JPH05288672A - Differential-motion detecting method of material to be sensed - Google Patents

Differential-motion detecting method of material to be sensed

Info

Publication number
JPH05288672A
JPH05288672A JP8409192A JP8409192A JPH05288672A JP H05288672 A JPH05288672 A JP H05288672A JP 8409192 A JP8409192 A JP 8409192A JP 8409192 A JP8409192 A JP 8409192A JP H05288672 A JPH05288672 A JP H05288672A
Authority
JP
Japan
Prior art keywords
sensed
sensing
thin film
substance
prism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8409192A
Other languages
Japanese (ja)
Inventor
Katsumi Yoneda
勝実 米田
Haruo Tajima
晴雄 田島
Giyoushiyun Son
暁春 孫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON LASER DENSHI KK
Original Assignee
NIPPON LASER DENSHI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON LASER DENSHI KK filed Critical NIPPON LASER DENSHI KK
Priority to JP8409192A priority Critical patent/JPH05288672A/en
Publication of JPH05288672A publication Critical patent/JPH05288672A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the differential-motion detecting method for material to be sensed, which can compensate for the effects of non-singular bonding, the physical property of a sample, temperature and the like, can observe the reaction between sensing material and the material to be sensed in accordance with the elapse of time and can detect the material to be sensed in sample liquid accurately without much labor and cost. CONSTITUTION:A glass plate, on the surface of which a gold thin film is attached, is stuck to the bottom surface of the main body of a prism by using matching oil. Passed light beams 211, which are split with a beam splitter 2, and reflected light beams 222 are cast into a reference part R and a sensing part S, to which antibodies are fixed at specified incident angles. Antigens are detected based on the displacement of the electric signals (Is-Ir)/Im of an operator 9 before and after serum is spread and attached.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、金属と誘電物質との境
界領域に励起される表面プラズモンを利用したバイオセ
ンサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a biosensor using surface plasmons excited in a boundary region between a metal and a dielectric material.

【0002】[0002]

【従来の技術】金属薄膜、及び抗体を順に固着した直角
プリズムの底面に電磁線を導入し、抗原を含有する可能
性のある血清を直角プリズムの底面に展着させ、展着さ
せる前と後との、電磁線の反射率の減衰ディップ点が変
位する現象に基づいて抗原の存在を検知する技術が知ら
れている。
2. Description of the Related Art Electromagnetic radiation is introduced into the bottom surface of a right-angled prism on which a metal thin film and an antibody are sequentially adhered, and serum that may contain an antigen is spread on the bottom surface of the right-angled prism before and after spreading. A technique for detecting the presence of an antigen is known based on the phenomenon that the attenuation dip point of the reflectance of electromagnetic radiation is displaced.

【0003】[0003]

【発明が解決しようとする課題】しかるに、従来の技術
は以下のような欠点を有する。 (あ)直角プリズムの底面に血清を展着させた場合、電
磁線の反射率の減衰ディップ点が変位するが、この変位
と免疫反応による変位との区別が紛らわしい。この為、
抗原の検出に手間がかかるとともに、不正確になり易
い。 (い)免疫反応を、時間経過に従って観察する事が困難
である。本発明の目的は、非特異結合、サンプルの物
性、温度等の影響を補償し、センシング物質と被センシ
ング物質との反応を時間経過に従って観察する事がで
き、且つ、手間やコストが著しくかからず、正確にサン
プル液中の被センシング物質を検出することができる被
センシング物質の差動検出方法の提供にある。
However, the conventional techniques have the following drawbacks. (A) When serum is spread on the bottom surface of a right-angle prism, the attenuation dip point of the reflectance of electromagnetic radiation is displaced, but the distinction between this displacement and the displacement due to immune reaction is confusing. Therefore,
It takes time and effort to detect the antigen, and is likely to be inaccurate. (Ii) It is difficult to observe the immune reaction over time. An object of the present invention is to compensate for non-specific binding, physical properties of a sample, influence of temperature, etc., and to observe a reaction between a sensing substance and a substance to be sensed over time, and from the standpoint of labor and cost. First, the present invention provides a differential detection method of a substance to be sensed, which can accurately detect the substance to be sensed in a sample liquid.

【0004】[0004]

【課題を解決するための手段】上記課題を解決するた
め、本発明は、プリズムの一端面に金属薄膜を膜付けす
るか、プリズムの一端面に貼着したガラス板の表面に金
属薄膜を膜付けし、該金属薄膜上にセンシング物質を固
定したセンシング部と固定しないリファレンス部とを有
する、表面プラズモンバイオセンサを用い、単一光源か
ら放射されるP偏光の単色光ビームをビームスプリッタ
により分割するとともに、これら分割ビームを所定入射
角でもって前記センシング部とリファレンス部とに入射
させ、被センシング物質を含有する可能性のあるサンプ
ル液を前記センシング部とリファレンス部とに展着さ
せ、展着させる前と後との、前記センシング部とリファ
レンス部とで反射した各反射光の強度差の変位に基づい
て前記サンプル液中の被センシング物質を検出する構成
を採用した。
In order to solve the above-mentioned problems, the present invention provides a metal thin film on one end face of a prism or a metal thin film on the surface of a glass plate attached to one end face of the prism. Using a surface plasmon biosensor having a sensing unit with a sensing substance fixed and a reference unit not fixed on the metal thin film, a P-polarized monochromatic light beam emitted from a single light source is split by a beam splitter. At the same time, these divided beams are incident on the sensing unit and the reference unit at a predetermined incident angle, and a sample liquid that may contain a substance to be sensed is spread on the sensing unit and the reference unit, and is spread. Before and after, in the sample liquid based on the displacement of the intensity difference of each reflected light reflected by the sensing unit and the reference unit Employing a configuration for detecting the sensing substance.

【0005】[0005]

【作用】サンプル液をセンシング部とリファレンス部と
に展着させると、センシング部とリファレンス部とで反
射した各反射光の各強度は展着させる前と後とで変化す
る。ここで、サンプル液が被センシング物質を含有して
いない場合、各反射光の強度は同一的に変化するので各
反射光の強度差は殆ど変位しない。しかし、サンプル液
が被センシング物質を含有していると、各反射光の強度
は各々異なって変化するので、各反射光の強度差の変位
を検出すればサンプル液中の被センシング物質の存在が
確認できる。
When the sample liquid is spread on the sensing section and the reference section, the respective intensities of the reflected lights reflected by the sensing section and the reference section change before and after spreading. Here, when the sample liquid does not contain the substance to be sensed, the intensities of the reflected lights change in the same manner, so that the difference in the intensity of the reflected lights hardly changes. However, if the sample liquid contains the substance to be sensed, the intensity of each reflected light changes differently, so if the displacement of the intensity difference of each reflected light is detected, the presence of the substance to be sensed in the sample liquid is detected. I can confirm.

【0006】[0006]

【発明の効果】センシング物質と被センシング物質との
反応を時間経過に従って観察する事ができる。各反射光
の強度差の変位を検出するだけなので、バックグラウン
ドと無関係に、サンプル液中の被センシング物質の、存
在の有無または正確な量を、低コストで且つ簡単に知る
ことができる。
The reaction between the sensing substance and the substance to be sensed can be observed over time. Since only the displacement of the intensity difference of each reflected light is detected, the presence or absence or the accurate amount of the substance to be sensed in the sample liquid can be easily known at low cost regardless of the background.

【0007】[0007]

【実施例】本発明の一実施例を図1〜図4に基づいて説
明する。図1に示すごとく、α- FP(肝臓癌になると
血清中に増加するタンパク質)検出装置Aは、レーザ光
をP偏光にする偏光板11を備えたレーザ投光器1と、
P偏光ビーム12を三等分するビームスプリッタ2と、
表面プラズモンバイオセンサ3と、ホトダイオード4、
5、6と、Is/Im回路7と、Ir/Im回路8と、
演算器9とを備える。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to FIGS. As shown in FIG. 1, an α-FP (protein that increases in serum when a liver cancer occurs) detection apparatus A includes a laser projector 1 including a polarizing plate 11 that converts laser light into P-polarized light,
A beam splitter 2 that divides the P-polarized beam 12 into three equal parts,
Surface plasmon biosensor 3, photodiode 4,
5, 6, an Is / Im circuit 7, an Ir / Im circuit 8,
And a computing unit 9.

【0008】レーザ投光器1は、本実施例では、波長6
32.5nmのレーザ光を投光するHe- Neレーザで
ある。
The laser projector 1 has a wavelength of 6 in this embodiment.
It is a He-Ne laser that projects a laser beam of 32.5 nm.

【0009】ビームスプリッタ2は、P偏光ビーム12
を通過光211と反射光212とに分割するとともに、
通過光211と反射光212との強度を1:2にする第
1スプリッタ部21と、反射光212を通過光221と
反射光222とに分割するとともに、通過光221と反
射光222との強度を1:1にする第2スプリッタ部2
2とを備える。
The beam splitter 2 has a P-polarized beam 12
Is divided into a transmitted light 211 and a reflected light 212, and
The 1st splitter part 21 which makes the intensity | strength of the transmitted light 211 and the reflected light 212 1: 2, and splits the reflected light 212 into the transmitted light 221 and the reflected light 222, and also the intensity of the transmitted light 221 and the reflected light 222. Second splitter section 2 for setting 1: 1
2 and.

【0010】図2の(a)、(b)に示す表面プラズモ
ンバイオセンサ3は、金薄膜311を上面310に膜付
けしたガラス板31(BK7製;n=1.5143)と
該ガラス板31をマッチングオイル32を用いて底面3
31に貼着したプリズム本体33(BK7製;n=1.
5143)とで構成されるプリズム30を備え、後述す
るL- B膜法により、金薄膜311上に抗体(抗- α-
FP)を固定した{図2の(a)の方}センシング部S
と固定しないリファレンス部Rとを形成してなる。
The surface plasmon biosensor 3 shown in FIGS. 2A and 2B is a glass plate 31 (made of BK7; n = 1.5143) having a gold thin film 311 formed on the upper surface 310, and the glass plate 31. Using the matching oil 32 on the bottom surface 3
The prism main body 33 (made of BK7; n = 1.
5143), and an antibody (anti-α-) is formed on the gold thin film 311 by the LB film method described later.
FP) fixed (toward (a) of FIG. 2) sensing unit S
And a reference portion R which is not fixed.

【0011】ホトダイオード4は、通過光211が所定
入射角(73°前後)でもってセンシング部Sに入光
し、センシング部Sで反射してプリズム本体33外へ出
た測定ビーム211aを受光して電気信号Isを出力す
る光電素子である。
The photodiode 4 receives the measurement beam 211a which the passing light 211 enters the sensing section S at a predetermined incident angle (about 73 °), is reflected by the sensing section S and goes out of the prism main body 33. It is a photoelectric element that outputs an electric signal Is.

【0012】ホトダイオード5は、反射光222が所定
入射角でもってリファレンス部Rに入光し、リファレン
ス部Rで反射してプリズム本体33外へ出た測定ビーム
222aを受光して電気信号Irを出力する光電素子で
ある。
The photodiode 5 receives the measurement beam 222a, in which the reflected light 222 enters the reference portion R at a predetermined incident angle, is reflected by the reference portion R and goes out of the prism body 33, and outputs an electric signal Ir. It is a photoelectric device.

【0013】ホトダイオード6は、通過光221を受光
して電気信号Imを出力する光電素子である。
The photodiode 6 is a photoelectric element that receives the passing light 221 and outputs an electric signal Im.

【0014】Is/Im回路7は、電気信号Is、Im
から電気信号Is/Imを算出する回路である。
The Is / Im circuit 7 receives the electric signals Is and Im.
Is a circuit for calculating the electric signal Is / Im from

【0015】Ir/Im回路8は、電気信号Ir、Im
から電気信号Ir/Imを算出する回路である。
The Ir / Im circuit 8 receives the electric signals Ir and Im.
Is a circuit for calculating the electric signal Ir / Im from

【0016】演算器9は、電気信号Is/Im、Ir/
Imから(Is−Ir)/Imを演算する電子回路であ
る。
The arithmetic unit 9 has electric signals Is / Im and Ir /
It is an electronic circuit that calculates (Is-Ir) / Im from Im.

【0017】表面プラズモンバイオセンサ3{図2の
(a)の方}は、以下の様にして製造される(図3参
照)。 ガラス板31を洗浄し、真空中で膜厚50nmの金薄
膜311を表面に蒸着させる。 リン酸塩緩衝液(PBS;0.1M pH7.2)を
満たしたトラフに金薄膜311を表面に蒸着した上記ガ
ラス板31を垂直に沈める。 上記リン酸塩緩衝液を満たしたトラフにアラキン酸を
展開する。 展開したアラキン酸を10mN/mに圧縮する。 沈めたガラス板31をL- B膜法により垂直に引上げ
(半分)、アラキン酸のL- B膜34を膜付けし、図示
上半分に位置する金薄膜311に、リファレンス部Rを
形成する。 抗α- FP溶液{0.07mg/ml(l≡d
-3)、固定化用緩衝液:リン酸塩緩衝液0.2M(M
≡moldm-3) pH7.2}をトラフに注入し、抗
体35を吸着(約30分放置)させる。 液面下にあるガラス板31の下半分をL- B膜法によ
り垂直に引上げ、図示下半分に位置する金薄膜311
に、抗体35を担持した有機膜を膜付けし、センシング
部Sを形成する。 ガラス板31全体に、5%BSA(bovine s
erum albumin)- リン酸塩緩衝液(0.0
1M pH8.0)を用いて37℃、2時間のBSAブ
ロッキング処理を行い、血清アルブミン中の非特異的な
部分をブロックして表面プラズモンバイオセンサ3{図
2の(a)の方}が完成する。 尚、別の製造方法により、図2の(b)の構造となる様
に、表面プラズモンバイオセンサ3を製造しても良い。
The surface plasmon biosensor 3 {(a) in FIG. 2} is manufactured as follows (see FIG. 3). The glass plate 31 is washed and a gold thin film 311 having a film thickness of 50 nm is deposited on the surface in vacuum. The glass plate 31 having a gold thin film 311 deposited on its surface is vertically submerged in a trough filled with a phosphate buffer solution (PBS; 0.1 M pH 7.2). Arachic acid is spread on the trough filled with the phosphate buffer. The developed arachidic acid is compressed to 10 mN / m. The submerged glass plate 31 is vertically pulled up (half) by the L-B film method, and the L-B film 34 of arachidic acid is filmed, and the reference portion R is formed on the gold thin film 311 located in the upper half of the drawing. Anti-α-FP solution {0.07 mg / ml (l≡d
m -3 ), Immobilization buffer: phosphate buffer 0.2 M (M
≡Moldm -3 ) pH 7.2} is injected into the trough to adsorb the antibody 35 (leave for about 30 minutes). The lower half of the glass plate 31 below the liquid surface is pulled up vertically by the L-B film method, and the gold thin film 311 located in the lower half in the figure.
Then, an organic film carrying the antibody 35 is applied to form a sensing portion S. 5% BSA (bovines) on the entire glass plate 31.
erum albumin) -phosphate buffer (0.0
The surface plasmon biosensor 3 (FIG. 2 (a)) is completed by performing BSA blocking treatment at 37 ° C. for 2 hours using 1M pH 8.0) to block non-specific portions in serum albumin. To do. The surface plasmon biosensor 3 may be manufactured by another manufacturing method so as to have the structure of FIG.

【0018】抗原であるα- FP(α- Fetopro
tein)の検出は、以下の様にして行う(図4参
照)。 1.表面プラズモンバイオセンサ3{図2の(a)または
(b)}を、α- FP検出装置Aに装着し、演算器9か
ら出力される電気信号(Is−Ir)/Imを確認して
おく。 2.患者から採った血清を、表面プラズモンバイオセンサ
3の、センシング部Sとリファレンス部Rとに被着させ
る。 3.被着時点で、本実施例の場合、電気信号Is/Im、
Ir/Imの出力値は、各々はね上がるが、患者が肝臓
癌である場合、免疫反応が起きるので、図4の(a)に
示す様に、演算器9が出力する電気信号(Is−Ir)
/Imの値が時間とともに漸増する。また、肝臓癌でな
い場合、免疫反応が起きないので、図4の(b)に示す
様に、演算器9が出力する電気信号(Is−Ir)/I
mの値は時間が経過しても殆ど変化しない。
The antigen α-FP (α-Fetopro
tein) is detected as follows (see FIG. 4). 1. The surface plasmon biosensor 3 {(a) or (b) in FIG. 2} is attached to the α-FP detection device A, and the electric signal (Is-Ir) / Im output from the calculator 9 is confirmed. Keep it. 2. The serum collected from the patient is applied to the sensing part S and the reference part R of the surface plasmon biosensor 3. 3. At the time of deposition, in the case of this embodiment, the electrical signal Is / Im,
The output values of Ir / Im are respectively repelled, but when the patient has liver cancer, an immune reaction occurs. Therefore, as shown in (a) of FIG. 4, the electric signal (Is-Ir) output by the calculator 9 is output.
The value of / Im gradually increases with time. In addition, since the immune reaction does not occur unless the cancer is liver cancer, the electric signal (Is-Ir) / I output from the computing unit 9 is output as shown in (b) of FIG.
The value of m hardly changes over time.

【0019】以下、本実施例の利点を述べる。 (ア)演算器9が出力する電気信号(Is−Ir)/I
mの値の時間的変化を観察して免疫反応の有無を判断し
ている。このため、各種処理の為に用いる溶液に起因す
る電気信号Is、Irの出力変化を相殺することがで
き、免疫反応による電気信号Is、Irの差動出力変化
のみを検出することができ、正確に免疫反応の有無を判
定できる。また、電気信号Imを参照しているので、P
偏光ビーム12の強度の経時変化等を相殺する事ができ
る。 (イ)患者から採った血清を、表面プラズモンバイオセ
ンサ3の、センシング部Sとリファレンス部Rとに被着
させ、電気信号(Is−Ir)/Imの値の時間的変化
を観察するだけなので、血清中のα- FPの存在確認に
手間や時間がかからず、また、安価に行える。 (ウ)血清には個体差があり、電気信号Is、Irの出
力値はばらつく。しかし、演算器9が出力する電気信号
(Is−Ir)/Imの値の時間的変化を観察して免疫
反応の有無を判断しているので不具合は起きない。
The advantages of this embodiment will be described below. (A) Electric signal (Is-Ir) / I output from the computing unit 9
The presence or absence of an immune reaction is judged by observing the temporal change in the value of m. Therefore, it is possible to cancel the output changes of the electric signals Is and Ir due to the solution used for various kinds of processing, and it is possible to detect only the differential output changes of the electric signals Is and Ir due to the immune reaction. The presence or absence of an immune reaction can be determined. Further, since the electric signal Im is referred to, P
It is possible to cancel the temporal change in the intensity of the polarized beam 12 and the like. (A) Since the serum collected from the patient is applied to the sensing part S and the reference part R of the surface plasmon biosensor 3 and the time change of the value of the electric signal (Is-Ir) / Im is observed. The confirmation of the presence of α-FP in serum does not take time and labor and can be performed at low cost. (C) Serum has individual differences, and the output values of the electrical signals Is and Ir vary. However, since the presence or absence of the immune reaction is determined by observing the temporal change in the value of the electric signal (Is-Ir) / Im output from the computing unit 9, no problem occurs.

【0020】本発明は、上記実施例以外につぎの実施態
様を含む。 a.上記実施例では被センシング物質を抗原、センシン
グ物質を抗体35としたが、逆でも良い。 b.上記実施例では、溶液との耐腐蝕性の観点から金属
薄膜に金を用いたが、誘電率の虚数部の小さい金属であ
れば他の金属(例えば銀、銅等)を使用しても良い。ま
た、膜厚は、数十nmの範囲で単色光の波長や金属の種
類に応じて選べば良い。 c.プリズム本体33の形状は、直角プリズム以外であ
っても良い。 d.表面プラズモンバイオセンサ3の製造方法は、被セ
ンシング物質の種類に応じて適宜変更しても良く、ま
た、センサ3に使用する材料は、上記実施例と異なる材
料を用いても良い。 e.表面プラズモンバイオセンサ3の検出感度を向上さ
せる為、光源に変調を加え、この変調光に同期した電気
信号を取り出すことができる位相検波回路を採用しても
良い。
The present invention includes the following embodiments in addition to the above embodiments. a. In the above embodiment, the substance to be sensed is the antigen and the substance to be sensed is the antibody 35, but the opposite is also possible. b. In the above embodiment, gold was used for the metal thin film from the viewpoint of corrosion resistance with the solution, but other metals (for example, silver, copper, etc.) may be used as long as the metal has a small imaginary part of the dielectric constant. .. In addition, the film thickness may be selected in the range of several tens nm depending on the wavelength of monochromatic light and the type of metal. c. The shape of the prism body 33 may be other than the rectangular prism. d. The method of manufacturing the surface plasmon biosensor 3 may be appropriately changed according to the type of the substance to be sensed, and the material used for the sensor 3 may be a material different from that in the above embodiment. e. In order to improve the detection sensitivity of the surface plasmon biosensor 3, a light source may be modulated and a phase detection circuit capable of extracting an electrical signal synchronized with this modulated light may be adopted.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係るα- FP検出装置のブ
ロック図である。
FIG. 1 is a block diagram of an α-FP detection device according to an embodiment of the present invention.

【図2】その検出装置に用いる表面プラズモンバイオセ
ンサの拡大図である。
FIG. 2 is an enlarged view of a surface plasmon biosensor used in the detection device.

【図3】その表面プラズモンバイオセンサの製造工程図
である。
FIG. 3 is a manufacturing process diagram of the surface plasmon biosensor.

【図4】免疫反応が起きた(a)場合、および起きない
(b)場合の各電気信号の強度を示すグラフである。
FIG. 4 is a graph showing the intensity of each electric signal when an immune reaction occurs (a) and when an immune reaction does not occur (b).

【符号の説明】[Explanation of symbols]

1 レーザ投光器(単一光源) 2 ビームスプリッタ 3 表面プラズモンバイオセンサ 12 P偏光ビーム(単色光ビーム) 30 プリズム 35 抗体(センシング物質) 211 通過光(分割ビーム) 222 反射光(分割ビーム) 310 上面(一端面) 311 金薄膜(金属薄膜) A α- FP検出装置 R リファレンス部 S センシング部 1 laser projector (single light source) 2 beam splitter 3 surface plasmon biosensor 12 P polarized beam (monochromatic light beam) 30 prism 35 antibody (sensing substance) 211 transmitted light (split beam) 222 reflected light (split beam) 310 top surface ( 311 Gold thin film (metal thin film) A α-FP detector R Reference unit S Sensing unit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 プリズムの一端面に金属薄膜を膜付けす
るか、プリズムの一端面に貼着したガラス板の表面に金
属薄膜を膜付けし、該金属薄膜上にセンシング物質を固
定したセンシング部と固定しないリファレンス部とを有
する、表面プラズモンバイオセンサを用い、 単一光源から放射されるP偏光の単色光ビームをビーム
スプリッタにより分割するとともに、これら分割ビーム
を所定入射角でもって前記センシング部とリファレンス
部とに入射させ、 被センシング物質を含有する可能性のあるサンプル液を
前記センシング部とリファレンス部とに展着させ、 展着させる前と後との、前記センシング部とリファレン
ス部とで反射した各反射光の強度差の変位に基づいて前
記サンプル液中の被センシング物質を検出する、被セン
シング物質の差動検出方法。
1. A sensing unit in which a metal thin film is applied to one end surface of a prism, or a metal thin film is applied to the surface of a glass plate attached to one end surface of the prism, and a sensing substance is fixed on the metal thin film. Using a surface plasmon biosensor having a non-fixed reference section, a P-polarized monochromatic light beam emitted from a single light source is split by a beam splitter, and these split beams are separated by the sensing section at a predetermined incident angle. A sample liquid that may contain the substance to be sensed is spread on the sensing part and the reference part, and reflected by the sensing part and the reference part before and after spreading. The detected substance in the sample liquid is detected based on the displacement of the intensity difference of each reflected light. Motion detection method.
JP8409192A 1992-04-06 1992-04-06 Differential-motion detecting method of material to be sensed Pending JPH05288672A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8409192A JPH05288672A (en) 1992-04-06 1992-04-06 Differential-motion detecting method of material to be sensed

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8409192A JPH05288672A (en) 1992-04-06 1992-04-06 Differential-motion detecting method of material to be sensed

Publications (1)

Publication Number Publication Date
JPH05288672A true JPH05288672A (en) 1993-11-02

Family

ID=13820839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8409192A Pending JPH05288672A (en) 1992-04-06 1992-04-06 Differential-motion detecting method of material to be sensed

Country Status (1)

Country Link
JP (1) JPH05288672A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1151857A (en) * 1997-02-26 1999-02-26 Fuji Photo Film Co Ltd Surface plasmon sensor
WO2001090728A1 (en) * 2000-05-25 2001-11-29 Katayanagi Institute Differential spr sensor and measuring method using it
US6726881B2 (en) 2001-09-03 2004-04-27 Fuji Photo Film Co., Ltd. Measurement chip for surface plasmon resonance biosensor
JP2005024456A (en) * 2003-07-04 2005-01-27 Mitsubishi Chemicals Corp Surface plasmon resonance sensor, and biosensor
JP2006258739A (en) * 2005-03-18 2006-09-28 Fujinon Corp Output device of branched light flux and measuring devices of a plurality of light flux output type

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62254038A (en) * 1986-04-16 1987-11-05 Daikin Ind Ltd Immunity examination apparatus
JPS62254039A (en) * 1986-04-16 1987-11-05 Daikin Ind Ltd Immunity examination apparatus
JPH03261846A (en) * 1990-03-12 1991-11-21 Fuji Electric Co Ltd Infrared absorption enhanced spectrometer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62254038A (en) * 1986-04-16 1987-11-05 Daikin Ind Ltd Immunity examination apparatus
JPS62254039A (en) * 1986-04-16 1987-11-05 Daikin Ind Ltd Immunity examination apparatus
JPH03261846A (en) * 1990-03-12 1991-11-21 Fuji Electric Co Ltd Infrared absorption enhanced spectrometer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1151857A (en) * 1997-02-26 1999-02-26 Fuji Photo Film Co Ltd Surface plasmon sensor
WO2001090728A1 (en) * 2000-05-25 2001-11-29 Katayanagi Institute Differential spr sensor and measuring method using it
US6726881B2 (en) 2001-09-03 2004-04-27 Fuji Photo Film Co., Ltd. Measurement chip for surface plasmon resonance biosensor
JP2005024456A (en) * 2003-07-04 2005-01-27 Mitsubishi Chemicals Corp Surface plasmon resonance sensor, and biosensor
JP2006258739A (en) * 2005-03-18 2006-09-28 Fujinon Corp Output device of branched light flux and measuring devices of a plurality of light flux output type

Similar Documents

Publication Publication Date Title
Jin et al. A biosensor concept based on imaging ellipsometry for visualization of biomolecular interactions
EP0546061B1 (en) Surface plasmon resonance device
JP4897054B2 (en) Flow velocity measuring device, antigen concentration measuring device, flow velocity measuring method, antigen concentration measuring method
GB9623820D0 (en) Surface plasma resonance sensor
TWI256998B (en) Surface plasmon resonance
US20030113231A1 (en) Differential spr sensor and measuring method using it
US8004676B1 (en) Method for detecting analytes using surface plasmon resonance
Funari et al. Nanoplasmonic multiplex biosensing for COVID-19 vaccines
JPH03502604A (en) Analysis method
CN100451622C (en) Method and system for testing heterodyne phase of resonance biochemical multichannel of surface plasma
JPH05288672A (en) Differential-motion detecting method of material to be sensed
JPS62291547A (en) Method for measuring concentration of substance
ATE119290T1 (en) SOLID PHASE INTERFEROMETRIC IMMUNO TESTING SYSTEM.
US7012693B2 (en) Sensor utilizing attenuated total reflection
US6943893B2 (en) Optical heterodyne surface plasma wave detecting method and apparatus
Giaever et al. Visual detection of hepatitis B antigen
Kim et al. Thiolated protein a-functionalized bimetallic surface plasmon resonance chip for enhanced determination of amyloid beta 42
JP4173628B2 (en) Surface plasmon resonance measuring device
WO2005064317A1 (en) Method of analyzing ligand in sample and apparatus for analyzing ligand in sample
US10690595B2 (en) Optical sensing device, method of manufacturing the same, and optical sensing method
JPH04351946A (en) Detection of material to be sensed
JP2822010B2 (en) Measuring Method and Apparatus for Measuring Entry Angle and Actual Side Length of Rectangular Article during Transportation Using Laser Doppler Method
JPS62289749A (en) Reflection factor measuring instrument
Kim et al. Characteristics of a bimetal-layer chip of a surface plasmon resonance sensor in the intensity interrogation for tumor marker detection
JP2003098075A (en) Sensor utilizing attenuated total reflection