JPH0528866A - Film forming method for dielectric substance film - Google Patents

Film forming method for dielectric substance film

Info

Publication number
JPH0528866A
JPH0528866A JP20111891A JP20111891A JPH0528866A JP H0528866 A JPH0528866 A JP H0528866A JP 20111891 A JP20111891 A JP 20111891A JP 20111891 A JP20111891 A JP 20111891A JP H0528866 A JPH0528866 A JP H0528866A
Authority
JP
Japan
Prior art keywords
film
partial pressure
oxidation
base board
unmeasurable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20111891A
Other languages
Japanese (ja)
Inventor
Hiroshi Yamaguchi
弘 山口
Shogo Matsubara
正吾 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP20111891A priority Critical patent/JPH0528866A/en
Publication of JPH0528866A publication Critical patent/JPH0528866A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Insulating Bodies (AREA)

Abstract

PURPOSE:To conduct oxidation of film in satisfactory performance while the composition is well controlled during film formation by forming a dielectric substance film under a certain Oz partial pressure, and performing film oxidation at a certain base board temp. and with specified Oz partial pressure for a period more than 5 min. CONSTITUTION:A growth device is partitioned into a crude material chamber 1 accommodating metals as crude material and a growth chamber 2 in which a base board 8 is installed, and they are exhausted independently. To the base board 8 A crude material, a having a low melting point and a high vapor pressure is supplied by a molecular beam cell 3 while another crude material B having a high melting point is supplied by E-Gun 4, and a coil 5 is installed in the growth chamber 2 for generating plasma. Sr is used as the material A while Ti used as material R, and formation of SrTiO3 film is conducted at a base board temp. of 500+ or -200 deg.C and with an Oz partial pressure of 2X10<-5> Torr, and then with the base board temp. kept, film oxidation is conducted with the Oz partial pressure in the growth chamber 2 over 1X10<-4> Torr for a period more than 5 min. The oxygen is activated, if necessary, by RF induction plasma and the oxidation is conducted. Thereby film formation can be done with the composition well controlled any as desired.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は誘電体の成膜方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dielectric film forming method.

【0002】[0002]

【従来の技術およびその課題】BaTiO3、SrTi
3、PbTiO3、およびその一部をLa、Zrで置換
したPb(Zr、Ti)O3、(Pb、La)(Zr、
Ti)O3あるいはBi4Ti312などの酸化物誘電体
材料は、コンデンサ、圧電素子、電気的光学素子などの
種々の機能デバイスに応用されている。近年デバイスの
小型化、高集積化の要請に対応するために、これらの材
料の薄膜化の試みがなされ、焦電型赤外線センサー、超
音波センサー、光スイッチなどで薄膜を用いたデバイス
が試作されている。さらに高性能のデバイスを作製する
ためには、今まで以上に高品質な誘電体膜が必要であ
り、現在様々な手法により検討が行われている。なかで
も真空蒸着法は高純度なメタルを原料として用いること
ができることから高品質な膜を得ることができると期待
され、1963年9月発行のジャーナル・オブ・ザ・エ
レクトロケミカル・ソサイアティ誌(Journal of The E
lectrochemical Society )969〜973頁などに報
告されているように、古くからその研究が行われている
手法である。
2. Description of the Related Art BaTiO 3 , SrTi
O 3 , PbTiO 3 , and Pb (Zr, Ti) O 3 (Pb, La) (Zr,
Oxide dielectric materials such as Ti) O 3 or Bi 4 Ti 3 O 12 have been applied to various functional devices such as capacitors, piezoelectric elements and electro-optical elements. In recent years, attempts have been made to reduce the thickness of these materials in order to meet the demands for device miniaturization and high integration, and devices using thin films for pyroelectric infrared sensors, ultrasonic sensors, optical switches, etc. have been prototyped. ing. In order to manufacture a device with higher performance, a higher quality dielectric film than ever before is required, and various methods are currently under study. Among them, the vacuum evaporation method is expected to be able to obtain high quality films because it can use high-purity metal as a raw material, and the Journal of the Electrochemical Society published in September 1963 (Journal of The E
This is a method that has been studied for a long time, as reported in the Electrochemical Society) 969-973.

【0003】特に真空蒸着法の中でも原料を独立に供給
して成膜を行うことができる多元蒸着法は精密な組成制
御が必要とされるPb(Zr、Ti)O3、(Pb、L
a)(Zr、Ti)O3、(Ba、Sr)TiO3などの
多元系の誘電体の有効な成膜手法として期待されてお
り、1989年2月発行のアプライド・フィジックス・
レター誌(Applied Physics Letters)527〜529頁
で、成膜中に酸素プラズマを用いて原料を活性化して基
板に供給することにより、残留分極の大きさが5μC/
cm2、坑電界15kV/cmというような値を示すB
aTiO3膜が得られることも報告されている。しか
し、多くの期待に反して、他の多元系の誘電体の成膜に
関しては報告がなく、BaTiO3など成膜に関して報
告が行われているものでも、他の成膜方法よりも大きな
優位性を示す結果が得られているものはない。これは下
記に示すように、 低い酸素分圧で成膜を行うと膜が充分に酸化されない
ために充分な誘電性を示さない。 成膜中に酸素分圧を高くしたりまたプラズマ等により
活性な酸素を用いて成膜中に膜を酸化しようとすると、
同時に原料も酸化されてしまい、その結果、安定に原料
の供給ができなくなり、組成の制御ができない。 といった相反する問題を従来の真空蒸着法が含んでいた
ことに原因がある。今後、この2つの問題を同時に解決
する方法が見つからない限り多元蒸着法の特徴を有効に
生かすことはできない。以上のように、多元蒸着法にお
いてバルクと同等の特性を持つ膜を得ることのできない
原因は、成膜中に組成を精度よく制御しながら同時に膜
の酸化を充分に行うことができないところにあり、本発
明はこのような従来の問題点を解決することを目的とす
る。
In particular, among the vacuum vapor deposition methods, the multi-source vapor deposition method capable of independently supplying raw materials to form a film requires Pb (Zr, Ti) O 3 , (Pb, L) for which precise composition control is required.
a) It is expected as an effective film forming method for multi-element dielectrics such as (Zr, Ti) O 3 and (Ba, Sr) TiO 3, and is applied by Applied Physics Co., Ltd. issued in February 1989.
In Applied Physics Letters, pages 527 to 529, the residual polarization is reduced to 5 μC / cm by activating a raw material by using oxygen plasma during film formation and supplying it to the substrate.
cm 2 and an electric field of 15 kV / cm B
It has also been reported that an aTiO 3 film can be obtained. However, contrary to many expectations, there are no reports on film formation of other multi-element dielectrics, and even if there are reports on film formation such as BaTiO 3 , there is a great advantage over other film formation methods. No results have been obtained. As shown below, when a film is formed with a low oxygen partial pressure, the film does not oxidize sufficiently and thus does not show sufficient dielectric properties. If you try to increase the oxygen partial pressure during film formation, or try to oxidize the film during film formation using active oxygen such as plasma,
At the same time, the raw material is also oxidized, and as a result, the raw material cannot be stably supplied and the composition cannot be controlled. This is because the conventional vacuum deposition method includes the contradictory problem. In the future, unless a method for solving these two problems at the same time is found, the characteristics of the multi-source vapor deposition method cannot be effectively utilized. As described above, the reason why it is not possible to obtain a film having the same characteristics as a bulk in the multi-source deposition method is that the film cannot be sufficiently oxidized while controlling the composition accurately during film formation. SUMMARY OF THE INVENTION The present invention aims to solve such conventional problems.

【0004】[0004]

【課題を解決するための手段】本発明は、基板上に、A
BO3で表され、AとしてSr、Ba、Pb、La、L
i、Biから選ばれる一種類以上の元素、BとしてT
i、Zr、Ta、Nbから選ばれる一種類以上の元素か
らなる誘電体を多元蒸着法により成膜し、成膜後、膜の
酸化を行うことよりなる誘電体の成膜方法であって、5
00±200℃の基板温度、2×10-5Torr以下の
酸素分圧中で誘電体膜を成膜した後、500±200℃
の基板温度、1×10-4Torr以上の酸素分圧中で5
分間以上膜の酸化を行うことを特徴とする誘電体の成膜
方法である。また上記発明において、酸素ガスをプラズ
マにより活性化させて膜の酸化を行うことを好適とす
る。
SUMMARY OF THE INVENTION The present invention comprises a substrate, A
Represented by BO 3 , A is Sr, Ba, Pb, La, L
One or more elements selected from i and Bi, T as B
A method for forming a dielectric material, comprising: forming a dielectric film made of one or more elements selected from i, Zr, Ta, and Nb by a multi-source deposition method, and oxidizing the film after the film formation. 5
After forming a dielectric film at a substrate temperature of 00 ± 200 ° C. and an oxygen partial pressure of 2 × 10 −5 Torr or less, 500 ± 200 ° C.
Substrate temperature of 1 × 10 −4 Torr or more at an oxygen partial pressure of 5
A method for forming a dielectric film is characterized in that the film is oxidized for not less than a minute. In the above invention, it is preferable that the film be oxidized by activating oxygen gas with plasma.

【0005】[0005]

【実施例】次に本発明の実施例について図面を参照して
説明する。図1に本発明の方法に用いられる誘電体の成
長装置の一例の構造を示す。成長装置は原料のメタルの
ある原料室1と基板8の設置されている成長室2に分か
れており、それぞれ独立に排気される。融点が低く蒸気
圧が高い原料Aは分子線セル3、融点の高い原料BはE
−Gun4により基板に供給される。成長室2にはプラ
ズマを発生させるためのコイル5が設置されている。本
発明に基づいて、Aの原料としてSrのメタルを、Bの
原料としてTiのメタルを用いてSrTiO3の成膜を
行った。Srの入っている分子線セル3の温度は350
℃とした。基板温度500±200℃、2×10-5To
rrの酸素分圧で80nmの膜を作製する。成膜終了
後、基板温度を保持したまま成長室内の酸素分圧が1×
10-4Torr以上になるように酸素ガスを導入し、5
分以上膜の酸化を行った。また必要に応じてRF誘導プ
ラズマを発生させ、酸素を活性化した。その後、酸素分
圧を保ったままで基板を冷却した。
Embodiments of the present invention will now be described with reference to the drawings. FIG. 1 shows the structure of an example of a dielectric growth apparatus used in the method of the present invention. The growth apparatus is divided into a raw material chamber 1 containing a raw material metal and a growth chamber 2 in which a substrate 8 is installed, and each is evacuated independently. Raw material A with a low melting point and high vapor pressure is molecular beam cell 3, raw material B with a high melting point is E
-Supplied to the substrate by Gun4. A coil 5 for generating plasma is installed in the growth chamber 2. According to the present invention, SrTiO 3 was deposited using Sr metal as the A raw material and Ti metal as the B raw material. The temperature of the molecular beam cell 3 containing Sr is 350.
℃ was made. Substrate temperature 500 ± 200 ℃, 2 × 10 -5 To
A film with a thickness of 80 nm is formed with an oxygen partial pressure of rr. After the film formation, the oxygen partial pressure in the growth chamber is 1 × while maintaining the substrate temperature.
Oxygen gas is introduced so as to be 10 -4 Torr or more, and 5
The film was oxidized for more than a minute. If necessary, RF induction plasma was generated to activate oxygen. Then, the substrate was cooled while keeping the oxygen partial pressure.

【0006】酸素もしくは活性な酸素を装置内に導入し
て蒸着法により酸化物の成膜を行う場合、原料の酸化に
よる蒸発量の変化がおきる。E−Gun加熱の場合は入
力パワーによって原料の供給量を細かく制御することが
できるが、分子線セルの温度を変化させ蒸発量を制御す
る場合は温度変化に対して蒸発量の変化の応答が遅く現
実的ではない。そこでなるべく原料の蒸発量が変化しな
い低い酸素分圧中で、しかも活性な酸素等は使わずに成
膜することが望ましい。図2は本実施例で行った酸素分
圧2×10-5Torrにおける分子線セルによるSrの
基板への堆積速度の時間変化を示したもので、Srの堆
積量は約30分で10%減少している。この程度の変化
ならばE−Gun加熱方式でTiの蒸発量を制御するこ
とにより膜厚方向に対してSr、Tiの組成分布が均一
な膜を得ることが可能である。図3はTiの蒸発量を制
御して成膜を行い、作製したSrTiO3膜の組成プロ
ファイルである。Tiの蒸発量を制御することにより組
成の均一な膜ができている。一方、酸素分圧が2×10
-5Torrより大きくなるとSr堆積量の減少量は著し
く大きくなり、かつ不規則になるので、組成の制御が困
難になる。したがって成膜中の酸素分圧を2×10-5
orr以下で成膜することが望ましい。
When oxygen or active oxygen is introduced into the apparatus to form an oxide film by the vapor deposition method, the amount of evaporation changes due to the oxidation of the raw material. In the case of E-Gun heating, the supply amount of the raw material can be finely controlled by the input power, but when the evaporation amount is controlled by changing the temperature of the molecular beam cell, the response of the change in the evaporation amount to the temperature change is Slow and unrealistic. Therefore, it is desirable to form a film in a low oxygen partial pressure where the amount of evaporation of the raw material does not change, and without using active oxygen or the like. FIG. 2 shows the time-dependent change in the deposition rate of Sr on the substrate by the molecular beam cell at the oxygen partial pressure of 2 × 10 −5 Torr performed in this example. The deposition amount of Sr was 10% in about 30 minutes. is decreasing. With such a change, it is possible to obtain a film having a uniform composition distribution of Sr and Ti in the film thickness direction by controlling the evaporation amount of Ti by the E-Gun heating method. FIG. 3 is a composition profile of a SrTiO 3 film produced by forming a film while controlling the amount of Ti vaporized. A film having a uniform composition is formed by controlling the evaporation amount of Ti. On the other hand, the oxygen partial pressure is 2 × 10
If it is larger than -5 Torr, the amount of decrease in the Sr deposition amount becomes extremely large and becomes irregular, which makes it difficult to control the composition. Therefore, the oxygen partial pressure during film formation is 2 × 10 −5 T
It is desirable to form a film at or or less.

【0007】表1〜表2に今回行った成膜及び酸化処理
における基板温度、酸化時間、酸素分圧の条件をまとめ
た。酸化時間とは成膜終了後に基板温度を保持した時間
であり冷却時間を含まない。酸素分圧は成膜後に酸化を
行った時の酸素分圧を意味する。また膜が絶縁性を示す
か否かを判断する目安として誘電特性を測定し、誘電率
とtanδを求めた。その結果を併せて表1〜表2に示
す。基板温度が200℃以下では膜が結晶化しないため
に酸素分圧、酸化時間を変化させても導通してしまい、
誘電率を測定することができなかった。一方、基板温度
が800℃では酸化中に膜表面にクラックが生じてしま
うためすべて導通してしまった。また、300℃、70
0℃の基板温度でも、酸化時間が5分以上、また酸素分
圧が1×10-4Torr以上でないと絶縁性を示す膜が
得られない。以上のことから成膜後膜の酸化を行う場合
には基板温度を500±200℃、酸素分圧を1×10
-4Torr以上で5分以上酸化を行う必要がある。
Tables 1 and 2 summarize the conditions of the substrate temperature, the oxidation time, and the oxygen partial pressure in the film formation and the oxidation treatment performed this time. The oxidation time is the time for which the substrate temperature is maintained after the film formation is completed and does not include the cooling time. The oxygen partial pressure means an oxygen partial pressure when oxidation is performed after film formation. In addition, the dielectric property was measured as a standard for determining whether or not the film exhibits insulating properties, and the dielectric constant and tan δ were obtained. The results are also shown in Tables 1 and 2. When the substrate temperature is 200 ° C. or lower, the film does not crystallize, so that conduction occurs even if the oxygen partial pressure and the oxidation time are changed.
The dielectric constant could not be measured. On the other hand, when the substrate temperature was 800 ° C., cracks were generated on the film surface during oxidation, so that all of them were conducted. Also, 300 ° C, 70
Even at a substrate temperature of 0 ° C., an insulating film cannot be obtained unless the oxidation time is 5 minutes or more and the oxygen partial pressure is 1 × 10 −4 Torr or more. From the above, when oxidizing the film after film formation, the substrate temperature is 500 ± 200 ° C. and the oxygen partial pressure is 1 × 10 5.
It is necessary to oxidize at -4 Torr or more for 5 minutes or more.

【0008】[0008]

【表1】 ──────────────────────────────────── 基板温度(℃) 酸化時間(分) 酸素分圧(Torr) 誘電率 tanδ ──────────────────────────────────── 3 5×10-5 測定不能 リーク大 1×10-4 測定不能 リーク大 1×10-3 測定不能 リーク大 ──────────────────────────── 5 5×10-5 測定不能 リーク大 200 1×10-4 測定不能 リーク大 1×10-3 測定不能 リーク大 ──────────────────────────── 10 5×10-5 測定不能 リーク大 1×10-4 測定不能 リーク大 1×10-3 測定不能 リーク大 ──────────────────────────────────── 3 5×10-5 測定不能 リーク大 1×10-4 測定不能 リーク大 1×10-3 測定不能 リーク大 ──────────────────────────── 5 5×10-5 測定不能 リーク大 300 1×10-4 200 0.023 1×10-3 210 0.011 ──────────────────────────── 10 5×10-5 測定不能 リーク大 1×10-4 190 0.011 1×10-3 200 0.009 ────────────────────────────────────[Table 1] ──────────────────────────────────── Substrate temperature (℃) Oxidation time (min) oxygen partial pressure (Torr) permittivity tanδ ──────────────────────────────────── 3 5 × 10 - 5 Unmeasurable large leak 1 × 10 -4 Unmeasurable large leak 1 × 10 -3 Unmeasurable large leak ──────────────────────────── ─ 5 5 × 10 -5 Unmeasurable leak large 200 1 × 10 -4 Unmeasurable leak large 1 × 10 -3 Unmeasurable leak large ────────────────────── ──────── 10 5 × 10 -5 Unmeasurable leak large 1 × 10 -4 Unmeasurable leak large 1 × 10 -3 Unmeasurable leak large ─────────────── ────────────────────── 3 5 × 10 -5 unmeasurable leak size 1 × 10 -4 unmeasurable leak size 1 × 10 -3 measurement Ability leak large ──────────────────────────── 5 5 × 10 -5 unmeasurable leak Large 300 1 × 10 -4 200 0.023 1 × 10 -3 210 0.011 ──────────────────────────── 10 5 × 10 -5 Unmeasurable large leak 1 × 10 -4 190 0.011 1 × 10 -3 200 0.009 ─────────────────────────────────────

【0009】[0009]

【表2】 ──────────────────────────────────── 基板温度(℃) 酸化時間(分) 酸素分圧(Torr) 誘電率 tanδ ──────────────────────────────────── 3 5×10-5 測定不能 リーク大 1×10-4 測定不能 リーク大 1×10-3 測定不能 リーク大 ──────────────────────────── 5 5×10-5 測定不能 リーク大 700 1×10-4 210 0.008 1×10-3 200 0.008 ──────────────────────────── 10 5×10-5 測定不能 リーク大 1×10-4 220 0.007 1×10-3 200 0.007 ──────────────────────────────────── 3 5×10-5 測定不能 リーク大 1×10-4 測定不能 リーク大 1×10-3 測定不能 リーク大 ──────────────────────────── 5 5×10-5 測定不能 リーク大 880 1×10-4 測定不能 リーク大 1×10-3 測定不能 リーク大 ──────────────────────────── 10 5×10-5 測定不能 リーク大 1×10-4 測定不能 リーク大 1×10-3 測定不能 リーク大 ────────────────────────────────────[Table 2] ──────────────────────────────────── Substrate temperature (℃) Oxidation time (min) oxygen partial pressure (Torr) permittivity tanδ ──────────────────────────────────── 3 5 × 10 - 5 Unmeasurable large leak 1 × 10 -4 Unmeasurable large leak 1 × 10 -3 Unmeasurable large leak ──────────────────────────── ─ 5 5 × 10 -5 Unmeasurable large leak 700 1 × 10 -4 210 0.008 1 × 10 -3 200 0.008 ───────────────────────── ──── 10 5 × 10 -5 Unmeasurable Large leak 1 × 10 -4 220 0.007 1 × 10 -3 200 0.007 ──────────────────────── ────────────── 3 5 × 10 -5 Unmeasurable large leak 1 × 10 -4 Unmeasurable large leak 1 × 10 -3 Unmeasurable large leak ──────── ───── ────────────── 5 5 × 10 -5 unmeasurable leak Large 880 1 × 10 -4 unmeasurable leak size 1 × 10 -3 unmeasurable leak large ─────── ───────────────────── 10 5 × 10 -5 Unmeasurable leak large 1 × 10 -4 unmeasurable leak large 1 × 10 -3 unmeasurable large leak ─ ───────────────────────────────────

【0010】図4に成膜後酸化を行う際にプラズマによ
り酸素ガスを活性化し酸化を行った場合(図4(a))
と、プラズマを用いなかった場合(図4(b))につい
て電流電圧特性を測定し、耐圧分布の分布を調べた結果
を示す。測定は各々100個の試料を用いて行った。試
料の膜厚は100nm、基板温度は500℃、酸素分圧
は1×10-3Torr、酸化時間は10分である。プラ
ズマを用いた場合は15V付近に耐圧が集中しているの
に対し、用いなかった場合には6V付近に耐圧が集中し
ており、プラズマを用いて活性な酸素により酸化を行っ
た方が絶縁性を高めるうえで効果があることがわかる。
その他、PLZT、Bi4Ti312、LiNbO3につ
いても同様に成膜を行い、同じ結果を得た。
FIG. 4 shows a case where the oxygen gas is activated by plasma during the oxidation after the film formation and the oxidation is performed (FIG. 4A).
4 shows the results of measuring the current-voltage characteristics and examining the distribution of breakdown voltage when plasma was not used (FIG. 4B). The measurement was performed using 100 samples each. The film thickness of the sample is 100 nm, the substrate temperature is 500 ° C., the oxygen partial pressure is 1 × 10 −3 Torr, and the oxidation time is 10 minutes. When plasma is used, the breakdown voltage is concentrated near 15 V, whereas when it is not used, the breakdown voltage is concentrated around 6 V, and it is better to oxidize with active oxygen using plasma. It can be seen that it is effective in improving sex.
Other, PLZT, performs deposition Similarly, the Bi 4 Ti 3 O 12, LiNbO 3, the same results were obtained.

【0011】[0011]

【発明の効果】以上説明したように、本発明の方法を用
いることにより、多元蒸着法によって原料が酸化しにく
い低い酸素分圧中で誘電体の成膜を行っても絶縁性を示
す膜を得ることが可能となる。この結果、組成制御を任
意に行うことができるといった多元蒸着法に期待されて
いる特徴を生かしながら誘電体の成膜を行うことが可能
となり、本発明の工業的意味はたいへん大きいと考えら
れる。
As described above, by using the method of the present invention, it is possible to form a film that exhibits an insulating property even when the dielectric film is formed in a low oxygen partial pressure in which the raw material is hard to be oxidized by the multi-source deposition method. It becomes possible to obtain. As a result, it becomes possible to form a dielectric film while taking advantage of the features expected of the multi-source vapor deposition method such that composition control can be arbitrarily performed, and it is considered that the industrial significance of the present invention is extremely great.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の方法に用いられる成膜装置の一例の構
成図である。
FIG. 1 is a configuration diagram of an example of a film forming apparatus used in a method of the present invention.

【図2】Srの堆積速度の時間変化を示した図である。FIG. 2 is a diagram showing a change with time of a deposition rate of Sr.

【図3】2×10-5Torrの酸素圧中でSrの蒸発量
の変化に合わせてTiの蒸発量を変化させながら成膜し
た場合の組成分布図である。
FIG. 3 is a composition distribution chart in the case of forming a film while changing the evaporation amount of Ti in accordance with the change of the evaporation amount of Sr in an oxygen pressure of 2 × 10 −5 Torr.

【図4】成膜後プラズマにより膜の酸化を行った場合
と、酸素ガスを用いて酸化を行った場合の耐圧分布を示
す図である。
FIG. 4 is a diagram showing a withstand voltage distribution when a film is oxidized by plasma after film formation and when the film is oxidized by using oxygen gas.

【符号の説明】[Explanation of symbols]

1 原料室 2 成長室 3 分子線セル 4 E−Gun 5 コイル 6 O2ガスパス 7 ヒータ 8 基板1 Raw Material Chamber 2 Growth Chamber 3 Molecular Beam Cell 4 E-Gun 5 Coil 6 O 2 Gas Pass 7 Heater 8 Substrate

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 基板上に、ABO3で表され、Aとして
Sr、Ba、Pb、La、Li、Biから選ばれる一種
類以上の元素、BとしてTi、Zr、Ta、Nbから選
ばれる一種類以上の元素からなる誘電体を多元蒸着法に
より成膜し、成膜後、膜の酸化を行うことよりなる誘電
体の成膜方法であって、500±200℃の基板温度、
2×10-5Torr以下の酸素分圧中で誘電体膜を成膜
した後、500±200℃の基板温度、1×10-4To
rr以上の酸素分圧中で5分間以上膜の酸化を行うこと
を特徴とする誘電体の成膜方法。
1. A substrate is represented by ABO 3 and has one or more elements selected from Sr, Ba, Pb, La, Li and Bi as A and one selected from Ti, Zr, Ta and Nb as B. A dielectric film forming method comprising forming a dielectric film composed of elements of at least one kind by a multi-source vapor deposition method, and oxidizing the film after the film formation, wherein a substrate temperature of 500 ± 200 ° C.,
After forming a dielectric film in an oxygen partial pressure of 2 × 10 −5 Torr or less, a substrate temperature of 500 ± 200 ° C., 1 × 10 −4 To
A method for forming a dielectric film, comprising: oxidizing a film for 5 minutes or more in an oxygen partial pressure of rr or more.
【請求項2】 酸素ガスをプラズマにより活性化させて
膜の酸化を行うことを特徴とする請求項1記載の誘電体
の成膜方法。
2. The method for forming a dielectric film according to claim 1, wherein oxygen gas is activated by plasma to oxidize the film.
JP20111891A 1991-07-17 1991-07-17 Film forming method for dielectric substance film Pending JPH0528866A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20111891A JPH0528866A (en) 1991-07-17 1991-07-17 Film forming method for dielectric substance film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20111891A JPH0528866A (en) 1991-07-17 1991-07-17 Film forming method for dielectric substance film

Publications (1)

Publication Number Publication Date
JPH0528866A true JPH0528866A (en) 1993-02-05

Family

ID=16435706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20111891A Pending JPH0528866A (en) 1991-07-17 1991-07-17 Film forming method for dielectric substance film

Country Status (1)

Country Link
JP (1) JPH0528866A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100364752B1 (en) * 1995-04-19 2003-08-02 엘지전자 주식회사 Device for driving low frequency oscillation washing machine
JP2007066754A (en) * 2005-08-31 2007-03-15 Tdk Corp Dielectric film and its manufacturing method
JP2011195348A (en) * 2010-03-17 2011-10-06 Yukio Watabe Method for increasing polarization electric field of oxide ferroelectric

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100364752B1 (en) * 1995-04-19 2003-08-02 엘지전자 주식회사 Device for driving low frequency oscillation washing machine
JP2007066754A (en) * 2005-08-31 2007-03-15 Tdk Corp Dielectric film and its manufacturing method
JP2011195348A (en) * 2010-03-17 2011-10-06 Yukio Watabe Method for increasing polarization electric field of oxide ferroelectric

Similar Documents

Publication Publication Date Title
US5395663A (en) Process for producing a perovskite film by irradiating a target of the perovskite with a laser beam and simultaneously irradiating the substrate upon which the perovskite is deposited with a laser beam
Lee et al. Microstructure dependence of electrical properties of (Ba0. 5Sr0. 5) TiO3 thin films deposited on Pt/SiO2/Si
Peng et al. Structures and electrical properties of barium strontium titanate thin films grown by multi-ion-beam reactive sputtering technique
Roy et al. Pulsed excimer laser ablated barium titanate thin films
US5397446A (en) Method of forming a ferroelectric film
Kijima et al. New low-temperature processing of metalorganic chemical vapor deposition-Bi4Ti3O12 thin films using BiOx buffer layer
EP0849780A2 (en) Method for manufacturing ferroelectric thin film, substrate covered with ferroelectric thin film, and capacitor
Lee et al. Pt-base electrodes and effects on phase formations and electrical properties of high-dielectric thin films
US5820946A (en) Method for fabricating ferroelectric thin film
JPH0528866A (en) Film forming method for dielectric substance film
US5856242A (en) Method of producing dielectric thin film element
KR20210019152A (en) Method of manufacturing a strontium titanate based dielectric layer having high dielectric constant and low leakage current density and method of manufacturing a capacitor including the strontium titanate based dielectric layer
JPH04187759A (en) Formation of dielectric thin film
JP3427362B2 (en) Dielectric thin film deposition method
JP3224293B2 (en) Manufacturing method of dielectric thin film
US6198120B1 (en) Ferroelectric thin film device and method of producing the same
Yamamichi et al. SrTiO3 and (Ba, Sr) TiO3 Thin Films Preparation by Ion Beam Sputtering and Their Dielectric Properties
JPH02258700A (en) Ferroelectric thin film and production thereof
Al-Shareef et al. Electrical properties of Pb (Zr0. 53Ti0. 47) O3 thin film capacitors with modified RuO2 bottom electrodes
Kim et al. Pt electrode investigation and electrical properties of RF magnetron sputtered Pb (Zr, Ti) O3
Kamijyo et al. Capacitor property and leakage current mechanism of ZrO2 thin dielectric films prepared by anodic oxidation
JP3888400B2 (en) Dielectric thin film manufacturing method
Tsai et al. Electrical properties of O2 and N2 annealed (Ba, Sr) TiO3 thin films
JP3089159B2 (en) Manufacturing method of oxide dielectric thin film element
JP3195827B2 (en) Method for producing a ferroelectric bismuth titanate layer on a substrate