input to the CPU 101 as a state quantity signal.

【0013】図2は上記感光体ドラムと現像スリーブ間
の隙間を所定の間隔に保持する隙間規制手段の概略構成
を示し、感光体ドラム201は基台220に固定された
支持体202によって回転自在に支持されており、一
方、現像剤撹拌部材211、層厚規制ブレード212等
を有し、かつ内部に現像剤を収納した現像器本体210
は現像器取り付け台213上に固定され、また、現像剤
を担持、搬送する現像スリーブ214は現像器取り付け
台213に回転自在に支持されており、感光体ドラム2
01と所定の隙間Gをもって対向配置される。上記現像
器取り付け台213は基台220に対して摺動可能に取
り付けられており、上記駆動モータ200の回転によっ
てモータ出力軸200aに取り付けられたねじ215が
回転すると、現像器取り付け台213は図示矢印Aで示
す方向に基台220上を摺動し、感光体ドラム201と
現像スリーブ214間の隙間Gを所定の間隔に制御す
る。
FIG. 2 shows a schematic structure of a gap regulating means for keeping the gap between the photosensitive drum and the developing sleeve at a predetermined gap. The photosensitive drum 201 is rotatable by a support 202 fixed to a base 220. On the other hand, a developing device main body 210 having a developer stirring member 211, a layer thickness regulating blade 212, and the like, and containing the developer inside.
Is fixed on the developing device mount 213, and the developing sleeve 214 that carries and conveys the developer is rotatably supported by the developing device mount 213.
01 with a predetermined gap G. The developing device mount 213 is slidably attached to the base 220, and when the screw 215 attached to the motor output shaft 200a is rotated by the rotation of the drive motor 200, the developing device mount 213 is illustrated. By sliding on the base 220 in the direction indicated by the arrow A, the gap G between the photosensitive drum 201 and the developing sleeve 214 is controlled to a predetermined gap.

【0014】上述したように、CPU101は状態量信
号に応じてパルス幅変調された駆動パルスをモータ駆動
回路108に供給し、パルス幅に応じた時間だけ駆動モ
ータ200を回転させるようにしているから、感光体ド
ラム201と現像スリーブ214間の隙間Gは高精度に
制御される。
As described above, the CPU 101 supplies the drive pulse whose pulse width is modulated according to the state quantity signal to the motor drive circuit 108, and rotates the drive motor 200 for a time corresponding to the pulse width. The gap G between the photosensitive drum 201 and the developing sleeve 214 is controlled with high accuracy.

【0015】本実施例では現像条件はコントラスト電位
400V、交流電界VPP=1200V、周波数1800
Hzである。また、感光体ドラム201と現像スリーブ
214間の隙間Gの基準値は250μmであり、この値
は予めROM102に記憶されている。そして、濃度セ
ンサ109によって検知された感光体ドラム201上の
最大コピー濃度(テストモード)における現像剤濃度
(トナー濃度)が基準値1.4になるように上記感光体
ドラム201と現像スリーブ214間の隙間Gを調節す
る。このとき、気圧及び湿度を同時に検知し、CPU1
01により最適制御量を算出する。
In this embodiment, the developing conditions are a contrast potential of 400 V, an AC electric field V PP = 1200 V, and a frequency of 1800.
Hz. The reference value of the gap G between the photosensitive drum 201 and the developing sleeve 214 is 250 μm, and this value is stored in the ROM 102 in advance. Then, between the photosensitive drum 201 and the developing sleeve 214 so that the developer density (toner density) in the maximum copy density (test mode) on the photosensitive drum 201 detected by the density sensor 109 becomes a reference value 1.4. Adjust the gap G of. At this time, the atmospheric pressure and humidity are detected at the same time, and the CPU 1
The optimum control amount is calculated by 01.

【0016】次に、上記構成の本実施例の動作について
具体的に説明する。
Next, the operation of this embodiment having the above configuration will be specifically described.

【0017】本実施例では、最大コピー濃度におけるト
ナー濃度が1.4になるように感光体ドラムと現像スリ
ーブ間の隙間Gをファジイ制御する際の状態量として、 (1)感光体ドラム上の最大コピー濃度(テストモー
ド)におけるトナー濃度 (2)気圧 (3)湿度 の3つを使用し、また、感光体ドラムと現像スリーブ間
の隙間Gの制御を行なう際の制御量として (4)感光体ドラムと現像スリーブ間の隙間の偏差 を使用する。勿論、状態量及び制御量はこれら具体例に
限定されるものではない。
In this embodiment, as the state quantity when the gap G between the photosensitive drum and the developing sleeve is fuzzy controlled so that the toner density at the maximum copy density becomes 1.4, (1) on the photosensitive drum Toner density in the maximum copy density (test mode) (2) Atmospheric pressure (3) Humidity is used, and as a control amount when controlling the gap G between the photosensitive drum and the developing sleeve (4) Photosensitive Use the deviation of the gap between the body drum and the developing sleeve. Of course, the state quantity and the control quantity are not limited to these specific examples.

【0018】図3〜図6は上記(1)、(2)、(3)
及び(4)の状態量及び制御量のメンバーシップ関数と
呼ばれるファジイ集合をそれぞれ示す。最大コピー濃
度、気圧、湿度及び感光体ドラムと現像スリーブ間の隙
間の偏差を大きくいくつかの集合に分け、例えば感光体
ドラムと現像スリーブ間の隙間の偏差の場合には、「N
B」、「NS」、「ZO」、「PS」、「PB」のファ
ジイラベルが付されており、これらをそれぞれ (1)NB (Negative Big) :「負の値で絶対値が大き
い」を表わすファジイ集合 (2)NS (Negative Small) :「負の値で絶対値が小
さい」を表わすファジイ集合 (3)ZO (Zero) :「ゼロ付近」を表わすファジイ集
合 (4)PS (Positive Small) :「正の値で絶対値が小
さい」を表わすファジイ集合 (5)PB (Positive Big) :「正の値で絶対値が大き
い」を表わすファジイ集合 とする。
3 to 6 show the above (1), (2) and (3).
And (4) are fuzzy sets called membership functions of state quantity and control quantity, respectively. The maximum copy density, atmospheric pressure, humidity, and deviation of the gap between the photosensitive drum and the developing sleeve are roughly divided into several sets. For example, in the case of the deviation of the gap between the photosensitive drum and the developing sleeve, "N
Fuzzy labels such as "B", "NS", "ZO", "PS", and "PB" are attached to each of them. (1) NB (Negative Big): "A negative value has a large absolute value" Representing fuzzy set (2) NS (Negative Small): Fuzzy set representing "a negative value has a small absolute value" (3) ZO (Zero): Fuzzy set representing "near zero" (4) PS (Positive Small) : Fuzzy set representing "a positive value has a small absolute value" (5) PB (Positive Big): A fuzzy set representing "a positive value has a large absolute value".

【0019】各々の集合に属する度合を「0」から
「5」までの値で表現する。図3は最大コピー濃度のメ
ンバーシップ関数、図4は気圧ののメンバーシップ関
数、図5は湿度のメンバーシップ関数、図6は感光体ド
ラムと現像スリーブ間の隙間の偏差のメンバーシップ関
数である。
The degree of belonging to each set is represented by a value from "0" to "5". 3 is a membership function of maximum copy density, FIG. 4 is a membership function of atmospheric pressure, FIG. 5 is a membership function of humidity, and FIG. 6 is a membership function of deviation of the gap between the photosensitive drum and the developing sleeve. ..

【0020】図3のZOのファジイラベルを付したファ
ジイ集合を例に取って説明すると、最大コピー濃度が
1.4のときにはZOという集合に属する度合は「1.
0」であり、最大コピー濃度が1.35、1.45のと
きにはZOという集合に属する度合は「0.5」である
ということを意味する。他の場合も同様である。
The fuzzy set with the fuzzy label of ZO in FIG. 3 will be described as an example. When the maximum copy density is 1.4, the degree of belonging to the set ZO is "1.
When the maximum copy density is 1.35 and 1.45, the degree of belonging to the set ZO is “0.5”. The same applies to other cases.

【0021】次に、最大コピー濃度、気圧、湿度の状態
量から感光体ドラムと現像スリーブ間の隙間の偏差を算
出する方法について述べる。
Next, a method of calculating the deviation of the gap between the photosensitive drum and the developing sleeve from the state quantities of maximum copy density, atmospheric pressure and humidity will be described.

【0022】感光体ドラムと現像スリーブ間の隙間の偏
差の決定には、例えば次のようなファジイ規則を用い
る。 〔ルール1〕 if 最大コピー濃度=NB and 気圧=
ZO and 湿度=ZO then 感光体ドラムと現像スリーブ間の隙間の偏差=N
S 〔ルール2〕 if 最大コピー濃度=ZO and 気圧=
ZO and 湿度=ZO then 感光体ドラムと現像スリーブ間の隙間の偏差=Z
O このようにファジイ規則を必要に応じて設定する。この
場合のすべてのファジイ規則を次の表1に示す。ただ
し、この表1中の符号Aは最大コピー濃度、Bは気圧、
Cは湿度、Dは感光体ドラムと現像スリーブ間の隙間の
偏差をそれぞれ表わす。
To determine the deviation of the gap between the photosensitive drum and the developing sleeve, for example, the following fuzzy rule is used. [Rule 1] if Maximum copy density = NB and atmospheric pressure =
ZO and humidity = ZO then deviation of gap between photosensitive drum and developing sleeve = N
S [Rule 2] if Maximum copy density = ZO and atmospheric pressure =
ZO and humidity = ZO then deviation of gap between photoconductor drum and developing sleeve = Z
O In this way, fuzzy rules are set as required. All fuzzy rules in this case are shown in Table 1 below. However, the symbol A in Table 1 is the maximum copy density, B is the atmospheric pressure,
C is humidity, and D is the deviation of the gap between the photosensitive drum and the developing sleeve.

【0023】[0023]

【表1】 ( A is NB and B is ZO and C is ZO ) → D is NS ( A is NB and B is ZO and C is NB ) → D is NB ( A is NB and B is ZO and C is PB ) → D is NB ( A is NB and B is NB and C is ZO ) → D is ZO ( A is NB and B is NB and C is PB ) → D is ZO ( A is NB and B is NB and C is NB ) → D is ZO ( A is NB and B is PB and C is ZO ) → D is NS ( A is NB and B is PB and C is PB ) → D is NB ( A is NB and B is PB and C is NB ) → D is NB ( A is ZO and B is ZO and C is ZO ) → D is ZO ( A is ZO and B is ZO and C is PB ) → D is NS ( A is ZO and B is ZO and C is NB ) → D is NS ( A is ZO and B is PB and C is ZO ) → D is ZO ( A is ZO and B is PB and C is PB ) → D is NS ( A is ZO and B is PB and C is NB ) → D is NS ( A is ZO and B is NB and C is ZO ) → D is ZO ( A is ZO and B is NB and C is PB ) → D is ZO ( A is ZO and B is NB and C is NB ) → D is ZO[Table 1] (A is NB and B is ZO and C is ZO) → D is NS (A is NB and B is ZO and C is NB) → D is NB (A is NB and B is ZO and C is PB ) → D is NB (A is NB and B is NB and C is ZO) → D is ZO (A is NB and B is NB and C is PB) → D is ZO (A is NB and B is NB and C is NB) → D is ZO (A is NB and B is PB and C is ZO) → D is NS (A is NB and B is PB and C is PB) → D is NB (A is NB and B is PB and C is NB) → D is NB (A is ZO and B is ZO and C is ZO) → D is ZO (A is ZO and B is ZO and C is PB) → D is NS (A is ZO and B is ZO and C is NB) → D is NS (A is ZO and B is PB and C is ZO) → D is ZO (A is ZO and B is PB and C is PB) → D is NS (A is ZO and B is PB and C is NB) → D is NS (A is ZO and B is NB and C is ZO) → D is ZO (A is ZO and B is NB and C is PB) → D is ZO (A is ZO and B is NB and C is NB) → D is ZO

【0024】図7及び図8は上記〔ルール1〕及び〔ル
ール2〕のファジイ規則を用いてファジイ推論により感
光体ドラムと現像スリーブ間の隙間を算出する一例を示
すものである。例として、濃度センサ111、気圧セン
サ110、及び湿度センサ111からアナログ−デジタ
ル変換器をそれぞれ介してCPU101に入力される状
態量は最大コピー濃度=x、気圧=y、湿度=zの場合
を考える。まず、上記〔ルール1〕の場合には、入力さ
れた最大コピー濃度xは、図3の最大コピー濃度のメン
バーシップ関数より、図7(a)に示すようにμxの度
合でNBの集合に含まれ、入力された気圧yは、図4の
気圧のメンバーシップ関数より、図7(b)に示すよう
にμyの度合でZOの集合に含まれ、入力された湿度z
は、図5の湿度のメンバーシップ関数より、図7(c)
に示すようにμzの度合でZOの集合に含まれる。その
後μxとμyとμzのいずれか値の小さい方、即ち最小
値を取り、その値をルール1の条件部が満たされる度合
とする。その値と図6の感光体ドラムと現像スリーブ間
の隙間の偏差のメンバーシップ関数との最小値演算を取
ると、演算結果は図7(d)に斜線で示す台形Sとな
る。
FIGS. 7 and 8 show an example of calculating the gap between the photosensitive drum and the developing sleeve by fuzzy inference using the fuzzy rules of [Rule 1] and [Rule 2]. As an example, consider the case where the state quantities input from the density sensor 111, the atmospheric pressure sensor 110, and the humidity sensor 111 to the CPU 101 via the analog-digital converter are maximum copy density = x, atmospheric pressure = y, and humidity = z. .. First, in the case of the above [Rule 1], the input maximum copy density x is converted into a set of NBs with a degree of μx as shown in FIG. 7A from the membership function of the maximum copy density shown in FIG. The included and input atmospheric pressure y is included in the set of ZO in the degree of μy as shown in FIG. 7B from the atmospheric pressure membership function, and the input humidity z
Is from the humidity membership function of FIG.
As shown in, the degree of μz is included in the ZO set. After that, the smaller one of μx, μy, and μz, that is, the minimum value is taken, and this value is taken as the degree to which the condition part of rule 1 is satisfied. When the minimum value of the calculated value and the membership function of the deviation of the gap between the photosensitive drum and the developing sleeve of FIG. 6 is calculated, the calculation result is a trapezoid S shown by hatching in FIG.

【0025】次いで、上記〔ルール2〕の場合にも図7
(a′)〜(c′)に示すように上記〔ルール1〕と同
様の計算を行ない、図7(d′)に斜線で示す台形S′
を求める。その後求められた各規則の推論結果、即ち、
2つの斜線で示す台形S及びS′を合成し、和集合を求
めると、図8に斜線で示す台形の和集合Uが得られる。
この和集合Uの重心を計算して制御量である感光体ドラ
ムと現像スリーブ間の隙間の偏差を設定する。ここでは
説明の便宜上、2種類のルール(ルール1及びルール
2)に対してのみ計算を行なったが、実際に感光体ドラ
ムと現像スリーブ間の隙間の偏差を算出する場合には、
上記表1の18種類のすべてのファジイ規則を用いて推
論値を決定する。このファジイ推論の方法によって得ら
れた感光体ドラムと現像スリーブ間の隙間の偏差の設定
値を制御量としてモータ駆動回路108に入力し、隙間
規制手段の駆動モータ200を回転させて感光体ドラム
201と現像スリーブ214間の隙間Gを適正な間隔に
制御する。このファジイ制御は例えばコピー数10枚に
つき1回行なうようにする。
Next, in the case of the above [Rule 2], FIG.
As shown in (a ') to (c'), the same calculation as the above [Rule 1] is performed, and the trapezoid S'shown by hatching in FIG. 7 (d ').
Ask for. The inference result of each rule obtained after that, that is,
When the trapezoids S and S'indicated by two slanted lines are combined to obtain a union, a trapezoidal union U in FIG. 8 is obtained.
The center of gravity of the union U is calculated and the deviation of the gap between the photosensitive drum and the developing sleeve, which is the control amount, is set. Here, for convenience of description, calculation is performed only for two types of rules (rule 1 and rule 2), but when actually calculating the deviation of the gap between the photosensitive drum and the developing sleeve,
The inference value is determined using all 18 types of fuzzy rules in Table 1 above. The set value of the deviation of the gap between the photoconductor drum and the developing sleeve obtained by this fuzzy inference method is input to the motor drive circuit 108 as a control amount, and the drive motor 200 of the gap regulating means is rotated to rotate the photoconductor drum 201. The gap G between the developing sleeve 214 and the developing sleeve 214 is controlled to an appropriate gap. This fuzzy control is performed once for every 10 copies, for example.

【0026】図9に上記ファジイ推論のフローチャート
を示す。簡単に説明すると、ステップS1〜S3で最大
コピー濃度、気圧及び湿度の状態量を濃度センサ10
9、気圧センサ110及び湿度センサ111によって検
知してCPU101に入力する。次に、ステップS4に
おいて上記表1のファジイ規則を用いて入力された状態
量のファジイ集合に属する度合から制御量のファジイ集
合に属する度合を上述したようにして算出する。すべて
のファジイ規則についての推論が終了したら、ステップ
S6で推論結果を合成して和集合を求め、次いでステッ
プS7で和集合の重心を計算し、ステップS8において
求めた重心の値を感光体ドラムと現像スリーブ間の隙間
の偏差として設定する。CPU101はこの偏差分に応
じたパルス幅変調駆動パルスをモータ駆動回路108に
供給し、偏差分に応じた時間だけ駆動モータ200を回
転させ、感光体ドラム201と現像スリーブ214間の
隙間Gを制御する。
FIG. 9 shows a flowchart of the fuzzy inference. Briefly, in steps S1 to S3, the density sensor 10 determines the maximum copy density, the atmospheric pressure and the state quantity of humidity.
9, detected by the atmospheric pressure sensor 110 and the humidity sensor 111, and input to the CPU 101. Next, in step S4, the degree of belonging to the fuzzy set of control quantities is calculated as described above from the degree of belonging to the fuzzy set of state quantities input using the fuzzy rules in Table 1 above. When the inferences for all the fuzzy rules are completed, the inference results are combined to obtain a union in step S6, then the center of gravity of the union is calculated in step S7, and the value of the center of gravity obtained in step S8 is set as the photosensitive drum. It is set as the deviation of the gap between the developing sleeves. The CPU 101 supplies a pulse width modulation drive pulse according to this deviation to the motor drive circuit 108, rotates the drive motor 200 for a time corresponding to the deviation, and controls the gap G between the photosensitive drum 201 and the developing sleeve 214. To do.

【0027】かくして、本実施例によれば、最大コピー
濃度におけるトナー濃度は気圧や湿度が変化しても常に
基準値1.4に制御される。また、設定するファジイ規
則の数も少なくて済むから、ルックアップテーブル等を
使用する場合と比較すると、メモリ容量がはるかに少な
くて済み、アナログ的に最も適した値に設定できる。従
って、常時安定した高画質の画像を形成することがで
き、これによって装置の信頼性及び耐久性を一段と向上
させることができる。
Thus, according to this embodiment, the toner density at the maximum copy density is always controlled to the reference value of 1.4 even if the atmospheric pressure or humidity changes. In addition, since the number of fuzzy rules to be set is small, the memory capacity is much smaller than the case where a lookup table or the like is used, and the value can be set to the most suitable value in terms of analog. Therefore, a stable, high-quality image can be formed at all times, which can further improve the reliability and durability of the apparatus.

【0028】上記実施例では最大コピー濃度を維持する
ために感光体ドラムと現像スリーブ間の隙間の偏差を制
御量とし、最大コピー濃度、気圧、湿度を状態量とした
が、最大コピー濃度のみでなく、コピー画像にできるだ
けかぶりが生じないようにする必要がある。そこで、本
発明の第2の実施例では、上記第1の実施例の状態量の
他に、感光体ドラム上の非画像部(テストモード)のト
ナー濃度も状態量として加え、これを濃度センサで検知
し、最大コピー濃度、気圧、湿度及び非画像部のトナー
濃度の4つを状態量として制御量、即ち、感光体ドラム
と現像スリーブ間の隙間の偏差をファジイ推論するもの
である。図10〜図13に上記状態量のメンバーシップ
関数を、また、図14に上記制御量のメンバーシップ関
数をそれぞれ示す。なお、ファジイ推論の手法は上記第
1の実施例と同様であるので詳細な説明は省略する。
In the above embodiment, in order to maintain the maximum copy density, the deviation of the gap between the photosensitive drum and the developing sleeve is set as the control amount, and the maximum copy density, the atmospheric pressure and the humidity are set as the state quantities. In addition, it is necessary to prevent fogging of the copy image as much as possible. Therefore, in the second embodiment of the present invention, in addition to the state quantity of the first embodiment, the toner density of the non-image portion (test mode) on the photosensitive drum is also added as a status quantity, and this is added to the density sensor. And the control amount, that is, the deviation of the gap between the photosensitive drum and the developing sleeve is fuzzy inferred by using the four states of the maximum copy density, the atmospheric pressure, the humidity and the toner density of the non-image area as state quantities. 10 to 13 show the membership function of the state quantity, and FIG. 14 shows the membership function of the control quantity. The fuzzy inference method is the same as that of the first embodiment, and detailed description thereof will be omitted.

【0029】本実施例においても上記第1の実施例と同
様の作用効果が得られることは言うまでもなく、さらに
本実施例では非画像部にかぶりも生じないからより一層
高画質の画像を得ることができるという利点がある。
It is needless to say that the same effects as those of the first embodiment can be obtained in this embodiment, and further, in this embodiment, no fog is generated in the non-image portion, so that a higher quality image can be obtained. The advantage is that

【0030】上記第2の実施例では最大コピー濃度を維
持するために感光体ドラムと現像スリーブ間の隙間の偏
差を制御量とし、最大コピー濃度、気圧、湿度及び非画
像部のトナー濃度を状態量としたが、前述したように、
複写機、レーザビームプリンタ等においてはコピー枚数
が増えていくと感光体の劣化、電位の変化等によって最
大コピー濃度に変化が生じる。具体的には累積複写枚数
が多くなるほど最大コピー濃度は低下する。このことを
考慮して、本発明の第3の実施例では、上記第2の実施
例の4つの状態量の他に、累積複写枚数をも状態量とし
て加え、最大コピー濃度、気圧、湿度、非画像部のトナ
ー濃度、及び累積複写枚数の5つを状態量として制御
量、即ち、感光体ドラムと現像スリーブ間の隙間の偏差
をファジイ推論するものである。図15〜図19に上記
状態量のメンバーシップ関数を、また、図20に上記制
御量のメンバーシップ関数をそれぞれ示す。なお、ファ
ジイ推論の手法は上記第1の実施例と同様であるので詳
細な説明は省略する。
In the second embodiment, in order to maintain the maximum copy density, the deviation of the gap between the photosensitive drum and the developing sleeve is used as the control amount, and the maximum copy density, atmospheric pressure, humidity and toner density of the non-image area are set. Although it is the amount, as mentioned above,
In copying machines, laser beam printers, etc., as the number of copies increases, the maximum copy density changes due to deterioration of the photoconductor, change in potential, and the like. Specifically, the maximum copy density decreases as the cumulative number of copies increases. In consideration of this, in the third embodiment of the present invention, in addition to the four state quantities of the second embodiment, the cumulative number of copies is also added as a state quantity, and the maximum copy density, atmospheric pressure, humidity, The control amount, that is, the deviation of the gap between the photoconductor drum and the developing sleeve, is fuzzy inferred by setting the toner density of the non-image part and the cumulative number of copies as five state quantities. 15 to 19 show the membership function of the state quantity, and FIG. 20 shows the membership function of the control quantity. The fuzzy inference method is the same as that of the first embodiment, and detailed description thereof will be omitted.

【0031】本実施例においても上記第2の実施例と同
様の作用効果が得られることは言うまでもなく、さらに
本実施例では累積複写枚数の影響も考慮されているか
ら、常に安定した高画質の画像を得ることができるとい
う利点がある。
Needless to say, the same effects as those of the second embodiment can be obtained in this embodiment as well, and the effect of the cumulative number of copies is also taken into consideration in this embodiment, so that stable and high image quality is always obtained. There is an advantage that an image can be obtained.

【0032】なお、上述のファジイ推論のアルゴリズム
は単なる一例であって、アルゴリズムを変形しても差し
支えない。また、ファジイ規則の数や内容も、経験に基
づき変形することが可能である。
The fuzzy inference algorithm described above is merely an example, and the algorithm may be modified. Also, the number and contents of fuzzy rules can be modified based on experience.

【0033】また、上記各実施例では本発明を電子写真
方式の画像形成装置に適用した場合について説明した
が、本発明は静電記録方式のような電子写真方式以外の
画像形成装置にも適用できるものである。さらに、画像
形成装置や現像装置、隙間規制手段等の構成や形状、制
御系の構成、機能、或は使用する素子等は上記実施例の
ものに限定されるものではない。
Further, in each of the above embodiments, the case where the present invention is applied to the electrophotographic image forming apparatus has been described, but the present invention is also applied to an image forming apparatus other than the electrophotographic system such as the electrostatic recording method. It is possible. Further, the configurations and shapes of the image forming apparatus, the developing device, the gap regulating means, etc., the configurations and functions of the control system, the elements to be used, etc. are not limited to those in the above embodiment.

【0034】[0034]

【発明の効果】以上説明したように、本発明によれば、
環境による変動が大きく、しかも状態量と制御量の関係
があいまいな関係に支配されている複写機、レーザビー
ムプリンタ等の画像形成装置において、複雑に関係する
最大コピー濃度、気圧、湿度、累積複写枚数、かぶり等
の状態量から制御量である像担持体と現像剤担持体間の
隙間の偏差の適正値をファジイ推論によって算出するこ
とができるから、上記状態量が変動しても最大コピー濃
度が常に基準値になるように像担持体と現像剤担持体間
の隙間が制御される。また、設定するファジイ規則の数
も少なくて済むから、ルックアップテーブル等を使用す
る場合と比較すると、メモリ容量がはるかに少なくて済
み、アナログ的に最も適した値に設定できる。従って、
常時安定した高画質の画像を形成することができ、その
結果、装置の信頼性及び耐久性を一段と向上させること
ができるという顕著な効果がある。
As described above, according to the present invention,
In an image forming apparatus such as a copying machine or a laser beam printer in which the relationship between the quantity of state and the amount of control is obscure, the maximum copy density, atmospheric pressure, humidity, and cumulative copying that are complicatedly related The optimum value of the deviation of the gap between the image bearing member and the developer bearing member, which is the control amount, can be calculated by fuzzy reasoning from the state quantity such as the number of sheets and fogging, so that the maximum copy density can be obtained even if the above state quantity fluctuates. The gap between the image bearing member and the developer bearing member is controlled so that is always the reference value. In addition, since the number of fuzzy rules to be set is small, the memory capacity is much smaller than the case where a lookup table or the like is used, and the value can be set to the most suitable value in terms of analog. Therefore,
It is possible to form a stable high-quality image at all times, and as a result, it is possible to further improve the reliability and durability of the apparatus.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例の画像形成装置の制御系
を示すブロック図である。
FIG. 1 is a block diagram showing a control system of an image forming apparatus according to a first embodiment of the present invention.

【図2】本発明の第1の実施例の画像形成装置の感光体
ドラムと現像スリーブ間の隙間を保持する隙間規制手段
を示す概略構成図である。
FIG. 2 is a schematic configuration diagram showing a gap restricting unit that holds a gap between a photosensitive drum and a developing sleeve of the image forming apparatus according to the first embodiment of the present invention.

【図3】本発明の第1の実施例の状態量のメンバーシッ
プ関数を示す線図である。
FIG. 3 is a diagram showing a membership function of a state quantity according to the first embodiment of the present invention.

【図4】本発明の第1の実施例の状態量のメンバーシッ
プ関数を示す線図である。
FIG. 4 is a diagram showing a membership function of a state quantity according to the first embodiment of the present invention.

【図5】本発明の第1の実施例の状態量のメンバーシッ
プ関数を示す線図である。
FIG. 5 is a diagram showing a membership function of a state quantity according to the first embodiment of the present invention.

【図6】本発明の第1の実施例の制御量のメンバーシッ
プ関数を示す線図である。
FIG. 6 is a diagram showing a membership function of a controlled variable according to the first embodiment of the present invention.

【図7】本発明の第1の実施例においてファジイ推論に
より感光体ドラムと現像スリーブ間の隙間の偏差である
制御量を算出する手順を説明する線図である。
FIG. 7 is a diagram illustrating a procedure for calculating a control amount, which is a deviation of a gap between a photosensitive drum and a developing sleeve, by fuzzy reasoning in the first embodiment of the present invention.

【図8】本発明の第1の実施例においてファジイ推論に
より感光体ドラムと現像スリーブ間の隙間の偏差である
制御量を算出する手順を説明する線図である。
FIG. 8 is a diagram illustrating a procedure for calculating a control amount, which is a deviation of a gap between a photosensitive drum and a developing sleeve, by fuzzy reasoning in the first embodiment of the present invention.

【図9】本発明の第1の実施例のファジイ推論の手順を
説明するためのフローチャートである。
FIG. 9 is a flowchart for explaining a fuzzy inference procedure according to the first embodiment of this invention.

【図10】本発明の第2の実施例の状態量のメンバーシ
ップ関数を示す線図である。
FIG. 10 is a diagram showing a membership function of a state quantity according to a second embodiment of the present invention.

【図11】本発明の第2の実施例の状態量のメンバーシ
ップ関数を示す線図である。
FIG. 11 is a diagram showing a membership function of a state quantity according to the second embodiment of the present invention.

【図12】本発明の第2の実施例の状態量のメンバーシ
ップ関数を示す線図である。
FIG. 12 is a diagram showing a membership function of a state quantity according to a second embodiment of the present invention.

【図13】本発明の第2の実施例の状態量のメンバーシ
ップ関数を示す線図である。
FIG. 13 is a diagram showing a membership function of a state quantity according to the second embodiment of the present invention.

【図14】本発明の第2の実施例の制御量のメンバーシ
ップ関数を示す線図である。
FIG. 14 is a diagram showing a membership function of a controlled variable according to the second embodiment of the present invention.

【図15】本発明の第3の実施例の状態量のメンバーシ
ップ関数を示す線図である。
FIG. 15 is a diagram showing a membership function of a state quantity according to a third embodiment of the present invention.

【図16】本発明の第3の実施例の状態量のメンバーシ
ップ関数を示す線図である。
FIG. 16 is a diagram showing a membership function of a state quantity according to a third embodiment of the present invention.

【図17】本発明の第3の実施例の状態量のメンバーシ
ップ関数を示す線図である。
FIG. 17 is a diagram showing a membership function of a state quantity according to the third embodiment of the present invention.

【図18】本発明の第3の実施例の状態量のメンバーシ
ップ関数を示す線図である。
FIG. 18 is a diagram showing a membership function of a state quantity according to a third embodiment of the present invention.

【図19】本発明の第3の実施例の状態量のメンバーシ
ップ関数を示す線図である。
FIG. 19 is a diagram showing a membership function of a state quantity according to a third embodiment of the present invention.

【図20】本発明の第3の実施例の制御量のメンバーシ
ップ関数を示す線図である。
FIG. 20 is a diagram showing a membership function of a controlled variable according to the third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

101 CPU 102 ROM 103 RAM 104 I/Oポート 105〜107 アナログ−デジタル変換器 108 モータ駆動回路 109 濃度センサ 110 気圧センサ 111 湿度センサ 200 隙間規制手段の駆動モータ 201 感光体ドラム 214 現像スリーブ G 感光体ドラムと現像スリーブ間の隙
101 CPU 102 ROM 103 RAM 104 I / O port 105-107 Analog-digital converter 108 Motor drive circuit 109 Concentration sensor 110 Atmospheric pressure sensor 111 Humidity sensor 200 Drive motor for gap regulating means 201 Photosensitive drum 214 Developing sleeve G Photosensitive drum And the developing sleeve

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 静電潜像が形成される像担持体と、該像
担持体上の静電潜像に、現像剤担持体に担持された現像
剤を付着させて可視画像を形成する現像手段と、前記像
担持体と現像剤担持体間の隙間を保持する隙間規制手段
とを備えた画像形成装置において、前記隙間規制手段を
制御するための少なくとも1つの状態量を検知する状態
量検知手段と、前記隙間規制手段を制御する制御量を制
御するための制御量制御手段と、前記状態量と制御量を
関係付ける規則を記憶する規則記憶手段と、前記状態量
と制御量をそれぞれ少なくとも1つのあいまい集合で表
現した関数を記憶する関数記憶手段と、前記各規則に従
い検知状態量の前記集合に属する度合から制御量の前記
集合に属する度合を算出し、その最も可能性の高い制御
量を推論する推論手段とを具備し、前記制御量を前記推
論手段により推論し、制御することを特徴とする画像形
成装置。
1. An image carrier on which an electrostatic latent image is formed, and a developer for forming a visible image by adhering the developer carried on the developer carrier to the electrostatic latent image on the image carrier. In an image forming apparatus including a device and a gap control unit that holds a gap between the image bearing member and the developer bearing member, a state amount detecting unit detects at least one state amount for controlling the gap limiting unit. Means, a control amount control means for controlling a control amount for controlling the gap regulating means, a rule storage means for storing a rule relating the state amount and the control amount, and at least the state amount and the control amount, respectively. A function storing means for storing a function expressed by one fuzzy set, and a degree of belonging of the control amount to the set from the degree of belonging of the detected state amount to the set according to each rule, and a control amount with the highest possibility. Reasoning hand to reason An image forming apparatus comprising: a step, and inferring and controlling the control amount by the inference means.
【請求項2】 前記各規則に従い検知状態量の前記集合
に属する度合から制御量の前記集合に属する度合を算出
し、その最も可能性の高い制御量を推論する推論手段
は、その時点での少なくとも1つの状態量が、各規則の
前件部の状態量をあいまい集合で表現した関数に属する
度合を算出する適合度算出手段と、各規則の後件部の制
御量をあいまい集合で表現した関数が、その時点での状
態量に合致する度合を、前記適合度算出手段により算出
された度合を用いて推論する推論手段と、該推論手段に
より全ての規則について推論された結果を合成する合成
手段と、該合成手段により算出された関数から実際の制
御量を算出する制御量算出手段とによって構成されてい
ることを特徴とする請求項1の画像形成装置。
2. The inference means for calculating the degree of control quantity belonging to the set from the degree of detection state quantity belonging to the set according to the rules and inferring the most probable control quantity at that time. At least one state quantity represents the degree of belonging to a function that expresses the state quantity of the antecedent part of each rule as a fuzzy set, and the control quantity of the consequent part of each rule is represented by the fuzzy set. An inference means for inferring the degree to which the function matches the state quantity at that time by using the degree calculated by the fitness calculating means, and a composition for synthesizing the results inferred by the inference means for all the rules. 2. The image forming apparatus according to claim 1, wherein the image forming apparatus comprises a means and a control amount calculating means for calculating an actual control amount from the function calculated by the combining means.
【請求項3】 前記状態量検知手段は、画像形成装置周
辺の気圧、湿度、累積複写枚数、及び非画像部のかぶり
のうちの少なくとも1つを検知することを特徴とする請
求項1の画像形成装置。
3. The image according to claim 1, wherein the state quantity detecting means detects at least one of atmospheric pressure, humidity, cumulative number of copies, and fogging of a non-image area around the image forming apparatus. Forming equipment.
【請求項4】 前記制御量制御手段は、前記像担持体と
現像剤担持体間の隙間を規制する隙間規制手段への隙間
指令手段であることを特徴とする請求項1の画像形成装
置。
4. The image forming apparatus according to claim 1, wherein the control amount control means is a gap commanding means for controlling a gap between the image bearing member and the developer bearing member.
【請求項5】 前記状態量と制御量を関係付ける規則を
記憶する規則記憶手段は、気圧が高いときには前記隙間
規制手段への隙間指令を小さくし、気圧が中くらいのと
きには前記隙間規制手段への隙間指令を中くらいにし、
気圧が低いときには前記隙間規制手段への隙間指令を大
きくすることを特徴とする請求項1の画像形成装置。
5. A rule storage means for storing a rule relating the state quantity and the control quantity reduces a clearance command to the clearance restricting means when the atmospheric pressure is high, and notifies the clearance restricting means when the atmospheric pressure is medium. Set the gap command of
The image forming apparatus according to claim 1, wherein when the atmospheric pressure is low, the gap command to the gap regulating means is increased.
【請求項6】 前記状態量と制御量を関係付ける規則を
記憶する規則記憶手段は、湿度が高いときには前記隙間
規制手段への隙間指令を小さくし、湿度が中くらいのと
きには前記隙間規制手段への隙間指令を中くらいにし、
湿度が低いときには前記隙間規制手段への隙間指令を大
きくすることを特徴とする請求項1の画像形成装置。
6. A rule storage means for storing a rule relating the state quantity and the control quantity reduces a clearance command to the clearance control means when the humidity is high, and sends a clearance command to the clearance control means when the humidity is medium. Set the gap command of
The image forming apparatus according to claim 1, wherein when the humidity is low, the gap command to the gap regulating means is increased.
【請求項7】 前記状態量と制御量を関係付ける規則を
記憶する規則記憶手段は、累積複写枚数が多いときには
前記隙間規制手段への隙間指令を小さくし、累積複写枚
数が中くらいのときには前記隙間規制手段への隙間指令
を中くらいにし、累積複写枚数が少ないときには前記隙
間規制手段への隙間指令を大きくすることを特徴とする
請求項1の画像形成装置。
7. A rule storage means for storing a rule relating the state quantity and the control quantity reduces the gap command to the gap regulation means when the cumulative number of copies is large, and when the cumulative number of copies is medium, the rule storage means 2. The image forming apparatus according to claim 1, wherein the clearance command to the clearance restriction means is set to a medium level, and the clearance command to the clearance restriction means is increased when the cumulative number of copies is small.
【請求項8】 前記状態量と制御量を関係付ける規則を
記憶する規則記憶手段は、テストモードにより前記像担
持体に形成されたコピー濃度が最大となる電位の部分の
可視画像の濃度が高いときには前記隙間規制手段への隙
間指令を大きくし、該可視画像の濃度が中くらいのとき
には前記隙間規制手段への隙間指令を中くらいにし、該
可視画像の濃度が低いときには前記隙間規制手段への隙
間指令を小さくすることを特徴とする請求項1の画像形
成装置。
8. The rule storage means for storing a rule relating the state quantity and the control quantity has a high density of a visible image in a portion of a potential formed on the image carrier in the test mode and having a maximum copy density. Sometimes the gap command to the gap regulation means is made large, when the density of the visible image is medium, the gap command to the gap regulation means is made medium, and when the density of the visible image is low, to the gap regulation means. The image forming apparatus according to claim 1, wherein the gap command is reduced.
【請求項9】 前記状態量と制御量を関係付ける規則を
記憶する規則記憶手段は、テストモードにより前記像担
持体に形成された非画像領域に付着した現像剤の濃度が
高いときには前記隙間規制手段への隙間指令を大きく
し、該現像剤の濃度が中くらいのときには前記隙間規制
手段への隙間指令を中くらいにし、該現像剤の濃度が低
いときには前記隙間規制手段への隙間指令を小さくする
ことを特徴とする請求項1の画像形成装置。
9. A rule storage means for storing a rule relating the state quantity and the control quantity stores the gap when the density of the developer adhered to the non-image area formed on the image carrier in the test mode is high. The gap command to the means is made large, the gap command to the gap regulation means is made medium when the density of the developer is medium, and the gap command to the gap regulation means is made small when the density of the developer is low. The image forming apparatus according to claim 1, wherein the image forming apparatus comprises:
JP4112429A 1992-04-06 1992-04-06 Image forming device Pending JPH05289490A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4112429A JPH05289490A (en) 1992-04-06 1992-04-06 Image forming device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4112429A JPH05289490A (en) 1992-04-06 1992-04-06 Image forming device

Publications (1)

Publication Number Publication Date
JPH05289490A true JPH05289490A (en) 1993-11-05

Family

ID=14586424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4112429A Pending JPH05289490A (en) 1992-04-06 1992-04-06 Image forming device

Country Status (1)

Country Link
JP (1) JPH05289490A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003307903A (en) * 2002-02-15 2003-10-31 Ricoh Co Ltd Image forming device
US6895194B2 (en) * 2003-08-28 2005-05-17 Xerox Corporation Xerographic development system where a gap between a donor member and a photoreceptor is estimated

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003307903A (en) * 2002-02-15 2003-10-31 Ricoh Co Ltd Image forming device
US6895194B2 (en) * 2003-08-28 2005-05-17 Xerox Corporation Xerographic development system where a gap between a donor member and a photoreceptor is estimated

Similar Documents

Publication Publication Date Title
JP3026630B2 (en) Electrophotographic process control equipment
JPH0916039A (en) Image forming device
JPH06102735A (en) Image forming device
JPH08289108A (en) Image forming device
JP3266297B2 (en) Electrophotographic process control equipment
JPH05289490A (en) Image forming device
JPH08166699A (en) Multicolor electrostatic recording device
JPS63177177A (en) Image forming device
JP3888069B2 (en) Image forming apparatus and image forming method
JPS63177178A (en) Image forming device
JP3696761B2 (en) Image forming apparatus
JP2004145143A (en) Density adjusting device and image forming apparatus using it
JP3918334B2 (en) Image forming method and image forming apparatus
JP3278553B2 (en) Image forming device
KR20000023285A (en) Unit detachably attachable to main body of image forming apparatus and image forming apparatus
JP4720215B2 (en) Image forming apparatus
JPH08166700A (en) Multicolor electrostatic recording device
JP4473468B2 (en) Toner density control system, image forming apparatus
JPH05297672A (en) Image forming device
JPS6380274A (en) Image forming device
JPH10333419A (en) Image forming device
JP2001255711A (en) Image forming device
JPH09127770A (en) Image forming device
EP0819991B1 (en) Process control of an electrophotographic device
JPH06324557A (en) Image forming device